Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Bojan Podgornik) .

11 - 20 / 24
First pagePrevious page123Next pageLast page
11.
Influence of oil viscosity on the tribological behavior of a laser-textured Ti6Al4V alloy
Marjetka Conradi, Aleksandra Kocijan, Bojan Podgornik, 2023, original scientific article

Abstract: Laser texturing with a dimple pattern was applied to modify a Ti6Al4V alloy at the micro level, aiming to improve its friction and wear resistance in combination with oil lubrication to optimize the performance in demanding industrial environments. The tribological analysis was performed on four different dimple-textured surfaces with varying dimple size and dimple-to-dimple distance and under lubrication with three different oils, i.e., T9, VG46, and VG100, to reflect the oil viscosity’s influence on the friction/wear of the laser-textured Ti6Al4V alloy. The results show that the surfaces with the highest texture density showed the most significant COF reduction of around 10% in a low-viscosity oil (T9). However, in high-viscosity oils (VG46 and VG100), the influence of the laser texturing on the COF was less pronounced. A wear analysis revealed that the laser texturing intensified the abrasive wear, especially on surfaces with a higher texture density. For low-texturing-density surfaces, less wear was observed for low- and medium-viscosity oils (T9 and VG46). For medium-to-high-texturing densities, the high-viscosity oil (VG100) provided the best contact conditions and wear results. Overall, reduced wear, even below the non-texturing case, was observed for sample 50–200 in VG100 lubrication, indicating the combined effect of oil reservoirs and increased oil-film thickness within the dimples due to the high viscosity.
Keywords: oil lubrication, surface modification, Ti-based alloy, tribology
Published in DiRROS: 01.02.2024; Views: 186; Downloads: 74
.pdf Full text (4,00 MB)
This document has many files! More...

12.
Improving the surface properties of additive-manufactured Inconel 625 by plasma nitriding
Danijela Anica Skobir Balantič, Črtomir Donik, Bojan Podgornik, Aleksandra Kocijan, Matjaž Godec, 2023, original scientific article

Abstract: As a surface-hardening technique, plasma nitriding is a common procedure for improving the properties of conventional Ni-based alloys. The diffusion of nitrogen hardens a layer on the surface of the alloy, leading to better wear resistance and a higher coefficient of friction, as well as a higher surface hardness. This study reports the effect of plasma nitriding on additive-manufactured (AM) Inconel 625 (IN625) compared to its conventional manufactured and nitrided counterparts. The samples produced with the laser powder-bed fusion (LPBF) process were subsequently plasma nitrided in the as-built condition, stress-relief annealed at 870 °C and solution treated at 1050 °C. The plasma nitridings were carried out at 430 °C and 500 °C for 15 h. The growth kinetics of the nitride layer of the AM samples depends on the prior heat treatments and is faster in the as-built state due to the specific cellular structure. The lower nitriding temperature leads to the formation of expanded austenite in the nitride layer, while at the higher nitriding temperature, the expanded austenite decomposes and CrN precipitation occurs. The XRD and SEM analyses confirmed the presence of two layers: the surface layer and the diffusion layer beneath. The lower nitriding temperature caused the formation of expanded austenite or a combination of expanded austenite and CrN. The higher nitriding temperature led to the decomposition of the expanded austenite and to the formation/precipitation of CrN. The higher nitriding temperature also decreased the corrosion resistance slightly due to the increased number of precipitated Cr-nitrides. On the other hand, the wear resistance was significantly improved after plasma nitriding and was much less influenced by the nitriding temperature.
Keywords: additive manufacturing, powder-bed fusion, plasma nitriding, expanded austenite, wear and corrosion resistance, Ni-based alloy
Published in DiRROS: 31.01.2024; Views: 187; Downloads: 79
.pdf Full text (7,98 MB)
This document has many files! More...

13.
14.
Effect of deep cryogenic treatment on corrosion properties of various high-speed steels
Jure Voglar, Živa Novak, Patricia Jovičević Klug, Bojan Podgornik, Tadeja Kosec, 2021, original scientific article

Abstract: The aim of the study was to evaluate the corrosion properties of three different grades of high-speed steel following a heat treatment procedure involving deep cryogenic treatment after quenching and to investigate how these properties are connected to the microstructure and hard- ness of the material. The hardness of steels was measured, and microstructural properties were determined through observation of the metallographically prepared steels using scanning electron microscopy. These studies were complemented corrosion evaluation by the use of corrosion potential measurement and linear polarization measurement of steels in a sodium tetraborate buffer at pH 10. The results showed that the deep cryogenic procedure of high-speed steel changed the microstructure and consequently affected the hardness of the investigated steels to different extents, depending on their chemical composition. Corrosion studies have confirmed that some high-speed steels have improved corrosion properties after deep cryogenic treatment. The most important improvement in corrosion resistance was observed for deep cryogenically treated high-speed steel EN 1.3395 (M3:2) by 31% when hardened to high hardness values and by 116% under lower hardness conditions. The test procedure for differentiating corrosion properties of differently heat-treated tool steels was established alongside the investigation.
Keywords: deep cryogenic treatment, corrosion, microstructure, hardness
Published in DiRROS: 01.08.2023; Views: 277; Downloads: 144
.pdf Full text (5,82 MB)
This document has many files! More...

