Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (strength) .

11 - 20 / 25
First pagePrevious page123Next pageLast page
11.
Fibre reinforced alkali-activated rock wool
Majda Pavlin, Barbara Horvat, Vilma Ducman, 2022, published scientific conference contribution

Abstract: Mineral wool, i.e. rock and glass wool, represents considerable challenge after its functional-time runs out due to its small density leading to large volume consumption during transport and in landfills where it usually ends. Because rock wool is mineralogically and chemically a promising precursor material for alkali-activation, it was milled from few centimetres-decimeters long fibres to micron-sized fibres. Since fibres in alkali-activated materials generally show an increase in mechanical strength, especially the bending strength, 1 m% of additional fibres (basalt, cellulose (2 types), glass, polypropylene, polyvinyl alcohol and steel fibres) was used in the alkali mixture, that was curred at 40 °C for 3 days. Time dependence of the mechanical strengths of alkali- activated materials with and without additional fibres was followed. Maximal increase of compressive and bending strength after 28 days was reached with polypropylene fibres, i.e. it was 20% and 30% higher than compressive and bending strength of alkali- activated material without additional fibres respectively.
Keywords: secondary raw material, alkali activated material, foaming, homogenization, mechanical strength
Published in DiRROS: 21.12.2023; Views: 241; Downloads: 81
.pdf Full text (8,39 MB)
This document has many files! More...

12.
Influence of homogenization of alkali-activated slurry on mechanical strength
Barbara Horvat, Mark Češnovar, Katja Traven, Majda Pavlin, Katja Koenig, Vilma Ducman, 2022, published scientific conference contribution

Abstract: Alkali-activated materials are promising materials for the construction industry due to the accessibility of the precursors, which are mainly secondary industrial by-products, and their cost- effective and energy-efficient production. Although these materials are not new, some of the parameters in the technological process are not yet fully understood and tested. Therefore, in this paper in the means of mechanical strength, the preparation of alkali-activated pastes by using a three-roll mill homogenization method is discussed. The influence of homogenization of alkali- activated slurry has been evaluated on different waste materials (fly ash, fly ash with metakaolin, slag mixture (electric arc furnace slag and ladle slag), glass wool, waste green ceramics), which are treated with different alkali activators (NaOH, commercial sodium silicate solution, laboratory-produced alkali activators based on waste cathode- ray tube glass) with different curing regimes (60 °C and 70 °C) and different drying methods (drying at room temperature, drying at 105 °C). The viscosity of the slurry before homogenization was higher than after homogenization, the distribution of elements was more uniform and the compressive strength higher in all homogenized alkali activated materials, regardless of other parameters.
Keywords: secondary raw material, alkali activated material, foaming, homogenization, mechanical strength
Published in DiRROS: 21.12.2023; Views: 263; Downloads: 86
.pdf Full text (15,82 MB)
This document has many files! More...

13.
Quantified joint surface description and joint shear strength of small rock samples
Karmen Fifer Bizjak, Andraž Geršak, 2018, original scientific article

Abstract: Geotechnical structures in rock masses such as tunnels, underground caverns, dam foundations and rock slopes often have problems with a jointed rock mass. The shear behaviour of a jointed rock mass depends on the mechanical behaviour of the discontinuities in that particular rock mass. If we want to understand the mechanical behaviour of a jointed rock mass, it is necessary to study the deformation and strength of a single joint. One of the primary objectives of this work is to improve the understanding of the frictional behaviour of rough rock joints under shear loads with regard to the roughness of the joint surface. The main problem is how to measure and quantify the roughness of the surface joint and connect the morphological parameters into a shear strength criterion. Until now, several criteria have been developed; however, all of them used large rock samples (20×10×10 cm). It is often not possible to get large samples, especially when the rock is under a few meters thick layer of soil. In this case, samples of rock can only be acquired with investigation borehole drilling, which means that the samples of rock are small and of different shapes. The paper presents the modified criterion that is suitable for calculating the peak shear stress of small samples.
Keywords: camera-type 3D scanner, rock mechanics rock joint, roughness of the joints, rock joint shear strength
Published in DiRROS: 11.12.2023; Views: 209; Downloads: 93
.pdf Full text (847,17 KB)
This document has many files! More...

14.
Potential of green ceramics waste for alkali activated foams
Barbara Horvat, Vilma Ducman, 2019, original scientific article

Abstract: The aim of the paper is to research the influence of foaming and stabilization agents in the alkali activation process of waste green ceramics for future low cost up-cycling into lightweight porous thermal insulating material. Green waste ceramics, which is used in the present article, is a green body residue (non-successful intermediate-product) in the synthesis of technical ceramics for fuses. This residue was alkali activated with Na-water glass and NaOH in theoretically determined ratio based on data from X-ray fluorescence (XRF) and X-ray powder diffraction (XRD) that was set to maximise mechanical properties and to avoid efflorescence. Prepared mixtures were compared to alkali activated material prepared in theoretically less favourable ratios, and tested on the strength and density. Selected mixtures were further foamed with different foaming agents, that are Na-perborate (s), H2O2 (l), and Al (s), and supported by a stabilization agent, i.e., Na-dodecyl sulphate. The goal of the presented work was to prepare alkali activated foam based on green ceramics with density below 1 kg/l and compressive strength above 1 MPa.
Keywords: alkali activation, foaming, SEM, XRF, XRD, mechanical strength
Published in DiRROS: 14.09.2023; Views: 287; Downloads: 144
.pdf Full text (6,88 MB)
This document has many files! More...

