Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "fulltext" AND "organization" (Slovenian Forestry Institute) .

1461 - 1470 / 3833
First pagePrevious page143144145146147148149150151152Next pageLast page
1461.
1462.
1463.
1464.
1465.
1466.
Global homogenization of the structure and function in the soil microbiome of urban greenspaces
Manuel Delgado-Baquerizo, David J. Eldridge, Yu-Rong Liu, Blessing Sokoya, Jun-Tao Wang, Hang-Wei Hu, Ji-Zheng He, Felipe Bastida, José L. Moreno, Adebola R. Bamigboye, Tine Grebenc, Tina Unuk Nahberger, 2021, original scientific article

Abstract: The structure and function of the soil microbiome of urban greenspaces remain largely undetermined. We conducted a global field survey in urban greenspaces and neighboring natural ecosystems across 56 cities from six continents, and found that urban soils are important hotspots for soil bacterial, protist and functional gene diversity, but support highly homogenized microbial communities worldwide. Urban greenspaces had a greater proportion of fast-growing bacteria, algae, amoebae, and fungal pathogens, but a lower proportion of ectomycorrhizal fungi than natural ecosystems. These urban ecosystems also showed higher proportions of genes associated with human pathogens, greenhouse gas emissions, faster nutrient cycling, and more intense abiotic stress than natural environments. City affluence, management practices, and climate were fundamental drivers of urban soil communities. Our work paves the way toward a more comprehensive global-scale perspective on urban greenspaces, which is integral to managing the health of these ecosystems and the well-being of human populations.
Keywords: soil biodiversity, structural diversity, functional diversity, urban soils
Published in DiRROS: 15.07.2021; Views: 1000; Downloads: 846
.pdf Full text (4,34 MB)
This document has many files! More...

1467.
Contrasting resource dynamics in mast years for European Beech and Oak - a continental scale analysis
Anita Nussbaumer, Arthur Gessler, Sue Benham, B. De Cinti, Sophia Etzold, Morten Ingerslev, Frank Jacob, François Lebourgeois, Tom Levanič, Hrvoje Marjanović, 2021, original scientific article

Abstract: Resource allocation to different plant tissues is likely to be affected by high investment into fruit production during mast years. However, there is a large knowledge gap concerning species-specific differences in resource dynamics. We investigated the influence of mast years on stem growth, leaf production, and leaf carbon (C), nitrogen (N), and phosphorus (P) concentrations and contents in Fagus sylvatica, Quercus petraea, and Q. robur at continental and climate region scales using long-term data from the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) and similar datasets. We discussed the results in the light of opposing resource dynamics hypotheses: (i) resource accumulation before mast years and exhaustion after mast years (resource storage hypothesis), (ii) shifting resources from vegetative to generative compartments (resource switching hypothesis), and (iii) investing resources concurrently in both vegetative and generative compartments (resource matching hypothesis). Linear mixed-effects modelling (LMM) showed that both stem growth and leaf production were negatively influenced by weather conditions which simultaneously lead to high fruit production. Thus, the impact of generative on vegetative growth is intermixed with effects of environmental factors. Superposed epoch analyses and LMM showed that for mast behaviour in F. sylvatica, there are indicators supporting the resource storage and the resource switching hypotheses. Before mast years, resources were accumulated, while during mast years resources switched from vegetative to generative tissues with reduced stem and leaf growth. For the Quercus species, stem growth was reduced after mast years, which supports the resource storage hypothesis. LMM showed that leaf C concentrations did not change with increasing fruit production in neither species. Leaf N and P concentrations increased in F. sylvatica, but not in Quercus species. Leaf N and P contents decreased with increasing fruit production in all species, as did leaf C content in F. sylvatica. Overall, our findings suggest different resource dynamics strategies in F. sylvatica and Quercus species, which might lead to differences in their adaptive capacity to a changing climate.
Keywords: climate change, Fagus sylvatica, long-term monitoring, mast fruiting, Quercus petraea, Quercus robur, resource dynamics
Published in DiRROS: 15.07.2021; Views: 903; Downloads: 657
.pdf Full text (7,63 MB)
This document has many files! More...

1468.
Surprising drought tolerance of Fir (Abies) species between past climatic adaptation and future projections reveals new chances for adaptive forest management
Csaba Mátyás, František Beran, Jaroslav Dostál, Jiří Čáp, Martin Fulín, Monika Vejpustková, Gregor Božič, Pál Balázs, Josef Frýdl, 2021, original scientific article

Abstract: esearch Highlights: Data of advanced-age provenance tests were reanalyzed applying a new approach, to directly estimate the growth of populations at their original sites under individually generated future climates. The results revealed the high resilience potential of fir species. Background and Objectives: The growth and survival of silver fir under future climatic scenarios are insufficiently investigated at the xeric limits. The selective signature of past climate determining the current and projected growth was investigated to analyze the prospects of adaptive silviculture and assisted transfer of silver fir populations, and the introduction of non-autochthonous species. Materials and Methods: Hargreaves% climatic moisture deficit was selected to model height responses of adult populations. Climatic transfer distance was used to assess the relative drought stress of populations at the test site, relating these to the past conditions to which the populations had adapted. ClimateEU and ClimateWNA pathway RCP8.5 data served to determine individually past, current, and future moisture deficit conditions. Besides silver fir, other fir species from South Europe and the American Northwest were also tested. Results: Drought tolerance profiles explained the responses of transferred provenances and predicted their future performance and survival. Silver fir displayed significant within-species differentiation regarding drought stress response. Applying the assumed drought tolerance limit of 100 mm relative moisture deficit, most of the tested silver fir populations seem to survive their projected climate at their origin until the end of the century. Survival is likely also for transferred Balkan fir species and for grand fir populations, but not for the Mediterranean species. Conclusions: The projections are less dramatic than provided by usual inventory assessments, considering also the resilience of populations. The method fills the existing gap between experimentally determined adaptive response and the predictions needed for management decisions. It also underscores the unique potential of provenance tests.
Keywords: climate change, common garden, provenance test, silver fir, grand fir, Balkan firs, drought stress, resilience, climate transfer distance, adaptation
Published in DiRROS: 05.07.2021; Views: 947; Downloads: 596
.pdf Full text (1,46 MB)
This document has many files! More...

1469.
1470.
Search done in 0.97 sec.
Back to top