Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (steel structures) .

1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Model uncertainty in a parametric fire curve approach : a stochastic correction factor for the compartment fire load density
Florian Put, Andrea Lucherini, Bart Merci, Ruben Van Coile, 2024, original scientific article

Abstract: A commonly used approach to represent the thermal load in a compartment fire is the Eurocode Parametric Fire Curve (EPFC), which specifies gas temperatures (or rather adiabatic surface temperatures). Recognizing the significant deviations between real fires and the EPFC framework, the concept of model uncertainty is explored. This study does not aim to assess or improve the EPFC, but introduces a model uncertainty, allowing for reliability-based structural fire engineering (SFE). It presents a stochastic correction factor for the fire load density, based on the maximum temperature in steel sections. The focus is on the fire load density, but in general other parameters can be jointly taken into account as well. This correction factor considers protected and un- protected sections, incorporating variations in section factor and protection thickness. The findings reveal that the fire load density within the EPFC framework can be modified to better represent the severity of fire ex- periments. This approach ensures physical consistency of the obtained compartment gas temperatures, as opposed to alternative approaches for addressing the EPFC model uncertainty. While promising results are evident in this proof of concept, exploration for other types of structural elements and evaluation for structural systems is necessary before integration into design practices.
Keywords: structural fire engineering, compartment fires, fire load density, steel structures, reliability, probability of failure
Published in DiRROS: 17.04.2024; Views: 71; Downloads: 23
.pdf Full text (1,16 MB)
This document has many files! More...

2.
Getting more out of existing structures
Martín-Sanz Henar, Konstantinos Tatsis, Domagoj Damjanovic, Irina Stipanović, Aljoša Šajna, Ivan Duvnjak, Uroš Bohinc, Eugen Brühwiler, Eleni Chatzi, 2019, original scientific article

Abstract: Ultra-high-performance fiber-reinforced cement-based composite (UHPFRC) has been increasingly adopted for rehabilitation projects over the past two decades, proving itself as a reliable, cost-efficient and sustainable alternative against conventional methods. High compressive strength, low permeability and high ductility are some of the characteristics that render UHPFRC an excellent material for repairing existing aged infrastructure. UHPFRC is most commonly applied as a surface layer for strengthening and rehabilitating concrete structures such as bridge decks or building slabs. However, its implementation with steel structures has so far been limited. In this work, the UHPFRC strengthening of a steel bridge is investigated both in simulation as well as in the laboratory, by exploiting a real-world case study: the Buna Bridge. This Croatian riveted steel bridge, constructed in 1893, repaired in 1953, and decommissioned since 2010, was removed from its original location and transported to laboratory facilities for testing prior to and after rehabilitation via addition of UHPFRC slab. The testing campaign includes static and dynamic experiments featuring state-of-the-art monitoring systems such as embedded fiber optics, acoustic emission sensors and digital image correlation. The information obtained prior to rehabilitation serves for characterization of the actual condition of the structure and allows the design of the rehabilitation solution. The UHPFRC slab thickness was optimized to deliver optimal fatigue and ultimate capacity improvement at reasonable cost. Once the design was implemented, a second round of experiments was conducted in order to confirm the validity of the solution, with particular attention allocated to the interface between the steel substrate and the UHPFRC overlay, as the connection between both materials may result in a weak contact point. A detailed fatigue analysis, based on updated FEM models prior to and after strengthening, combined with the results of a reliability analysis prove the benefits of adoption of such a solution via the significant extension of the structural lifespan.
Keywords: bridge, steel, UHPFRC, structures
Published in DiRROS: 21.12.2023; Views: 200; Downloads: 79
.pdf Full text (10,84 MB)
This document has many files! More...

3.
Corrosion monitoring of steel structure coating degradation
Bojan Zajec, Mirjam Bajt Leban, Tadeja Kosec, Viljem Kuhar, Andraž Legat, Stanislav Lenart, Karmen Fifer Bizjak, Gavin Kenneth, 2018, original scientific article

Abstract: An important aspect regarding the sustainability of steel structures is to ensure the structure is protected from corrosion. A number of surface coatings are availablethat play an important role in protecting these structures. An important part of the management of these structures is reliable and regular inspection along with methods forearly detection of corrosion processes. In this paper, a development and application of sensors for monitoring the steel coating degradation and corrosion damage to steelsubstrate are presented. An encapsulated corrosion kit with integrated EIS sensors and ER probes was developed. To test its efficiency, steel probes were coated withselected coatings in the laboratory and their performance was assessed under various aggressive atmospheres, including; salt, industrial and humid atmosphere.
Keywords: coatings, corrosion, electrochemical impedance spectroscopy, electrical resistance probes, railways, steel structures
Published in DiRROS: 13.12.2023; Views: 184; Downloads: 96
.pdf Full text (2,45 MB)
This document has many files! More...

Search done in 0.13 sec.
Back to top