15.
Influence of particle size on compressive strength of alkali activated refractory materials
Barbara Horvat, Vilma Ducman, 2020, original scientific article

Abstract: Influence of particle size on the mechanical strength of alkali activated material from waste refractory monolithic was investigated in this study. Precursor was chemically and mineralogically analysed, separated on 4 fractions and alkali activated with Na-water glass. Alkali activated materials were thoroughly investigated under SEM and XRD to evaluate the not predicted differences in mechanical strength. Influence of curing temperature and time dependence at curing temperatures on mechanical strength were investigated in the sample prepared from a fraction that caused the highest compressive strength.
Keywords: refractory materials, alkali activation, particle size, SEM, XRF, XRD, compressive strength
Published in DiRROS: 21.08.2023; Views: 359; Downloads: 253
.pdf Full text (13,36 MB)
This document has many files! More...

16.
Effects of digital-based interventions on muscular strength in adults : a systematic review, meta-analysis and meta-regression of randomized controlled trials with quality of evidence assessment
Armin Paravlić, Luka Šlosar, Ensar Abazović, Uroš Marušič, 2023, review article

Abstract: Background: In the last three decades, both medical and sports science professionals have recognized the considerable potential of digital-based interventions (DBI) to enhance the health-related outcomes of their practitioners.Objectives: This study aimed to investigate the effectiveness and potential moderators of DBI on measures of muscular strength.Methods: Six databases (PubMed/MEDLINE, Web of Science, SportDiscus, Embase, Cochrane Register of Controlled Trials and Google Scholar) were searched for eligible studies up to June 2022. The GRADE, PEDRO, and TIDieR checklists were used to assess the quality of evidence, methodology, and completeness of intervention descriptions, respectively.Results: A total of 56 studies were included in the meta-analysis (n = 2346), and participants were classified as healthy (n = 918), stroke survivors (n = 572), diagnosed with other neurological disorders (n = 683), and frail (n = 173). The DBI showed a small effect (standardized mean difference [SMD] = 0.28, 95% CI 0.21 to 0.31; p < 0.001) on strength, regardless of the type of intervention, control group, or tested body part. More specifically, while splitting the studies into different subgroups, a meta-analysis of 19 studies (n = 918) showed a small effect (SMD = 0.38, 95% CI 0.12 to 0.63; p = 0.003) on strength in the asymptomatic population. Similarly, small but positive effects of DBI were observed for stroke survivors (SMD = 0.34, 95% CI 0.13 to 0.56; p = 0.002), patients diagnosed with other neurological disorders (SMD = 0.17, 95% CI 0.03 to 0.32; p = 0.021), and the frail population (SMD = 0.25, 95% CI 0.0 to 0.5; p = 0.051). Sub-group analysis and meta-regression revealed that neither variable modified the effects of the DBI on measures of strength.Conclusions: Overall, DBI may serve as an effective method to improve measures of strength in adults, regardless of their health status as well as the type of digital device, the presence of human-computer interaction, and the age of participants. In addition, the DBI was found to be more effective than traditional training or rehabilitation methods.
Keywords: cognitive training, physical function, strength, neurodegenerative disorders, older adults
Published in DiRROS: 07.08.2023; Views: 398; Downloads: 201
.pdf Full text (1,87 MB)
This document has many files! More...

17.
Mechanical, microstructural and mineralogical evaluation of alkali-activated waste glass and stone wool
Majda Pavlin, Barbara Horvat, Ana Frankovič, Vilma Ducman, 2021, original scientific article

Abstract: Mineral waste wool represents a significant part of construction and demolition waste (CDW) not yet being successfully re-utilized. In the present study, waste stone wool (SW) and glass wool (GW) in the form received, without removing the binder, were evaluated for their potential use in alkali activation technology. It was confirmed that both can be used in the preparation of alkali-activated materials (AAMs), whether cured at room temperature or at an elevated temperature in order to speed up the reaction. The results show that it is possible to obtain a compressive strength of over 50 MPa using SW or GW as a precursor. A strength of 53 MPa was obtained in AAM based on GW after curing for 3 days at 40 °C, while a similar compressive strength (58 MPa) was achieved after curing the GW mixture for 56 days at room temperature. In general, the mechanical properties of samples based on GW are better than those based on SW. The evolution of mechanical properties and recognition of influential parameters were determined by various microstructural analyses, including XRD, SEM, MIP, and FTIR. The type of activator (solely NaOH or a combination of NaOH and sodium silicate), and the SiO2/Na2O and liquid to solid (L/S) ratios were found to be the significant parameters. A lower SiO2/Na2O ratio and low L/S ratio significantly improve the mechanical strength of AAMs made from both types of mineral wool.
Keywords: alkali activation, waste mineral wool, mechanical strength
Published in DiRROS: 31.07.2023; Views: 265; Downloads: 248
.pdf Full text (9,79 MB)
This document has many files! More...

