Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (simulation) .

1 - 8 / 8
First pagePrevious page1Next pageLast page
1.
Influence of casting defects on damage evolution and potential failures in hot rolling simulation system
Umut Hanoglu, Božidar Šarler, 2023, original scientific article

Keywords: simulation, rolling, steel, slice model, meshless, radial basis functions, damage
Published in DiRROS: 18.04.2024; Views: 61; Downloads: 37
.pdf Full text (705,92 KB)
This document has many files! More...

2.
Difference between using tabulated and exact values of thermal properties of materials in numerical simulations of heat transfer through a high-performance window
Miha Jukić, Sabina Jordan, 2019, published scientific conference contribution

Abstract: The thermal properties of materials, primarily the thermal conductivity, are an essential input for numerical modelling of heat transfer in buildings and building components. When determining them according to relevant European standards, it is not uncommon to encounter materials for which the exact values are not appropriately specified and the tabulated values in standards are overly conservative. In such situations, the thermal conductivity of the material can be determined by measurement. However, this approach may prove inconvenient and too expensive, especially if the material in question turns out to have little influence on the overall thermal performance of the product. It is, therefore, of great interest to know how the thermal performance is affected by choosing either the accurate (measured) or the conservative (tabulated) value of the thermal conductivity. In this work, the two approaches are compared in a practical example – a high-performance window, Jelovica Jelofuture – using numerical simulations. Our study shows that modifying the thermal properties of individual materials generally leaves the thermal transmittances of the frame (Uf) and the window (UW) almost unaffected. If all of the materials considered are modified simultaneously, Uf changes by 1–2% while the change in UW remains below 1%. However, due to their small values, the calculated changes of Uf and UW may be significantly affected (further increased or reduced) by the rounding of the results according to the relevant standards. In contrast, using the tabulated value of linear thermal transmittance (Ψg) of the junction with the glazing leads to an overestimation of UW by up to 15%.
Keywords: thermal transmittance, numerical simulation, conductivity, tabulated and exact values, practical example
Published in DiRROS: 08.03.2024; Views: 92; Downloads: 47
.pdf Full text (282,29 KB)
This document has many files! More...

3.
Novel thermal insulation with gas-filled cavities - assessment of thermal performance of different designs based on numerical simulations of heat transfer
Miha Jukić, Sabina Jordan, Danijel Lisičić, 2019, original scientific article

Abstract: Not only is the energy efficiency of buildings nowadays becoming more and more important; the legislative requirements, the people’s awareness of the environmental questions and their thermal comfort expectations are also on a much higher level. All of these issues can be addressed by making the building envelope more thermally resistant. However, with the traditional thermal insulation materials the thickness of thermal insulation layers is already at the viable limits. Therefore, the development of new, more efficient thermal insulation products with a higher thermal resistance is highly promoted. Preliminary research results can be applied to models to develop and confirm the conceptual designs of such new materials. In this paper, an analysis of thermal performance is presented for a novel thermal insulation consisting of graphite polystyrene (GPS) matrix with cavities filled with an insulative gas, and a protective sheath to prevent it from leaking. Bearing in mind the suitability for later production, different configurations of the assembly were considered, regarding the matrix geometry, the type of the gas filling, and the surface emissivity of the cavities. A range of numerical simulations of heat transfer was conducted to determine the efficiency of different designs in reducing the conductive, the convective, and the radiative heat transfer. Advantages, limitations and some detailed parameters of the proposed design concepts were determined, which were then used for optimisation. The analysis of the results indicates that the equivalent thermal conductance of a GPS panel can be significantly reduced by the introduction of gas-filled cavities. The reduction is highly dependent on the type of the gas filling (thermal conductivity, viscosity, specific heat, etc.), the size of the cavities, and the cavity surface emissivity.
Keywords: gas-filled cavities, graphite polystyrene, numerical simulation, thermal insulation
Published in DiRROS: 15.09.2023; Views: 262; Downloads: 122
.pdf Full text (1,21 MB)
This document has many files! More...

4.
Effects of specific parameters on simulations of energy use and air temperatures in offices equipped with radiant heating/cooling panels
Sabina Jordan, Jože Hafner, Martina Zbašnik-Senegačnik, Andraž Legat, 2019, original scientific article

Abstract: When creating a simulation model to assess the performance of buildings, there is usually a lack of feedback information. Only in the case of measurements of a real building is a direct comparison of the measured values and simulated results possible. Parameter data related to users’ behavior or other events can also be obtained. Their evaluated frequency, magnitude and duration, along with boundary conditions, are crucial for the results. It is clear that none of them can be predicted very accurately. Most of them, however, are needed for computer modeling. In this paper we analyzed the well-defined TRNSYS simulation model of offices equipped with radiant ceiling panels for heating and cooling. The model was based on real case offices and was validated based on measurements for 1 year. The analysis included simulations in order to define what effect the parameters related mainly to users have on the energy use and the indoor air temperatures. The study confirmed that specific human activities influence the annual energy use to a relatively small degree and that their effects often counteract. It also confirmed the even more important fact that although small, these activities can influence the thermal comfort of users. It is believed that despite the fact that this research was based on an analysis of offices equipped with radiant ceiling panels, most of the results could be applied generally.
Keywords: measurements, modeling, simulation, validation, analysis, energy use, temperature
Published in DiRROS: 15.09.2023; Views: 291; Downloads: 139
.pdf Full text (1,83 MB)
This document has many files! More...

5.
6.
7.
8.
Motor imagery and action observation as appropriate strategies for home-based rehabilitation : ǂa ǂmini-review focusing on improving physical function in orthopedic patients
Armin Paravlić, 2022, short scientific article

Abstract: Dynamic stability of the knee and weakness of the extensor muscles are considered to be the most important functional limitations after anterior cruciate ligament (ACL) injury, probably due to changes at the central (cortical and corticospinal) level of motor control rather than at the peripheral level. Despite general technological advances, fewer contraindicative surgical procedures, and extensive postoperative rehabilitation, up to 65% of patients fail to return to their preinjury level of sports, and only half were able to return to competitive sport. Later, it becomes clear that current rehabilitation after knee surgery is not sufficient to address the functional limitations after ACL reconstruction even years after surgery. Therefore, new therapeutic tools targeting the central neural system, i.e., the higher centers of motor control, should be investigated and integrated into current rehabilitation practice. To improve motor performance when overt movement cannot be fully performed (e.g., due to pain, impaired motor control, and/or joint immobilization), several techniques have been developed to increase physical and mental activation without the need to perform overt movements. Among the most popular cognitive techniques used to increase physical performance are motor imagery and action observation practices. This review, which examines the available evidence, presents the underlying mechanisms of the efficacy of cognitive interventions and provides guidelines for their use at home.
Keywords: motor imagery, action observation, virtual reality, rehabilitation, physical functions, mental simulation
Published in DiRROS: 03.03.2022; Views: 528; Downloads: 445
.pdf Full text (480,89 KB)
This document has many files! More...

Search done in 0.29 sec.
Back to top