Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "avtor" (��trumbelj Tadeja) .

31 - 40 / 72
Na začetekNa prejšnjo stran12345678Na naslednjo stranNa konec
31.
Effect of deep cryogenic treatment on corrosion properties of various high-speed steels
Jure Voglar, Živa Novak, Patricia Jovičević Klug, Bojan Podgornik, Tadeja Kosec, 2021, izvirni znanstveni članek

Povzetek: The aim of the study was to evaluate the corrosion properties of three different grades of high-speed steel following a heat treatment procedure involving deep cryogenic treatment after quenching and to investigate how these properties are connected to the microstructure and hard- ness of the material. The hardness of steels was measured, and microstructural properties were determined through observation of the metallographically prepared steels using scanning electron microscopy. These studies were complemented corrosion evaluation by the use of corrosion potential measurement and linear polarization measurement of steels in a sodium tetraborate buffer at pH 10. The results showed that the deep cryogenic procedure of high-speed steel changed the microstructure and consequently affected the hardness of the investigated steels to different extents, depending on their chemical composition. Corrosion studies have confirmed that some high-speed steels have improved corrosion properties after deep cryogenic treatment. The most important improvement in corrosion resistance was observed for deep cryogenically treated high-speed steel EN 1.3395 (M3:2) by 31% when hardened to high hardness values and by 116% under lower hardness conditions. The test procedure for differentiating corrosion properties of differently heat-treated tool steels was established alongside the investigation.
Ključne besede: deep cryogenic treatment, corrosion, microstructure, hardness
Objavljeno v DiRROS: 01.08.2023; Ogledov: 278; Prenosov: 145
.pdf Celotno besedilo (5,82 MB)
Gradivo ima več datotek! Več...

32.
Effect of the microstructural properties of copper on corrosion performance
Tadeja Kosec, Jure Voglar, Petra Močnik, Andraž Legat, 2021, izvirni znanstveni članek

Povzetek: The aim of the study was to define the influence of microstructural properties on the electrochemical properties of copper in four different forms: copper in sheet form, copper doped with phosphorus, electroplated copper and copper wire. Open circuit potential and polarization resistance measurements were carried out in order to determine the electrochemical properties and corrosion rates of copper in 0.1 M NaCl solution in oxic conditions at ambient temperature. Statistical evaluation of the electrochemical data was performed in order to differentiate between the various forms of copper samples. Microstructural and electrochemical investigations were combined with electron microscopy and Raman analysis of the corrosion products after immersion of the copper samples in a 0.1 M NaCl solution for 30 days. The various morphologies of copper corrosion products were identified and analyzed by Raman spectroscopy for the various forms of copper.
Ključne besede: copper, microstructura, corrosion, Raman
Objavljeno v DiRROS: 19.07.2023; Ogledov: 317; Prenosov: 150
.pdf Celotno besedilo (2,24 MB)
Gradivo ima več datotek! Več...

33.
Corrosion protection of brown and green patinated bronze
Tadeja Kosec, Živa Novak, Erika Švara Fabjan, Luka Škrlep, Andrijana Sever Škapin, Polonca Ropret, 2021, izvirni znanstveni članek

Povzetek: Bronze surfaces, whether bare or patinated, tend to change when exposed to an outdoor atmosphere. Art made of bronze which is exposed to the outdoors is usually artificially patinated. This patina changes when exposed to rain, especially in polluted rain, where sulphuric, nitric or carbonic acids are present. In order to gain optimal protection of different patinas and consequently reduce the patina changes over the time different protection systems were developed, tested and tailored. Three types of patina (brown, green sulphate, and green persulphate) were prepared, protected and subsequently studied. The protections were based on two coatings (i) fluoropolymer based coating (FA-MS) and (ii) newly developed fluoropolymer based coating with addition of mercaptopropyl groups, named as alternative fluoropolymer coating (FA-MS-SH). Both the pure patinas applied on bronze surfaces as well as the bare bronze were electrochemically tested, first unprotected and then following the application of two different types of protection. After the protection was applied to the pa- tinas, the change in colour was defined. Different techniques were utilised in order to define the morphology and structure of the patinas, as well as the change in colour following application of the coating. It was shown that a fluoropolymer coating (FA-MS) provided the most efficient protection to bare bronze and the sulphate patina, while a newly proposed alternative fluoropolymer coating (FA-MS-SH) offered good protection to bare and brown patinated bronze. A mechanism for the protection of bare and patinated bronze was suggested.
Ključne besede: bronze, patina, protection
Objavljeno v DiRROS: 17.07.2023; Ogledov: 300; Prenosov: 176
.pdf Celotno besedilo (5,46 MB)
Gradivo ima več datotek! Več...

