Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Mladenovič Ana) .

1 - 10 / 12
First pagePrevious page12Next pageLast page
1.
Heavy metal signature and environmental assessment of nearshore sediments: Port of Koper (Northern Adriatic Sea)
Nastja Rogan Šmuc, Matej Dolenec, Sabina Dolenec, Ana Mladenovič, 2018, original scientific article

Abstract: Heavy metal abundance and potential environmental risks are reported for surface sediments (n = 21) from the Port of Koper area, Republic of Slovenia. The enrichment factor (EF) indicates minor enrichment in arsenic (As), cadmium (Cd), copper (Cu), molybdenum (Mo), lead (Pb), antimony (Sb), and zinc (Zn), moderately to severely enriched with nickel (Ni). The trace metal chemistries, in the context of sediment quality guidelines (SQG), imply adverse threshold effect concentrations (TEC) and probable effect concentrations (PEC), for Ni only. Sediment sequential leaching experiments demonstrated that the majority of heavy metals were of natural lithogenic origin and low bioavailability. The heavy metals’ potential for “Risk Assessment Code” values exhibited no or low anthropogenic environmental burden, with the exception of Mo.
Keywords: port sediments, heavy metals, chemical speciation, risk assessment, Northem Adriatic Sea
Published in DiRROS: 12.12.2023; Views: 204; Downloads: 113
.pdf Full text (6,88 MB)
This document has many files! More...

2.
Mining waste in circular economy - legislative aspect
Senko Pličanič, Ana Mladenovič, Alenka Mauko Pranjić, Petra Vrhovnik, 2020, original scientific article

Abstract: One of the common European commitments is a transition towards a green circular economy in which waste is not discarded and considered to be just an environmental problem, but should be recognized as an important potential source of raw materials for industry. In a priority order in waste management activities, introduced by the Waste Directive in 2012, recycling is set just behind the waste prevention and reuse. Many types of waste can be recycled, the most perspective being construction, industrial and mining wastes. The latter are produced and disposed of at mine sites during the excavation and processing of ore and are extremely perspective due to large quantities and remaining of different metals, however still underutilized, with low recycling rate. Many mining wastes are inert and do not releases contaminants into environment, however, some of them are problematic and even require monitoring. Reprocessing of these wastes, which include beneficiation and sequential extraction of valuable metals in the first phase and recycling of residues in both structural and civil engineering in the second phase establishes a zero waste model with several benefits for economy, environment and society. Out of the South-East European countries, North Macedonia has great potential to establish this model. As a consequence of long mining tradition and abundant ore resources, there are many mining and metallurgical tailings, on the other hand vivid economy and numerous sinks for use of recycled materials in construction sector can accommodate these quantities. However, there are open questions in terms of administrative procedures and legislation. What are those obstacles that accompany the smooth establishment of the proposed model from a legislative point of view? This paper deals with the situation in North Macedonia, in terms of opportunities, legislative options and the need to adopt new legislation, taking also into account the current problems in this field in Europe.
Keywords: circular economy, zero-waste approach, mining waste, construction sector, legislation, krožno gospodarstvo, pristop ničelnega odpadka, rudarski odpadki, gradbeništvo, zakonodaja
Published in DiRROS: 04.12.2023; Views: 224; Downloads: 131
.pdf Full text (435,68 KB)
This document has many files! More...

3.
Detoxified spent pot lining from aluminum production as (alumino-)silicate source for composite cement and autoclaved aerated concrete
Arne Peys, Mateja Košir, Ruben Snellings, Ana Mladenovič, Liesbeth Horckmans, 2021, original scientific article

Abstract: New sources of supplementary cementitious materials (SCMs) are needed to meet the future demand. A potential new source of SCM is spent pot lining, a residue from aluminum production. The present work showed that the refined aluminosilicate part of spent pot lining (SPL) has a moderate chemical reactivity in a cementitious system measured in the R3 calorimetry test, comparable to commercially used coal fly ash. The reaction of SPL led to the consumption of Ca(OH)2 in a cement paste beyond 7 days after mixing. At 28 and 90 days a significant contribution to strength development was therefore observed, reaching a relative strength, which is similar to composite cements with coal fly ash. At early age a retardation of the cement hydration is caused by the SPL, which should most likely be associated with the presence of trace amounts of NH3. The spent pot lining is also investigated as silica source for autoclaved aerated concrete blocks. The replacement of quartz by spent pot lining did not show an adverse effect on the strength-density relation of the lightweight blocks up to 50 wt% quartz substitution. Overall, spent pot lining can be used in small replacement volumes (30 wt%) as SCM or as replacement of quartz (50 wt%) in autoclaved aerated concrete blocks.
Keywords: spent pot lining, construction materials, recycling, autoclaved aerated conctrte, supplementary cementitious material
Published in DiRROS: 04.12.2023; Views: 215; Downloads: 90
.pdf Full text (15,66 MB)
This document has many files! More...

