Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (stainless steel) .

1 - 10 / 16
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
1.
2.
3.
Ladle melt treatment of high sulfur stainless steels
Jaka Burja, 2024, objavljeni znanstveni prispevek na konferenci

Povzetek: The influence of sulfur on both slag and melt is very important in steelmaking. This is especially true for highsulfur machining steels. Machinability is achieved by alloying high sulfur contents, above 300 ppm. These are steels that form small chips and shavings during mechanical processing by cutting, which is more appropriate and favorable for both the workpiece and the processing tool and machine. However, the secondary steelmaking slag is typically designed for desulfurization. This means that the sulfur content rapidly falls after sulfur additions. This is especially true for high machinability stainless steel grades where S contents can exceed 1000 ppm. This causes the sulfur wire yield to vary greatly in each charge, making the process unreliable. Some aspects of understanding the interaction between the steel melt and slag and the effect on casting are presented in this work. Based on industrial charges, we analyzed the yield of sulfur additions and the influencing factors on the efficiency of the sulfur addition. The lower slag basicity was linked to lover sulfur distribution rations, and lover sulfur distribution rations were linked to higher sulfur yields. Melt and slag samples were analyzed. Slag entrapment during ingot casting was linked to the high sulfur contents.
Ključne besede: desulfurization, sulfur, stainless steel, steelmaking
Objavljeno v DiRROS: 28.02.2024; Ogledov: 114; Prenosov: 36
.pdf Celotno besedilo (526,82 KB)
Gradivo ima več datotek! Več...

4.
5.
6.
Tribological evaluation of vegetable ▫$oil/MoS_2$▫ nanotube-based lubrication of laser-textured stainless steel
Marjetka Conradi, Bojan Podgornik, Maja Remškar, Damjan Klobčar, Aleksandra Kocijan, 2023, izvirni znanstveni članek

Povzetek: In the present work, the functionalisation of austenitic stainless steel, AISI 316L surfaces via nanosecond Nd:YAG laser texturing in order to modify the surface morphology with crosshatch and dimple patterns is presented. A tribological analysis under lubrication with sunflower and jojoba oil with and without the addition of a solid lubricant, MoS2 nanotubes, was performed. In conjunction with friction/wear response laser-textured surface wettability, oil spreadability and oil retention capacity were also analysed. It was shown that the crosshatch pattern generally exhibited lower friction than the dimple pattern, with the addition of MoS2 nanotubes not having any significant effect on the coefficient of friction under the investigated contact conditions. This was found in addition to the better oil spreadability and oil retention capacity results of the crosshatch-textured surface. Furthermore, texturing reduced the wear of the stainless-steel surfaces but led to an approximately one order of magnitude larger wear rate of the steel counter-body, primarily due to the presence of hard bulges around the textured patterns. Overall, the crosshatch pattern showed better oil retention capacity and lower friction in combination with different vegetable oils, thus making it a promising choice for improving tribological performance in various environmentally friendly applications.
Ključne besede: tribology, stainless steel, vegetable oil lubrication, MoS2 nanotubes
Objavljeno v DiRROS: 02.02.2024; Ogledov: 101; Prenosov: 56
.pdf Celotno besedilo (4,56 MB)
Gradivo ima več datotek! Več...

7.
8.
9.
Elucidating nucleation stages of transgranular stress corrosion cracking in austenitic stainless steel by in situ electrochemical and optical methods
Sarmiento Klapper Helmuth, Bojan Zajec, Andreas Heyn, Andraž Legat, 2019, izvirni znanstveni članek

Povzetek: The pitting and environmentally assisted cracking resistance of austenitic stainless steels (SS) is challenged in several industrial applications particularly those involving hot chloride-concentrated streams. Directional drilling used in the oil and gas exploration is one of these applications. Indeed, high strength CrMn-SS commonly used in drilling technology have a high tendency to fail by stress corrosion cracking (SCC) preceded by localized corrosion once subjected to highly chloride-concentrated drilling fluids at elevated temperatures. A comprehensive understanding regarding the mechanisms governing the transition from pitting into SCCis not currently available, though. Therefore, mechanistic aspects such as the effect of loading conditions on pit nucleation and repassivation as well as the synergistic effect between pit stabilization and the nucleation of a stress corrosion crack are of great practical significance. To investigate this an electrochemical-, optical- and mechanical- monitored SCC test was conducted on a CrMn-SS in an alkaline brine at elevated temperature. The transition from metastable to stable pitting and subsequently to SCC in this system was documented in-situ for the first time. Results supported H.S. Isaacs postulates regarding the interpretation of electrochemical signals and demonstrated that loading conditions affect pit nucleation and repassivation leading to a higher susceptibility of the material to pitting, which preceded SCC.
Ključne besede: pitting corrosion, stress corrosion cracking, monitoring, elektrochemical noise, austenitic stainless steel
Objavljeno v DiRROS: 23.11.2023; Ogledov: 184; Prenosov: 148
.pdf Celotno besedilo (2,28 MB)
Gradivo ima več datotek! Več...

10.
Tribocorrosive study of new and in vivo exposed nickel titanium and stainless steel orthodontic archwires
Tadeja Kosec, Petra Močnik, Uroš Mezeg, Andraž Legat, Maja Ovsenik, Monika Jenko, John T. Grant, Jasmina Primožič, 2020, izvirni znanstveni članek

Povzetek: The surface, corrosion and wear properties of new and in vivo exposed nickel titanium (NiTi) and stainless steel (SS) archwires used in orthodontic treatment were investigated. Electrochemical and tribo-electrochemical tests in artificial saliva were performed in order to define corrosion properties and to estimate wear rate of new and in vivo exposed NiTi and SS archwires. The surface chemical analysis of the passive film on the NiTi and SS archwires before and after tribocorrosion tests was performed by Auger Electron Spectroscopy (AES). In vivo exposed NiTi and SS archwires had better electrochemical properties than new archwires due to the protective nature of oral deposits. Total wear and coefficients of friction were higher among in vivo exposed archwires and higher in NiTi archwires in comparison to SS archwires. The estimated thickness of the TiO2 passive film on as-received NiTi is 8 nm, while the passive Cr2O3 film on as-received SS is just 1–2 nm. On in vivo exposed NiTi archwire, a 60–80 nm thick organic film/dental plaque was observed, and on SS, it was thinner, at about 60 nm. This research shows the importance of combining AES with electrochemical testing, to characterize tribocorrosive properties of NiTi and SS orthodontic archwires.
Ključne besede: archwires, NiTi, stainless steel, wear
Objavljeno v DiRROS: 24.08.2023; Ogledov: 245; Prenosov: 100
.pdf Celotno besedilo (2,18 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.26 sek.
Na vrh