Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (second-phase particles) .

1 - 8 / 8
First pagePrevious page1Next pageLast page
1.
2.
3.
4.
5.
Photo, thermal and photothermal activity of ▫$TiO_2$▫ supported Pt catalysts for plasmon-driven environmental applications
Gregor Žerjav, Zafer Say, Janez Zavašnik, Matjaž Finšgar, Christoph Langhammer, Albin Pintar, 2023, original scientific article

Abstract: TiO2+Pt plasmonic solids with 1 wt% Pt and different TiO2 supports (anatase nanoparticles (TNP), polycrystalline nanorods (a-TNR) and single-crystal anatase nanorods (TNR)) were synthesized using the wet impregnation technique and tested as photo, thermal and photothermal catalysts in gas-solid and gas-liquid-solid reactions. Due to the different charges of the TiO2 support surfaces, Pt particles with different sizes, crystallinities and degrees of interaction with the TiO2 supports were formed during the synthesis. The heights of the Schottky barrier (SBH) were 0.38 eV for the a-TNR+Pt, 0.41 eV for the TNP+Pt, and 0.50 eV for the TNR+Pt samples, respectively. The low visible-light-triggered photocatalytic activity of the TNR+Pt catalyst toward the oxidation of water-dissolved bisphenol A (BPA) is attributed to its high SBH and active site deactivation due to the adsorption of BPA and/or BPA oxidation products. The highest photothermal catalytic H2-assisted NO2 reduction rate was expressed by the TNR+Pt catalyst. This can be ascribed to the presence of a narrow particle size distribution of small Pt particles, the absence of the Pt catalysed reduction of the TNR support at higher temperatures, and the lower rate of re-injection of “hot electrons” from the TNR support to the Pt particles.
Keywords: heterogeneous photocatalysis, titanium dioxide, plasmonic noble metal, platinum particles, visible light illumination, Schottky barrier height, bisphenol A, wastewater treatment, NOx abatement, air cleaning, microreactor, thermal catalysis, photothermal catalysis
Published in DiRROS: 23.06.2023; Views: 359; Downloads: 186
.pdf Full text (2,98 MB)
This document has many files! More...

6.
Magnetic extraction of weathered tire wear particles and polyethylene microplastics
Vaibhav Budhiraja, Branka Mušič, Andrej Kržan, 2022, original scientific article

Abstract: Magnetic extraction offers a rapid and low-cost solution to microplastic (MP) separation, in which we magnetize the hydrophobic surface of MPs to separate them from complex environmental matrices using magnets. We synthesized a hydrophobic Fe-silane based nanocomposite (Fe@SiO2/MDOS) to separate MPs from freshwater. Pristine and weathered, polyethylene (PE) and tire wear particles (TWP) of different sizes were used in the study. The weathering of MPs was performed in an accelerated weathering chamber according to ISO 4892-2:2013 standards that mimic natural weathering conditions. The chemical properties and morphology of the Fe@SiO2/MDOS, PE and TWP were confirmed by Fourier transform infrared spectroscopy and Scanning electron microscopy, respectively. The thermal properties of PE and TWP were evaluated by Thermogravimetric analysis. Using 1.00 mg of Fe@SiO2/MDOS nanocomposite, 2.00 mg of pristine and weathered PE were extracted from freshwater; whereas, using the same amount of the nanocomposite, 7.92 mg of pristine TWP and 6.87 mg of weathered TWP were extracted. The retrieval of weathered TWP was 13% less than that of pristine TWP, which can be attributed to the increasing hydrophilicity of weathered TWP. The results reveal that the effectiveness of the magnetic separation technique varies among different polymer types and their sizes; the weathering of MPs also influences the magnetic separation efficiency.
Keywords: degradation, magnetic separation, microplastics, polyethylene, tire wear particles, open access
Published in DiRROS: 03.05.2023; Views: 416; Downloads: 358
.pdf Full text (1,97 MB)
This document has many files! More...

7.
8.
Silver particle-decorated carbon paste electrode based on ionic liquid for improved determination of nitrite
Eva Menart, Vasko Jovanovski, Samo B. Hočevar, 2015, original scientific article

Abstract: A simple silver particle-modified carbon paste electrode is proposed for the determination of low concentration levels of nitrite ions. The electrode consists of a carbon powder decorated with silver sub-micrometre particles (AgPs) and a hydrophobic ionic liquid trihexyltetradecylphosphonium chloride as a binder. It has been shown that AgPs exhibit a strong electrocatalytic effect on the nitrite oxidation. For optimal electroanalytical performance the electrode was conditioned via silver oxidation/reduction cycle. The electrode revealed a linear square-wave voltammetric response in a wide examined concentration range of 0.05 to 1.0 mmol L− 1, limit of detection (LOD) of 3 μmol L− 1 and excellent repeatability with RSD of 0.3%.
Keywords: Silver particles, Square-wave voltammetry, Nitrite, Ionic liquid, Carbon paste electrode
Published in DiRROS: 16.02.2015; Views: 4481; Downloads: 499
URL Link to file

Search done in 0.25 sec.
Back to top