Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (trace elements) .

1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
Moss as a biomonitor to identify atmospheric deposition of minor and trace elements in Macedonia
Robert Šajn, Katerina Bačeva Andronovska, Trajče Stafilov, Lambe Barandovski, 2024, original scientific article

Abstract: The present work was carried out to obtain and highlight the fifth comprehensive baseline dataset on atmospheric deposition of trace elements and to assess air quality in Macedonia. In the period from August to September 2020, a total of 72 moss samples were collected in accessible areas in the country. The content of 28 elements (Ag, Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Ti, U, and Zn) was determined using inductively coupled plasma–mass spectrometry. Based on the data obtained on the content of the elements, a factor analysis was carried out to identify and characterise different sources of pollution. In addition, distribution maps were created for all elements to show the regions most affected by anthropogenic activities. The survey conducted in 2020 has shown that air pollution with potentially toxic elements (PTEs) has slightly decreased compared to the results of the previous survey from 2015. This is due to the fact that, despite the operation of all mining and smelting facilities with the same capacity, government regulations for the installation of cleaning systems and additional regulations to reduce pollution have been introduced in the last five years. Nevertheless, the fact remains that the highest anthropogenic air pollution with PTEs is still caused by the operation of the ferronickel smelter in Kavadarci (Ni and Cr) in the southern part and by the lead and zinc mines in Probištip, Makedonska Kamenica, and Kriva Palanka in the eastern part of the country (Cd, Pb, and Zn).
Keywords: moss, atmospheric deposition, trace elements, air quality, Macedonia
Published in DiRROS: 20.03.2024; Views: 54; Downloads: 19
.pdf Full text (9,64 MB)

2.
Heavy minerals as indicators of source material in soils on carbonates
Barbara Čeplak, Miloš Miler, Nina Zupančič, Simona Jarc, 2023, original scientific article

Abstract: The origin of the soils formed on carbonate rocks remains uncertain, as they are probably of polygenetic origin. Of particular interest are the elevated contents of some trace elements detected in these soils, as they can hardly be attributed to insoluble residues of carbonate rock. The aim of this study was to uncover the relationship between heavy minerals in bedrock and soil and to identify other sources that influence the mineral and chemical composition of soil. We investigated representative samples of soils and dolomite bedrock as well as sandstones and marlstones from the nearby flysch basin as an expected source of the aeolian contribution. XRD and SEM/EDS showed that mineral diversity is higher in soils compared to the dolomites. Heavy minerals found in dolomite insoluble residue include sphalerite, Ti-oxide (probably rutile), zircon, fluorite, pyrite, minerals of REE phosphates and apatite group, interpreted as terrigenous detrital material. The mineral composition of soil heavy fraction is only partly following insoluble residues of bedrock and indicates possible aeolian contribution. Comparison with nearby flysch sandstones and marlstones showed similarities in mineralogical diversity by the presence of chromite and Fe-Cr(Mn) oxides (probably carmichaelite). Other minerals present in soils and flysch layers, such as Ti-oxide (probably rutile), zircon, REE phosphates, and pyrite grains, however, show similarities in mode of occurrence and transport indications. Signs of aeolian transport on the grains detected in soils were further confirmed by SEM/EDS.
Keywords: Phaeozem, Upper Triassic dolomite, flysch layers, trace elements, SEM/EDS
Published in DiRROS: 04.01.2024; Views: 193; Downloads: 40
.pdf Full text (8,60 MB)

3.
Analysis of the geological control on the spatial distribution of potentially toxic concentrations of As and F- in groundwater on a Pan-European scale
Elena Giménez-Forcada, Juan Antonio Luque-Espinar, María Teresa López-Bahut, Juan Grima-Olmedo, Jorge Jiménez-Sánchez, Carlos Ontiveros-Beltranena, José Angel Díaz-Muñoz, Daniel Elster, Ferid Skopljak, Denitza D. Voutchkova, Birgitte Hansen, Klaus Hinsby, Jörg Schullehner, Eline Malcuit, Laurence Gourcy, Teodóra Szőcs, Nóra Gál, Daði Þorbjörnsson, Katie Tedd, Dāvis Borozdins, Henry Debattista, Nina Rman, 2022, original scientific article

Abstract: The distribution of the high concentrations of arsenic (As) and fluoride (F-) in groundwater on a Pan-European scale could be explained by the geological European context (lithology and structural faults). To test this hypothesis, seventeen countries and eighteen geological survey organizations (GSOs) have participated in the dataset. The methodology has used the HydroGeoToxicity (HGT) and the Baseline Concentration (BLC) index. The results prove that most of the waters considered in this study are in good conditions for drinking water consumption, in terms of As and/or F- content. A low proportion of the analysed samples present HGT≥ 1 levels (4% and 7% for As and F-, respectively). The spatial distribution of the highest As and/or F- concentrations (via BLC values) has been analysed using GIS tools. The highest values are identified associated with fissured hard rock outcrops (crystalline rocks) or Cenozoic sedimentary zones, where basement fractures seems to have an obvious control on the distribution of maximum concentrations of these elements in groundwaters.
Keywords: trace elements, arsenic fluoride, groundwater, geo-hydrochemistry, spatial analysis
Published in DiRROS: 30.01.2023; Views: 949; Downloads: 199
.pdf Full text (16,39 MB)
This document has many files! More...

4.
Search done in 0.12 sec.
Back to top