15.
Differences between 3-D printed and traditionally milled CoCr dental alloy from casted block in oral environment
Mirjam Bajt Leban, Matej Kurnik, Igor Kopač, Matic Klug Jovičević, Bojan Podgornik, Tadeja Kosec, 2023, original scientific article

Abstract: The aim of this study was to compare corrosion resistance and ion release in CoCr dental alloys with identical chemical compositions produced using different technologies (SLM – selective laser melting and milling from cast blocks) and heat treatment (SLM parts only). The corrosion properties were tested in artificial saliva, artificial saliva with fluoride ions, and artificial saliva with added lactic acid to simulate inflammations. The study included electrochemical tests, microstructural investigation and ion release tests in the three different environments for a total of 42 days. The best performance of CoCr as a result of potentiodynamic polarization was observed in the artificial saliva with added lactic acid, which is in contradiction with the highest ion release measured from all the materials tested and electrochemical impedance spectroscopy that showed a deterioration of the passive layer in an acidic environment. Microstructural investigation revealed that different phases precipitated by heat treatment trigger increased release of Mo and W ions. The printing method does not raise critically ion release from CoCr alloy, while the state of the surface greatly impacts the extent of the ion release. This study demonstrates the importance of an interdisciplinary approach to the study of corrosion and biocompatibility in dental alloys.
Keywords: CoCr dental alloy, selective laser melting, corrosion, ion release, artificial saliva
Published in DiRROS: 29.05.2023; Views: 343; Downloads: 290
.pdf Full text (9,28 MB)
This document has many files! More...

16.
Influence of the deep cryogenic treatment on AISI 52100 and AISI D3 steelʼs corrosion resistance
Patricia Jovičević Klug, Tjaša Kranjec, Matic Klug Jovičević, Tadeja Kosec, Bojan Podgornik, 2021, original scientific article

Abstract: The effect of deep cryogenic treatment (DCT) on corrosion resistance of steels AISI 52100 and AISI D3 is investigated and compared with conventional heat-treated counterparts. DCTʼs influence on microstructural changes is subsequently correlated to the corrosion resistance. DCT is confirmed to reduce the formation of corrosion products on steelsʼ surface, retard the corrosion products development and propagation. DCT reduces surface cracking, which is considered to be related to modified residual stress state of the material. DCTʼs influence on each steel results from the altered microstructure and alloying element concentration that depends on steel matrix and type. This study presents DCT as an effective method for corrosion resistance alteration of steels.
Keywords: steel, deep cryogenic treatment, corrosion, Raman, open access
Published in DiRROS: 19.05.2023; Views: 307; Downloads: 224
.pdf Full text (3,13 MB)
This document has many files! More...

17.
Effect of laser texturing pattern on Ti6Al4Vtribocorrosion in a physiological solution
Marjetka Conradi, Tadeja Kosec, Bojan Podgornik, Aleksandra Kocijan, Janez Kovač, Damjan Klobčar, 2022, original scientific article

Abstract: Laser texturing is a process that alters a material’s surface properties by modifying its morphology, which can improve properties like adherence, wettability, thermal and electrical conductivity and friction. Here, the effect of laser texturing was studied on an alpha-beta titanium alloy (Ti6Al4V) biomedical material. Two types of patterned surfaces, cross-hatch with varying scan-line separations, Dx = 100, 180 and 280 μm and dimples of 200 μm size, were prepared on the surface of alpha-beta titanium alloy by laser technology. Prepared samples were characterised for their surface properties, such as corrosion, wear-induced corrosion, friction and wettability. Electrochemical and tribocorrosion properties in a physiological solution were studied on the samples with different texture densities of cross-hatch pattern and dimples and compared to the as-received alpha-beta titanium alloy surface. Corrosion rate decreased for laser-textured samples, especially for cross-hatch texture (down to 1 μm/year for Dx = 180 μm) when compared to the as-received alpha-beta titanium alloy surface due to the changed laser-induced surface film and wetting properties. Friction coefficient slightly decreased for all laser-textured surfaces, most noticeably for cross-hatch patterns, from 0.38 (as-received) down to 0.34 (Dx = 180 and 280 μm). The main contribution to total wear in physiological solution increased due to the mechanical wear, which is governed by the removal of the surface oxide layer induced by laser texturing.
Keywords: TiAIV, laser texturing, tribocorrosion, open access
Published in DiRROS: 17.05.2023; Views: 294; Downloads: 119
.pdf Full text (2,19 MB)
This document has many files! More...

18.
19.
Advanced materials research for a green future
Bojan Podgornik, 2021, professional article

Keywords: advanced materials, research, metals, environment
Published in DiRROS: 06.05.2022; Views: 850; Downloads: 607
.pdf Full text (38,07 MB)
This document has many files! More...

20.
Search done in 0.26 sec.
Back to top