4.
Izgradnja lizimetrov za preučevanje izpiranja potencionalno nevarnih snovi iz gradbenih proizvodov
Janez Turk, Janko Urbanc, Ana Mladenovič, Alenka Sešek Pavlin, Primož Oprčkal, Karmen Fifer Bizjak, Barbara Likar, Marko Brodnik, Nina Mali, 2020, original scientific article

Abstract: Z uporabo recikliranih odpadkov v gradbeništvu nadomeščamo naravne materiale in s tem vzpostavljamo krožno gospodarstvo na lokalnem nivoju. Pomemben vidik je tudi ohranjanje naravnih virov. To je še posebno pereče pri zemeljskih delih (npr. zasipih in nasipih), kjer prihaja do velike porabe materialov. Geotehnični kompoziti iz recikliranih materialov, v primerjavi z naravnimi agregati ali zemljinami, lahko vsebujejo višje celotne koncentracije potencialno nevarnih snovi (težke kovine, klorid, sulfat, fluorid, organska onesnaževala itd.). Pogoj za uporabo takšnih kompozitov je, da so v njih potencialno nevarne snovi imobilizirane in da so zato iz kemijskega vidika trajno inertni. Možni vplivi na okolje, predvsem prenos različnih potencialno nevarnih snovi iz kompozitov v tla oziroma vodonosnik, so običajno ovrednoteni na laboratorijski ravni, medtem ko je njihovo obnašanje v dejanskem okolju slabo proučeno. Zato se pojavljajo zahteve po razvoju občutljivih, zanesljivih in cenovno ter časovno učinkovitih orodij za določitev masnih tokov potencialno nevarnih snovi iz gradbenih proizvodov, na primer geotehničnih kompozitov, pod vplivi različnih okoljskih dejavnikov. V članku predstavljamo postopek vzpostavitve terenskega laboratorija na osnovi sistema "pan" lizimetrov, za zbiranje izcednih voda iz zasipov, ki so bili izdelani iz geotehničnih kompozitov iz recikliranih materialov. Lizimetre smo konstruirali in izvedli tako, da je njihova izgradnja cenovno ugodna, hkrati pa so po svojih dimenzijah dovolj veliki, da reprezentativno odražajo procese v zgrajenih geotehničnih zasipih. Pridobljeni podatki o količini in parametrih izcedne vode bodo služili kot osnova za določanje vodne bilance in za študij imobilizacije potencialno nevarnih snovi v kompozitih. Hkrati bodo uporabljeni kot vhodni podatki za geokemijski numerični model, s katerim bomo simulirali transport potencialno nevarnih snovi, sproščenih iz preučevanih kompozitov, v različnih tipih vodonosnikov (npr. medzrnski in razpoklinski).
Keywords: lizimeter, izlužek, okoljski monitoring, geotehnični zasip, odpadki
Published in DiRROS: 12.09.2023; Views: 296; Downloads: 139
.pdf Full text (2,46 MB)
This document has many files! More...

5.
Remediation of contaminated soil by red mud and paper ash
Primož Oprčkal, Ana Mladenovič, Nina Zupančič, Janez Ščančar, Radmila Milačič, Vesna Zalar Serjun, 2020, original scientific article

Abstract: Remediation of contaminated soil can be performed by using various techniques, which must be adequately tailored for each specific case. The aim of this research is to critically evaluate the potential use of red mud and paper ash and a combination of the two as immobilization additives for the remediation of contaminated soil from one of the most polluted sites in Slovenia. The proposed procedure involves the preparation of geotechnical composites made from contaminated soil and mixed with 25 wt% of immobilization additives and an optimal quantity of water to achieve consistency, at which maximum compaction according to the Proctor Compaction Test procedure can be achieved. The results reveal a positive, time-dependent trend for the immobilization of potentially toxic elements in the composite with paper ash, because of the formation of the new hydration products with potentially toxic elements. In a composite containing only red mud, potentially toxic elements were immobilized by sorption mechanisms with no general time-dependent trends. The composite with a combination of additives demonstrates the remediation characteristics of both red mud and paper ash. Using this approach excavated contaminated soil, red mud and paper ash can be successfully recycled in the proposed composites, which can be beneficially used in situ for rehabilitation of contaminated sites. Nevertheless, mobilization of some potentially toxic elements at high pHs may represent a limiting factor and has to be taken into the consideration when a combination of red mud and paper ash is used as immobilization additive.
Keywords: red mud, paper ash, contaminated soil, potentially toxic elements, geotechnical composites
Published in DiRROS: 31.08.2023; Views: 315; Downloads: 244
.pdf Full text (2,28 MB)
This document has many files! More...

