Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Csilla Bujtás) .

1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Maker-Breaker domination game on trees when Staller wins
Csilla Bujtás, Pakanun Dokyeesun, Sandi Klavžar, 2023, original scientific article

Abstract: In the Maker-Breaker domination game played on a graph $G$, Dominator's goal is to select a dominating set and Staller's goal is to claim a closed neighborhood of some vertex. We study the cases when Staller can win the game. If Dominator (resp., Staller) starts the game, then $\gamma_{\rm SMB}(G)$ (resp., $\gamma_{\rm SMB}'(G)$) denotes the minimum number of moves Staller needs to win. For every positive integer $k$, trees $T$ with $\gamma_{\rm SMB}'(T)=k$ are characterized and a general upper bound on $\gamma_{\rm SMB}'$ is proved. Let $S = S(n_1,\dots, n_\ell)$ be the subdivided star obtained from the star with $\ell$ edges by subdividing its edges $n_1-1, \ldots, n_\ell-1$ times, respectively. Then $\gamma_{\rm SMB}'(S)$ is determined in all the cases except when $\ell\ge 4$ and each $n_i$ is even. The simplest formula is obtained when there are at least two odd $n_i$s. If ▫$n_1$▫ and $n_2$ are the two smallest such numbers, then $\gamma_{\rm SMB}'(S(n_1,\dots, n_\ell))=\lceil \log_2(n_1+n_2+1)\rceil$▫. For caterpillars, exact formulas for $\gamma_{\rm SMB}$ and for $\gamma_{\rm SMB}'$ are established.
Keywords: domination game, Maker-Breaker game, Maker-Breaker domination game, hypergraphs, trees, subdivided stars, caterpillars
Published in DiRROS: 08.04.2024; Views: 103; Downloads: 50
.pdf Full text (255,58 KB)
This document has many files! More...

2.
Computational complexity aspects of super domination
Csilla Bujtás, Nima Ghanbari, Sandi Klavžar, 2023, original scientific article

Abstract: Let ▫$G$▫ be a graph. A dominating set ▫$D\subseteq V(G)$▫ is a super dominating set if for every vertex ▫$x\in V(G) \setminus D$▫ there exists ▫$y\in D$▫ such that ▫$N_G(y)\cap (V(G)\setminus D)) = \{x\}$▫. The cardinality of a smallest super dominating set of ▫$G$▫ is the super domination number of ▫$G$▫. An exact formula for the super domination number of a tree ▫$T$▫ is obtained, and it is demonstrated that a smallest super dominating set of ▫$T$▫ can be computed in linear time. It is proved that it is NP-complete to decide whether the super domination number of a graph ▫$G$▫ is at most a given integer if ▫$G$▫ is a bipartite graph of girth at least ▫$8$▫. The super domination number is determined for all ▫$k$▫-subdivisions of graphs. Interestingly, in half of the cases the exact value can be efficiently computed from the obtained formulas, while in the other cases the computation is hard. While obtaining these formulas, II-matching numbers are introduced and proved that they are computationally hard to determine.
Keywords: super domination number, trees, bipartite graphs, k-subdivision of a graph, computational complexity, matching, II-matching number
Published in DiRROS: 14.03.2024; Views: 96; Downloads: 56
.pdf Full text (453,39 KB)
This document has many files! More...

3.
Partial domination in supercubic graphs
Csilla Bujtás, Michael A. Henning, Sandi Klavžar, 2024, original scientific article

Abstract: For some $\alpha$ with $0 < \alpha \le 1$, a subset $X$ of vertices in a graph $G$ of order $n$ is an $\alpha$-partial dominating set of $G$ if the set $X$ dominates at least $\alpha \times n$ vertices in $G$. The $\alpha$-partial domination number ${\rm pd}_{\alpha}(G)$ of $G$ is the minimum cardinality of an $\alpha$-partial dominating set of $G$. In this paper partial domination of graphs with minimum degree at least $3$ is studied. It is proved that if $G$ is a graph of order $n$ and with $\delta(G)\ge 3$, then ${\rm pd}_{\frac{7}{8}}(G) \le \frac{1}{3}n$. If in addition $n\ge 60$, then ${\rm pd}_{\frac{9}{10}}(G) \le \frac{1}{3}n$, and if $G$ is a connected cubic graph of order $n\ge 28$, then ${\rm pd}_{\frac{13}{14}}(G) \le \frac{1}{3}n$. Along the way it is shown that there are exactly four connected cubic graphs of order $14$ with domination number $5$.
Keywords: domination, partial domination, cubic graphs, supercubic graphs
Published in DiRROS: 15.02.2024; Views: 148; Downloads: 71
.pdf Full text (304,87 KB)
This document has many files! More...

Search done in 0.07 sec.
Back to top