Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (3D printing) .

1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Mud from the Sitarjevec mine as a pigment for textile printing
Darja Rant, Mateja Štefančič, Vesna Zalar Serjun, Mateja Golež, 2021, objavljeni znanstveni prispevek na konferenci

Povzetek: The Sitarjevec mine, located near the town of Litija (Central Slovenia), is recognized by the strong yellow colour of its dripstone structures and mine mud deposits. The mine mud, composed predominantly of goethite, accumulates on the ground of the mine shafts as the result of the interaction between percolating underground water, iron ore minerals and microorganisms. Since the accumulation of limonite mine mud is an ongoing process, larger quantities of mud have been deposited in the mine shafts since its closure. These deposits present a real threat of unleashing a mine mud spill on the town of Litija. Such a scenario has already previously occurred. In order to find new potential routes for recycling larger quantities of this mine mud, the present research work was performed to assess the use of mine mud as a pigment in the dye industry. In the first stage, the chemical (XRF) and microstructural (SEM) characteristics of the mine mud were defined together with the identification of its phase composition (XRD), particle size distribution and specific surface area (BET). Furthermore, the pigment was used to colour textile printing paste on a laboratory scale. To define the most appropriate quality of textile prints the rheological response of the various textile printing paste samples was investigated in terms of their plastic viscosity, indicating their suitability for use in textile printing. Test prints wereconducted, and the properties of leaching and fastness in the prints were assessed.
Ključne besede: mine mud, recycling, pigment, printing paste, textile, rheology
Objavljeno v DiRROS: 25.01.2024; Ogledov: 194; Prenosov: 113
.pdf Celotno besedilo (9,29 MB)
Gradivo ima več datotek! Več...

2.
Synergistic effect of screen-printed Al(OH)3 nanoparticles and phosphorylated cellulose nanofibrils on the thermophysiological comfort and high-intensive heat protection properties of flame-retardant fabric
Tjaša Kolar, Jelka Geršak, Nataša Knez, Vanja Kokol, 2022, izvirni znanstveni članek

Povzetek: Al(OH)3 nanoparticles (ATH NPs) and phosphorylated cellulose nanofibrils (PCNFs) were used as user-friendly and comfortable coating components on flame-retardant fabric to improve its thermophysiological comfort and high-intensive heat protection properties. The effect of the PCNF imprinting and its attachment after the post-printing of a hydrophobic polyacrylate (AP) on the same (back side) or the other (front) side of the fabric, with and without the addition of ATH NPs, was considered, to maintain the front side (facing the wearer) as hydrophilic while keeping the back side (facing the outside) hydrophobic. The amount of coatings applied and their patterning were studied, varied with the ATH NPs’ concentration (1.7, 3.3 and 6.7 wt%) and screen mesh size used (60 and 135), based on the coating’ mass, fabric’s air permeability, thickness and microstructure. The reduced moisture build-up (55%), increased the water vapour (13%) and heat (12%) transfer from the skin, were assessed by applying PCNF under the AP, being more pronounced in the case of using a 135 mesh-sized screen, given the smaller, more densely distributed, thinner and imprinted pattern coatings. These effects were further improved by the addition of nanoporous ATH NPs, which allowed more homogeneous spreading of the moisture and its faster transport. Such a treatment also shifted the fabric’s degradation temperature towards higher values (up to 15°C), retained up to 30% of high-heat flux (21 kW/m2), prolonged the time to ignition by 11 s and reduced the total heat released by up to 60%, thereby providing better protection when exposed to the heat, due to the presence of the phosphorous (PCNF) promoted generation of an Al2O3 char acting as a barrier layer, while also reducing the production of heat and generation of smoke by 75%.
Ključne besede: flame-retardant textile, Al(OH)3 nanoparticles, phosphorylated cellulose nanofibrils, screen-printing, thermophysiological comfort, heat protection
Objavljeno v DiRROS: 28.04.2023; Ogledov: 452; Prenosov: 128
.pdf Celotno besedilo (2,91 MB)
Gradivo ima več datotek! Več...

3.
Iskanje izvedeno v 0.14 sek.
Na vrh