6.
Environmental impacts of mixed aggregates for use in unbound layers in road construction
Metka Gostečnik, Predrag Šinik, Ana Mladenovič, Janez Ščančar, Radmila Milačič, 2020, original scientific article

Abstract: During carbon steel manufacturing, large amounts of electric arc furnace (EAF) slag are generated. EAF slag, if properly treated and processed into aggregate, is an alternative source of high-quality material, which can substitute the use of natural aggregates in most demanding applications in the construction sector, mostly for wearing asphalt courses. In this screening process of high-quality aggregates, a side material with grainsize 0/32 mm is also produced, which can be used as an aggregate for unbound layers in road construction. In this study, the environmental impacts of slag aggregate (fraction 0/32 mm) were evaluated in mixed natural/slag aggregates. Different mixtures of natural/slag aggregates were prepared from aged (28 days) and fresh slag, and their environmental impacts were evaluated using leaching tests. It was shown that among the elements, chromium (Cr) was leached from some mixed aggregates in quantities that exceeded the criterion for inert waste. The data from the present investigation revealed that mixed aggregates, prepared from aged slag (fraction 0/32 mm) and natural stone in the ratio 10/90, are environmentally acceptable and can be safely used in unbound materials for road construction.
Published in DiRROS: 30.08.2023; Views: 267; Downloads: 130
.pdf Full text (537,85 KB)
This document has many files! More...

7.
Valorized deinking paper residue as fill material for geotechnical structures
Karmen Fifer Bizjak, Barbara Likar, Ana Mladenovič, Vesna Zalar Serjun, 2021, original scientific article

Abstract: This study introduces a novel geotechnical composite material comprising two types of fill material sourced from the paper industry-deinking paper sludge ash (DPSA) and deinking paper sludge (DPS). Five composites with different DPSA and DPS contents were investigated. Two composites were selected for further analyses. The technology and procedure for composite installation were implemented in field tests. The composites with 80% and 70% DPSA exhibited the elasticity required to withstand minor landslide slip deformations, in addition to achieving sufficiently high values of uniaxial compressive strength. The composites had a low maximum dry density value, which led to fewer settlements in the entire support structure. The enhanced shear characteristics can enable the construction of a thinner retaining wall. The delay between preparation and installation of the composites was further investigated. The field tests confirmed that the composites with 80% and 70% DPSA can be installed on the construction site 4 h and even 24 h after mixing. In 2018, a retaining wall structure with 70% DPSA and 30% DPS was successfully implemented near a railway line using conventional technology as followed-up research to the herein presented study. Results have been derived from work performed in the scope of the H2020 Paperchain project in which novel circular economy models centered on the valorization of the waste streams generated by the pulp and paper industry as secondary raw material for several resource-intensive sectors, including the construction sector, have been developed. Environmental benefits are savings in natural raw materials, reduction of landfill disposal as well as CO2 emission reduction.
Keywords: deinking paper sludge ash, deinking paper sludge, secondary resources, fill material, geotechnical structure, landslide, open access
Published in DiRROS: 04.07.2023; Views: 265; Downloads: 211
.pdf Full text (1,63 MB)
This document has many files! More...

8.
Environmental impacts and immobilization mechanisms of cadmium, lead and zinc in geotechnical composites made from contaminated soil and paper-ash
Marija Đurić, Primož Oprčkal, Vesna Zalar Serjun, Alenka Mauko Pranjić, Janez Ščančar, Radmila Milačič, Ana Mladenovič, 2021, original scientific article

