Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (lightweight material) .

1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Evaluation of fly ash-based alkali activated foams at room and elevated temperatures
Katja Traven, Mark Češnovar, Srečo D. Škapin, Vilma Ducman, 2020, published scientific conference contribution

Abstract: Alkali activated materials (AAM) are, in their broadest classification, any binder systems derived by the reaction of an alkali metal source (silicates, alkali hydroxides, carbonates , sulphates) with a solid, amorphous alumosilicate powder (found in precursors such as slag, fly ash and bottom ash). A wide variety of products can be obtained by the alkali activation process and could replace traditional construction products. Among the se, alkali activated foams (AAF) represent one of the most promising materials, owing to their economically accessible alumosilicate rich source materials, including industrial waste materials, clean processing, higher added value and most importantly, pro ducts with competitive properties. In the present study, the properties of alkali activated fly ash - based foam materials were studied at room temperature as well as at elevated temperatures (up to 1200 °C ) in order to develop a durable material in terms o f mechanical properties and suitability for high temperature applications.
Keywords: lightweight porous insulating material, alkali activated materials, microstructural analysis
Published in DiRROS: 05.03.2024; Views: 106; Downloads: 45
.pdf Full text (970,74 KB)
This document has many files! More...

2.
Dynamic properties of lightweight foamed glass and their effect on railway vibration
Stanislav Lenart, Amir M. Kaynia, 2019, original scientific article

Abstract: Deformation properties of lightweight coarse grained material from recycled foamed glass have been determined from large-scale triaxial tests on prismatic specimens with dimensions 40 cm x 40 cm x 80 cm. Deformations were measured locally using vertical and horizontal local deformation transducers. Monotonic and cyclic loading at small to medium strain range were conducted. Three load sequences representing the expected conditions of use of lightweight material as vibration-reducing material in railway geotechnics have been used. Results indicate strong effect of brittle cellular structure of tested material as well as confining pressure dependency of elastic threshold shear strain and damping ratio. The results were used to assess the applicability of empirical formulas for shear modulus of granular materials to lightweight foamed glass. The parameters determined from the laboratory tests were further used in numerical analysis of railway dynamic response. The results of the numerical simulations show that replacement of fill in track embankment by lightweight material could improve the dynamic response of the track in reducing the vibration.
Keywords: lightweight material, recycled foamed glass, railway vibration, shear modulus, damping
Published in DiRROS: 16.11.2023; Views: 294; Downloads: 230
.pdf Full text (2,12 MB)
This document has many files! More...

Search done in 0.09 sec.
Back to top