34.
Pitting corrosion on highly alloyed stainless steels in dilute sulphuric acid containing sodium chloride
Elina Huttunen-Saarivirta, Elisa Isotahdon, Zaiqing Que, M. Lindgren, Ahmad Mardoukhi, Jean-Baptiste Jorcin, Petra Močnik, Tadeja Kosec, Yassine El Ouazari, Sukanya Hägg Mameng, Lena Wegrelius, 2023, izvirni znanstveni članek

Povzetek: Stainless steels are widely used in industrial assets and equipment. Despite their good corrosion resistance under a wide range of operating conditions, there is the possibility of pitting corrosion in the presence of chlorides. However, very few studies have identified the safe operating conditions for various high-alloyed stainless steel grades by comparing their pitting susceptibility. In this research, the susceptibility to pitting attack of five stainless steels with austenitic and duplex microstructures was examined in dilute sulphuric acid solution with varying amounts of NaCl at the temperatures of 50, 90 and 130◦C. Based on potentiodynamic polarization scans, none of the test materials underwent pitting corrosion at 50◦C, but differences in susceptibility to pitting attack were clear between the test materials and NaCl concentrations at the temperature of 90◦C, and further tem- perature increase facilitated uniform corrosion. 28-day immersion tests at 90◦ C confirmed the pitting suscepti- bility of duplex grades 1.4662 (PREN 33) and 1.4462 (PREN 35) in the presence of at least 2000 mg/L NaCl, but not the susceptibility of a corresponding austenitic grade 1.4539 (PREN 34). The grades 1.4547 (PREN 43) and 1.4410 (PREN 44) were not susceptible to pitting corrosion under any of the studied conditions. The results from materials microstructural and electrochemical characterization are presented and discussed in this paper.
Ključne besede: stainless steel, austenitic stainless steel, duplex stainless steel, pitting atttack
Objavljeno v DiRROS: 12.07.2023; Ogledov: 320; Prenosov: 387
.pdf Celotno besedilo (42,24 MB)
Gradivo ima več datotek! Več...

35.
Sensor development for corrosion monitoring of stainless steels in H2SO4 solutions
Miha Hren, Tadeja Kosec, Mari Lindgren, Elina Huttunen-Saarivirta, Andraž Legat, 2021, izvirni znanstveni članek

Povzetek: Equipment made of different stainless steels is often used in the hydrometallurgical processing industry. In this study, an electrical resistance sensor was developed for monitoring corrosion in acidic solutions at high temperature. Two types of stainless steel were used as the electrode materials, namely grade 316L stainless steel (EN 1.4404) and grade 2507 duplex stainless steel (EN 1.4410). The materials and sensors were exposed to a 10% H2SO4 solution containing 5000 mg/L of NaCl at various temperatures. Results from the sensors were verified using electrochemical techniques and postexposure examination. Results showed that the microstructure played an important role in the interpretation of corrosion rates, highlighting the importance of using an appropriate stainless steel for the production of sensors. Electrochemical tests and postexposure examination both showed that the grade 2507 had a significantly lower corrosion rate compared to the grade 316L. Under industrial‑process conditions, the results for the grade 2507 sensor were promising with respect to sensor durability and performance, despite the extremely harsh operating environment.
Ključne besede: stainless steel, hydrometallurgical industry, sulphuric acid, electrical resistance sensor, corrosion
Objavljeno v DiRROS: 05.07.2023; Ogledov: 331; Prenosov: 184
.pdf Celotno besedilo (5,12 MB)
Gradivo ima več datotek! Več...