18.
Influence of microwaves in the early stage of alkali activation on the mechanical strength of alkali-activated materials
Barbara Horvat, Majda Pavlin, Vilma Ducman, 2023, original scientific article

Abstract: This study focuses on the influence of microwave irradiation dosimetry on alkali-activated slurry in its early stages. The impact on the chemistry and mineralogy along with the mechanical properties were evaluated by changing the power of microwaves and their duration of exposure. This influenced the dissolution of amorphous content, diffusion, and self-assembly into an aluminosilicate network. The precursors used in this study were metakaolin, a non-waste material commonly used in geopolymerisation technology, and local fly ash and ladle furnace slag as secondary materials. Furthermore, they were chemically and mineralogically analysed, and their mixtures with NaOH and Na-water glass provided the optimal ratio of the amount of elements obtained using the pre-calculation approach. However, the potential extra addition of water was experimentally determined to allow complete wetting of the material and solid workability during moulding. Using Fourier-transform infrared spectroscopy, the influence of water was further investigated in alkali-activated slag and fly ash irradiated with microwaves, which resulted in the highest values of mechanical strength in the dosimetry-mapping part of the analysis. In addition to the time dependence of the expected mechanical strength on the ageing of the alkali- activated material, the synthesised material exhibited a significant dependence on the dose of microwave irra- diation, which was different for every precursor as well as every mixture with different chemistries.
Keywords: odpadni material, alkalijska aktivacija, obsevanje z mikrovalovi, mehanska trdnost, waste material, alkali activation, microwave irradiation, mechanical strength
Published in DiRROS: 12.07.2023; Views: 386; Downloads: 284
.pdf Full text (8,99 MB)
This document has many files! More...

19.
Preparation of façade panels based on alkali-activated waste mineral wool, their characterization and durability aspects
Majda Pavlin, Barbara Horvat, Vilma Ducman, 2022, original scientific article

Abstract: Mineral wool is a widely used insulation material and one of the largest components of construction and demolition waste, yet it mainly ends up in landfills. In this work, we explored the potential recycling of waste stone wool in the pilot production of alkali-activated façade panels. The current work shows mechanical properties, SEM-EDS and mercury intrusion porosimetry analyses for three different mix designs used for the preparation of façade panels. They are all composed of waste stone wool and differ in the amount of co-binders (local slag, lime, metakaolin and/or fly ash) selected by the preliminary studies. In this study, co-binders were added to increase early strength and improve the mechanical properties and freeze-thaw resistance. The mechanical properties of each were measured up to 256 days, different durability tests were executed, and, by evaluating the mechanical properties, microstructure and workability of the mortar, the most suitable mix was selected to be used for pilot production. In addition, the leaching test of the selected mixture showed no exceeded toxic trace elements and therefore got classified as non-hazardous waste after its use.
Keywords: alkali activation, waste mineral wool, SEM, XRF, XRD, mechanical strength
Published in DiRROS: 19.06.2023; Views: 334; Downloads: 146
.pdf Full text (1,27 MB)
This document has many files! More...

20.
The preparation and characterization of low-temperature foams based on the alkali activation of waste stone wool
Majda Pavlin, Barbara Horvat, Mark Češnovar, Vilma Ducman, 2022, original scientific article

Abstract: Waste mineral wool represents a huge amount of construction and demolition waste that is still not adequately returned into the value chain but needs to be landfilled. In the present study, waste stone wool (SW) was evaluated for the preparation of alkali-activated foams. For this purpose SW was milled and sieved below 63 μm, then the activator (sodium silicate) and different amounts of foaming agent (hydrogen peroxide, H2O2), varying between 1 wt% and 3 wt%, were added to the slurry and cured in moulds at an elevated temperature (70 ◦ C) for three days. In this way, foamed, highly porous materials were obtained whose density and mechanical properties were influenced by the amount of foaming agent used. The densities obtained ranged between 1.4 and 0.5 g/cm3, with corresponding mechanical properties of between 12.6 and 1.5 MPa and total porosities in the range 37.8–78.6%, respectively. In the most porous samples with the total porosity of 78.6%, a thermal conductivity of 0.092 W/(m∙K) was confirmed. The study confirmed the suitability of waste mineral wool (in our case SW) as a precursor for alkali-activated foams with potential use in the construction sector or other industrial applications.
Keywords: alkali activation, waste mineral wool, mechanical strength, open access, alkalijska aktivacija, odpadna volna, SEM, XRF, XRD, mehanska trdnost, odprti dostop
Published in DiRROS: 19.06.2023; Views: 270; Downloads: 209
.pdf Full text (9,47 MB)
This document has many files! More...

Search done in 0.33 sec.
Back to top