Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (surface modification) .

1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Influence of oil viscosity on the tribological behavior of a laser-textured Ti6Al4V alloy
Marjetka Conradi, Aleksandra Kocijan, Bojan Podgornik, 2023, original scientific article

Abstract: Laser texturing with a dimple pattern was applied to modify a Ti6Al4V alloy at the micro level, aiming to improve its friction and wear resistance in combination with oil lubrication to optimize the performance in demanding industrial environments. The tribological analysis was performed on four different dimple-textured surfaces with varying dimple size and dimple-to-dimple distance and under lubrication with three different oils, i.e., T9, VG46, and VG100, to reflect the oil viscosity’s influence on the friction/wear of the laser-textured Ti6Al4V alloy. The results show that the surfaces with the highest texture density showed the most significant COF reduction of around 10% in a low-viscosity oil (T9). However, in high-viscosity oils (VG46 and VG100), the influence of the laser texturing on the COF was less pronounced. A wear analysis revealed that the laser texturing intensified the abrasive wear, especially on surfaces with a higher texture density. For low-texturing-density surfaces, less wear was observed for low- and medium-viscosity oils (T9 and VG46). For medium-to-high-texturing densities, the high-viscosity oil (VG100) provided the best contact conditions and wear results. Overall, reduced wear, even below the non-texturing case, was observed for sample 50–200 in VG100 lubrication, indicating the combined effect of oil reservoirs and increased oil-film thickness within the dimples due to the high viscosity.
Keywords: oil lubrication, surface modification, Ti-based alloy, tribology
Published in DiRROS: 01.02.2024; Views: 187; Downloads: 74
.pdf Full text (4,00 MB)
This document has many files! More...

2.
Deposition of chitosan on plasma-treated polymers : a review
Alenka Vesel, 2023, review article

Abstract: Materials for biomedical applications often need to be coated to enhance their performance, such as their biocompatibility, antibacterial, antioxidant, and anti-inflammatory properties, or to assist the regeneration process and influence cell adhesion. Among naturally available substances, chitosan meets the above criteria. Most synthetic polymer materials do not enable the immobilization of the chitosan film. Therefore, their surface should be altered to ensure the interaction between the surface functional groups and the amino or hydroxyl groups in the chitosan chain. Plasma treatment can provide an effective solution to this problem. This work aims to review plasma methods for surface modification of polymers for improved chitosan immobilization. The obtained surface finish is explained in view of the different mechanisms involved in treating polymers with reactive plasma species. The reviewed literature showed that researchers usually use two different approaches: direct immobilization of chitosan on the plasma-treated surface or indirect immobilization by additional chemistry and coupling agents, which are also reviewed. Although plasma treatment leads to remarkably improved surface wettability, this was not the case for chitosan-coated samples, where a wide range of wettability was reported ranging from almost superhydrophilic to hydrophobic, which may have a negative effect on the formation of chitosan-based hydrogels.
Keywords: polymer surfaces, chitosan, coatings, plasma-surface modification, adhesion
Published in DiRROS: 24.02.2023; Views: 411; Downloads: 219
.pdf Full text (6,88 MB)
This document has many files! More...

3.
A method for the immobilization of chitosan onto urinary catheters
Alenka Vesel, Nina Recek, Rok Zaplotnik, Albert Kurinčič, Katja Kuzmič, Lidija Fras Zemljič, 2022, original scientific article

Abstract: A method for the immobilization of an antibacterial chitosan coating to polymeric urinary medical catheters is presented. The method comprises a two-step plasma-treatment procedure, followed by the deposition of chitosan from the water solution. In the first plasma step, the urinary catheter is treated with vacuum-ultraviolet radiation to break bonds in the polymer surface film and create dangling bonds, which are occupied by hydrogen atoms. In the second plasma step, polymeric catheters are treated with atomic oxygen to form oxygen-containing surface functional groups acting as binding sites for chitosan. The presence of oxygen functional groups also causes a transformation of the hydrophobic polymer surface to hydrophilic, thus enabling uniform wetting and improved adsorption of the chitosan coating. The wettability was measured by the sessile-drop method, while the surface composition and structure were measured by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. Non-treated samples did not exhibit successful chitosan immobilization. The effect of plasma treatment on immobilization was explained by noncovalent interactions such as electrostatic interactions and hydrogen bonds.
Keywords: polymer, chitosan immobilization, adhesion, plasma-surface modification, biopolymers
Published in DiRROS: 05.12.2022; Views: 492; Downloads: 295
.pdf Full text (6,47 MB)
This document has many files! More...

Search done in 0.07 sec.
Back to top