Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Digital repository of Slovenian research organisations
About
Search
Browse
Statistics
Contacts
Login
Show document
A+
|
A-
|
|
SLO
|
ENG
Title:
Characterization of constrained continuous multiobjective optimization problems : a feature space perspective
Authors:
ID
Vodopija, Aljoša
(Author)
ID
Tušar, Tea
(Author)
ID
Filipič, Bogdan
(Author)
Files:
PDF - Presentation file,
download
(3,25 MB)
MD5: C3F362D7D685E7CE87B945CEC7AA1C96
Language:
English
Typology:
1.01 - Original Scientific Article
Organization:
IJS - Jožef Stefan Institute
Keywords:
constrained multiobjective optimization
,
problem landscape
,
exploratory landscape analysis
,
test problem
,
benchmarking
Publication status:
Published
Publication version:
Version of Record
Year of publishing:
2022
Number of pages:
str. 244-262
Numbering:
Vol. 607
PID:
20.500.12556/DiRROS-15177
UDC:
519.8
ISSN on article:
0020-0255
DOI:
10.1016/j.ins.2022.05.106
COBISS.SI-ID:
111040259
Publication date in DiRROS:
21.06.2022
Views:
964
Downloads:
430
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Record is a part of a journal
Title:
Information sciences
Shortened title:
Inf. sci.
Publisher:
North-Holland
ISSN:
0020-0255
COBISS.SI-ID:
25613056
Document is financed by a project
Funder:
EC - European Commission
Funding programme:
H2020
Project number:
692286
Name:
Synergy for Smart Multi-Objective Optimisation
Acronym:
SYNERGY
Funder:
ARRS - Slovenian Research Agency
Project number:
P2-0209
Name:
Umetna inteligenca in inteligentni sistemi
Licences
License:
CC BY 4.0, Creative Commons Attribution 4.0 International
Link:
http://creativecommons.org/licenses/by/4.0/
Description:
This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Licensing start date:
01.06.2022
Archive
niGradiv
Back