36.
Characterizing steel corrosion in different alkali-activated mortars
Nina Gartner, Miha Hren, Tadeja Kosec, Andraž Legat, 2021, izvirni znanstveni članek

Povzetek: Alkali-activated materials (AAMs) present a promising potential alternative to ordinary Portland cement (OPC). The service life of reinforced concrete structures depends greatly on the corrosion resistance of the steel used for reinforcement. Due to the wide range and diverse properties of AAMs, the corrosion processes of steel in these materials is still relatively unknown. Three different alkali-activated mortar mixes, based on fly ash, slag, or metakaolin, were prepared for this research. An ordinary carbon-steel reinforcing bar was installed in each of the mortar mixes. In order to study the corrosion properties of steel in the selected mortars, the specimens were exposed to a saline solution in wet/dry cycles for 17 weeks, and periodic electrochemical impedance spectroscopy (EIS) measurements were performed. The propagation of corrosion damage on the embedded steel bars was followed using X-ray computed microtomography (XCT). Periodic EIS measurements of the AAMs showed different impedance response in individual AAMs. Moreover, these impedance responses also changed over the time of exposure. Interpretation of the results was based on visual and numerical analysis of the corrosion damages obtained by XCT, which confirmed corrosion damage of varying type and extent on steel bars embedded in the tested AAMs.
Ključne besede: corrosion, alkali-activated mortars, steel reinforcement, electrochemical impedance spectroscopy, X-ray computed microtomography, visual analysis
Objavljeno v DiRROS: 05.07.2023; Ogledov: 367; Prenosov: 173
.pdf Celotno besedilo (7,00 MB)
Gradivo ima več datotek! Več...

37.
Modelling the electrochemical transients during repassivation under open-circuit conditions in a neutral solution
Bojan Zajec, Tadeja Kosec, Andraž Legat, 2022, izvirni znanstveni članek

Povzetek: The responses of the current and the coupled potential to rapid depassivation have been studied on a three-electrode system under open-circuit conditions. Passivated AISI 304 stainless steel in low- and high-conductivity solutions of NaSO has been depassivated with a single, rapid scratch over the small fraction of surface of the working electrode (WE). Single- and dual-WE configurations have been implemented. Once the surface is scratched, the current and potential transients exhibit a delayed maximum and minimum, respectively, in contrast to the outcome of more common potentiostatic scratching experiments. A simple model based on the equivalent circuit has been developed to predict the observed transients and provides clear relations between the features of the transient and the parameters of the electrolyte and the electrodes. The interfacial capacitance of the electrodes’ passive surfaces proves crucial for the shapes of the observed potential and current transients. It is shown that this capacitance temporarily provides the majority of the charge for repassivation under open-circuit conditions. Possible sources of specific discrepancies between the model and the measured transients are indicated.
Ključne besede: repassivation, open circuit conditions, transient, modelling, interfacial capacitance
Objavljeno v DiRROS: 21.06.2023; Ogledov: 341; Prenosov: 155
.pdf Celotno besedilo (1,75 MB)
Gradivo ima več datotek! Več...

38.
Corrosion and protection of non-patinated, sulphide- and chloride-patinated bronze
Živa Novak, Tadeja Kosec, 2022, izvirni znanstveni članek

Povzetek: The surface of bronze undergoes changes when it is exposed to a polluted atmosphere, and bronze should therefore be protected from this natural deterioration. The most common protective coating currently in use is Incralac, which includes toxic components and is reported to dissolve a few months after application. This work therefore investigates a fluoropolymer-based coating (FA-MS), and compares it to the protection offered by Incralac. Bronze samples (non-patinated, sulphide-patinated or chloride-patinated) were exposed to simulated urban rain for four months. The corrosion products formed were characterised using SEM/EDS and Raman analyses. To study the protection efficiency of the newly developed fluoropolymer coating (FA-MS) and Incralac protection, various electrochemical methods were used: measurements of open circuit potential linear polarisation and potentiodynamic measurements. Findings show that the FA-MS coating provides a protection efficiency of 71 % for chloride-patinated bronze and 99.5 % for sulphide-patinated bronze. Contact angles of the FA-MS samples were higher than those of the unprotected samples or the samples protected by Incralac, indicating better hydrophobic properties of the FA-MS coating.
Ključne besede: bronze, corrosion, SEM/EDS analyses, Raman spectroscopy, electrochemistry, odprti dostop
Objavljeno v DiRROS: 31.05.2023; Ogledov: 326; Prenosov: 124
.pdf Celotno besedilo (1,30 MB)
Gradivo ima več datotek! Več...

