Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (simulations) .

1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Treatment of condensation in sandwich panels without known vapour resistance of sealant
Gregor Vidmar, 2020, published scientific conference contribution

Abstract: In order to calculate amount of interstitial condensation in a building envelope, water vapour resistance of each layer is of importance. Once having it, 1D calculation according to ISO 13788 with monthly average vapour pressures can be applied. In EN 14509 sandwich panels are considered to be impermeable for water vapour, thus (according to the standard) water vapour cannot enter from outside and condensate in the panels. But it is not always true for real sandwich panels, because joints between neighbouring panels can cause non-neglecting water vapour bridges. Although in measurements of linear water vapour transmittance of the joints (Ψv) stationary boundary vapour pressures can be applied, the measurements can be long lasting. We shortened time needed to get Ψv performing simulations in Delphin6.0. We simulated panels and steel sheets with joints using constant boundary vapour pressures and compared the results with the results of measurements on the equivalent systems. In systems under consideration a sealant in built-in-state, located at a joint of a sandwich panel, is a compressed EPDM tube. It is impossible to directly measure its effective μ according to ISO 12572. In the paper we study to which precision it is possible to determine it using measurements and simulations. Once having effective μ of the sealant (if all other necessary material parameters available) one can simulate condensation in envelopes including sandwich panels in 2D according to EN 15026 using hourly climatic data. Another goal of the study was determination of differences in resulting Ψv values when varying narrowest part of the gap dGAP at the joint in the panels without any sealant. Results confirm significant sensibility of Ψv to variations of dGAP.
Keywords: water vapour condensation, water vapour diffusion, numerical simulations, water vapour resistance, linear water vapour transmittance, sendwich panels
Published in DiRROS: 05.03.2024; Views: 131; Downloads: 82
.pdf Full text (2,11 MB)
This document has many files! More...

2.
3.
Comparative study of interactions of aliskiren and AT [sub] 1 receptor antagonists with lipid bilayers
A. Sadegphour, Michael Rappolt, Dimitrios Ntountaniotis, Petros Chatzigeorgioug, Kyriakos Viras, Grigorios Megariotis, M. Papadopoulos, Eleni Siapi, Gregor Mali, Thomas Michael Mavromoustakos, 2015, original scientific article

Abstract: The renin-angiotensin-aldosterone system (RAAS) plays a key role in the regulation of blood pressure. Renin is the rate limiting enzyme of the RAAS and aliskiren is a highly potent and selective inhibitor of the human renin. Renin is known to be active both in the circulating blood stream as well as locally, when bound to the (pro)-renin receptor ((P)RR). In this study we have investigated a possible mechanism of action of aliskiren, in which its accumulation in the plasma membrane is considered as an essential step for effective inhibition. Aliskiren's interactions with model membranes (cholesterol rich and poor) have been investigated by applying different complementary techniques: differential scanning calorimetry (DSC), Raman spectroscopy, magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and small- and wide-angle X-ray scattering (SAXS and WAXS). In addition, in silico molecular dynamics (MD) calculations were applied for further confirmation of the experimental data. Aliskiren's thermal effects on the pre- and main transition of dipalmitoyl-phosphatidylcholine (DPPC) membranes as well as its topographical position in the bilayer show striking similarities to those of angiotens.in II type 1 receptor (AT1R) antagonists. Moreover, at higher cholesterol concentrations aliskiren gets expelled from the membrane just as it has been recently demonstrated for the angiotensin receptor blocker (ARB) losartan. Thus, we propose that both the AT1R and the (P)RR-bound renin active sites can be efficiently blocked by membrane-bound ARBs and aliskiren when cholesterol rich membrane rafts/caveolae are formed in the vicinity of the receptors.
Keywords: aliskiren, renin, PRR, DPPC bilayers, raman spectroscopy, solid state NMR spectroscopy, SAXS and WAXS, MD simulations
Published in DiRROS: 26.01.2015; Views: 4327; Downloads: 310
URL Link to file

Search done in 0.13 sec.
Back to top