Abstract: Paper-ash is used for remediation of heavily contaminated soils with metals, but remediation efficiency after longer periods has not been reported. To gain insights into the mechanisms of immobilization of cadmium (Cd), lead (Pb), and znic (Zn), a study was performed in the laboratory experiment in uncontaminated, artificially contaminated, and remediated soils, and these soils treated with sulfate, to mimic conditions in contaminated soil from zinc smelter site. Remediation was performed by mixing contaminated soil with paper-ash to immobilize Cd, Pb, and Zn in the geotechnical composite. Partitioning of Cd, Pb, and Zn was studied over one year in seven-time intervals applying the sequential extraction procedure and complementary X-ray diffraction analyses. This methodological approach enabled us to follow the redistribution of Cd, Pb, and Zn over time, thus, to studying immobilization mechanisms and assessing the remediation efficiency and stability of newly formed mineral phases. Cd, Pb, and Zn were effectively immobilized by precipitation of insoluble hydroxides after the addition of paper-ash and by the carbonization process in insoluble carbonate minerals. After remediation, Cd, Pb, and Zn concentrations in the water-soluble fraction were well below the limiting values for inertness: Cd by 100 times, Pb by 125 times, and Zn by 10 times. Sulfate treatment did not influence the remediation efficiency. Experimental data confirmed the high remediation efficiency and stability of insoluble Cd, Pb, and Zn mineral phases in geotechnical composites.
Keywords: cadmium, lead, zinc, contaminated soil, paper ash, immobilization mechanisms
Published in DiRROS: 04.07.2023; Views: 357; Downloads: 233
.pdf Full text (2,95 MB)
This document has many files! More...

9.
Mass concrete with EAF steel slag aggregate : workability, strength, temperature rise, and environmental performance
Davor Kvočka, Jakob Šušteršič, Alenka Mauko Pranjić, Ana Mladenovič, 2022, original scientific article

Abstract: Temperature control is the primary concern during the design and construction process of mass concrete structures. As the concrete production has an enormous negative environmental impact, the development of green mass concretes will eventually become as important as the thermal characteristics. Therefore, this paper investigates the use of Electric Arc Furnace (EAF) steel slag aggregate for the partial replacement of the natural aggregate in the production of mass concrete. The impact of EAF steel aggregate on mass concrete workability, strength, and thermal behaviour was analysed. In addition, a cradle-to-gate LCA study was conducted to evaluate the environmental footprint and sustainability potential of the tested mass concrete mixtures. The study results suggest that the use of EAF steel slag aggregate in combination with a low-heat cement with a high content of blast furnace slag can significantly lower the temperature, reduce the environmental impact, and increase the sustainability potential of mass concrete, while at the same time providing sufficient workability and compressive strength. The study results indicate that EAF steel slag can be upcycled into an aggregate for the production of green mass concrete mixtures.
Keywords: mass concrete, thermal stress, EAF steel slag, green concrete, LCA, sustainability, open access
Published in DiRROS: 31.05.2023; Views: 307; Downloads: 218
.pdf Full text (5,08 MB)
This document has many files! More...

10.
Environmental acceptability of geotechnical composites from recycled materials : comparative study of laboratory and field investigations
Marija Đurić, Vesna Zalar Serjun, Ana Mladenovič, Alenka Mauko Pranjić, Radmila Milačič, Janez Ščančar, Janko Urbanc, Nina Mali, Alenka Sešek Pavlin, Janez Turk, Primož Oprčkal, 2023, original scientific article

Abstract: The environmental properties of three geotechnical composites made by recycling wastes were investigated on a laboratory scale and in the field with the use of lysimeters designated for the revitalization of degraded mining sites. Composites were prepared by combining the mine waste with paper-mill sludge and foundry sand (Composite 1), with digestate from municipal waste and paper ash (Composite 2), and with coal ash, foundry slag and waste incineration bottom ash (Composite 3). The results of laboratory leaching tests proved that Composites 1 and 3 are envi- ronmentally acceptable, according to the legislative limits, as the potentially hazardous substances were immobilized, while in Composite 2, the legislative limits were exceeded. In the field lysimeters, the lowest rate of leaching was determined for optimally compacted Composites 1 and 3, while for Composite 2 the leaching of Cu was high. This study proved that optimally installed Composites 1 and 3 are environmentally acceptable for use in construction as an alternative to virgin materials, for the revitalization of degraded mining sites or, along with Composite 2, for closure operations with landfills. In this way, locally available waste streams are valorised and channelized into a beneficial and sustainable recycling practice.
Keywords: waste, recycling, lysimeter, potentiali hazardous substances, immobilization, revitalisation, environmental, open access
Published in DiRROS: 29.05.2023; Views: 348; Downloads: 254
.pdf Full text (3,42 MB)
This document has many files! More...

Search done in 0.3 sec.
Back to top