39.
Exploring the protection mechanism of a combined fluoropolymer coating on sulphide patinated bronze
Tadeja Kosec, Živa Novak, Erika Švara Fabjan, Luka Škrlep, Matjaž Finšgar, 2022, izvirni znanstveni članek

Povzetek: When bronze or artificially patinated bronze is exposed to an outdoor environment that contains aggressive ions such as sulphates, nitrates, and carbonates, the surface of the bronze changes its appearance due to the formation of corrosion products on the surface. Research is being conducted on versatile protective measures that can be used to protect the surface from these changes. A recently synthesised fluoropolymer-based coating with mercaptopropyl groups, i.e. a 3-component fluoropolymer coating FA-MS-SH (silane-modified poly methylmethacrylate (MS) with added mercaptopropyltrimethoxy silane (SH) and a fluoroacrylate (FA)) was explored in detail in this work where its protective mechanism on sulphide patinated bronze was investigated. Electrochemical tests were conducted on the sulphide patinated bronze with and without the 3-component coating FA-MS-SH. Furthermore, FA, MS and SH alone and various combinations and concentrations of FA-MS were studied in order to determine the protective effect and properties of each component. Colour change and contact angle measurements were also defined. FIB-SEM measurements and GCIB-XPS depth profiles were carried out to study surface bonding with the sulphide patina in detail. A mechanism for the protection of sulphide patinated bronze was presented through the use of a multianalytical tool approach. It was shown that FA physisorbed on the patinated surface, while MS and blends of the components chemisorbed on the layer of sulphide patinated bronze, also resulting in the surface being efficiently protected from corrosion processes.
Ključne besede: bronze, protection, brown patina, fluoropolymer coating
Objavljeno v DiRROS: 31.05.2023; Ogledov: 337; Prenosov: 197
.pdf Celotno besedilo (7,67 MB)
Gradivo ima več datotek! Več...

40.
Estimation of the corrosion properties for titanium dental alloys produced by SLM
Tadeja Kosec, Mirjam Bajt Leban, Maja Ovsenik, Matej Kurnik, Igor Kopač, 2022, izvirni znanstveni članek

Povzetek: Titanium alloys are known for their excellent biocompatible properties. The development of additive-manufacturing technologies has increased the interest in the use of Ti-6Al-4V, produced by selective laser melting (SLM) method, also in dentistry, i.e., prosthodontics and orthodontics. In the present paper, the effect of laser printing parameters in the selective laser melting (SLM) process on the porosity and corrosion behavior of Ti-6Al-4V dental alloy was metallographically and electrochemically studied. All the tests were performed in artificial saliva at 37 °C. Different forms of Ti-6Al-4V alloy were selected: a reference sample, i.e., pre-fabricated milling disc in wrought condition and four different 3D-printed samples made from Ti-6Al-4V powder using the SLM method, one being heat treated. Electrochemical, spectroscopic and hardness measurements were employed in the study. It was shown that the SLM-produced Ti-6Al-4V samples with different printing parameters have similar microstructural and electrochemical properties, while the electrochemical properties of a reference and thermally treated 3D-printed sample were different, most probably due to the change in the microstructure of the alloys. The corrosion properties were related to the microstructural properties as well as to the pore density.
Ključne besede: Ti-6Al-4V, dental alloys, artificial saliva, selective laser melting, corrosion
Objavljeno v DiRROS: 31.05.2023; Ogledov: 270; Prenosov: 118
.pdf Celotno besedilo (1,97 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.19 sek.
Na vrh