Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (austenitic stainless steel) .

1 - 5 / 5
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
2.
3.
Elucidating nucleation stages of transgranular stress corrosion cracking in austenitic stainless steel by in situ electrochemical and optical methods
Sarmiento Klapper Helmuth, Bojan Zajec, Andreas Heyn, Andraž Legat, 2019, izvirni znanstveni članek

Povzetek: The pitting and environmentally assisted cracking resistance of austenitic stainless steels (SS) is challenged in several industrial applications particularly those involving hot chloride-concentrated streams. Directional drilling used in the oil and gas exploration is one of these applications. Indeed, high strength CrMn-SS commonly used in drilling technology have a high tendency to fail by stress corrosion cracking (SCC) preceded by localized corrosion once subjected to highly chloride-concentrated drilling fluids at elevated temperatures. A comprehensive understanding regarding the mechanisms governing the transition from pitting into SCCis not currently available, though. Therefore, mechanistic aspects such as the effect of loading conditions on pit nucleation and repassivation as well as the synergistic effect between pit stabilization and the nucleation of a stress corrosion crack are of great practical significance. To investigate this an electrochemical-, optical- and mechanical- monitored SCC test was conducted on a CrMn-SS in an alkaline brine at elevated temperature. The transition from metastable to stable pitting and subsequently to SCC in this system was documented in-situ for the first time. Results supported H.S. Isaacs postulates regarding the interpretation of electrochemical signals and demonstrated that loading conditions affect pit nucleation and repassivation leading to a higher susceptibility of the material to pitting, which preceded SCC.
Ključne besede: pitting corrosion, stress corrosion cracking, monitoring, elektrochemical noise, austenitic stainless steel
Objavljeno v DiRROS: 23.11.2023; Ogledov: 246; Prenosov: 189
.pdf Celotno besedilo (2,28 MB)
Gradivo ima več datotek! Več...

4.
Pitting corrosion on highly alloyed stainless steels in dilute sulphuric acid containing sodium chloride
Elina Huttunen-Saarivirta, Elisa Isotahdon, Zaiqing Que, M. Lindgren, Ahmad Mardoukhi, Jean-Baptiste Jorcin, Petra Močnik, Tadeja Kosec, Yassine El Ouazari, Sukanya Hägg Mameng, Lena Wegrelius, 2023, izvirni znanstveni članek

Povzetek: Stainless steels are widely used in industrial assets and equipment. Despite their good corrosion resistance under a wide range of operating conditions, there is the possibility of pitting corrosion in the presence of chlorides. However, very few studies have identified the safe operating conditions for various high-alloyed stainless steel grades by comparing their pitting susceptibility. In this research, the susceptibility to pitting attack of five stainless steels with austenitic and duplex microstructures was examined in dilute sulphuric acid solution with varying amounts of NaCl at the temperatures of 50, 90 and 130◦C. Based on potentiodynamic polarization scans, none of the test materials underwent pitting corrosion at 50◦C, but differences in susceptibility to pitting attack were clear between the test materials and NaCl concentrations at the temperature of 90◦C, and further tem- perature increase facilitated uniform corrosion. 28-day immersion tests at 90◦ C confirmed the pitting suscepti- bility of duplex grades 1.4662 (PREN 33) and 1.4462 (PREN 35) in the presence of at least 2000 mg/L NaCl, but not the susceptibility of a corresponding austenitic grade 1.4539 (PREN 34). The grades 1.4547 (PREN 43) and 1.4410 (PREN 44) were not susceptible to pitting corrosion under any of the studied conditions. The results from materials microstructural and electrochemical characterization are presented and discussed in this paper.
Ključne besede: stainless steel, austenitic stainless steel, duplex stainless steel, pitting atttack
Objavljeno v DiRROS: 12.07.2023; Ogledov: 336; Prenosov: 395
.pdf Celotno besedilo (42,24 MB)
Gradivo ima več datotek! Več...

5.
Comparison of cycling high temperature corrosion at 650°C in the presence of NaCl of various austenitic stainless steels
Mirjam Bajt Leban, Maja Vončina, Tadeja Kosec, Robert Tisu, Matevž Barborič, Jože Medved, 2023, izvirni znanstveni članek

Povzetek: The high temperature corrosion at 650°C in the presence of NaCl at atmospheric pressure of AISI 304L, AISI 309, AISI 310S, AISI 314 and AISI 321 austenitic stainless steel was studied. The specimens were cyclically heated in the furnace and immersed in a 3.5% aqueous NaCl solution after cooling for 15 min. After each cycle, the change in mass of the samples was measured. The corroded samples were analysed by SEM /EDX, and the corrosion products were analysed by XRD. The chloride ions react with the steel surface to form porous and poorly adherent oxides and metal chlorides. After the mass increase during the first exposure cycles, spalling of the oxides occurred. The high temperature austenitic stainless steels (AISI 309, AISI 310S, AISI 314) showed less mass loss than conventional austenitic steels (AISI 304L). Surprisingly, the stainless steel AISI 321 showed a similar low weight loss after the cyclic test as AISI 309, but a detailed analysis of the exposed surfaces after the test showed a similar corrosion attack as for AISI 304. After the cyclic test at high temperature in the presence of NaCl, a higher concentration of Cr and Ni definitely improves the corrosion resistance under the present conditions, but a certain addition of Si is even more obvious.
Ključne besede: austenitic stainless steel, high temperature corrosion, NaCl, exhaust systems, open access
Objavljeno v DiRROS: 31.05.2023; Ogledov: 301; Prenosov: 185
.pdf Celotno besedilo (1,53 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.13 sek.
Na vrh