Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (grapevine) .

1 - 7 / 7
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Rapid loop-mediated isothermal amplification assays for grapevine yellows phytoplasmas on crude leaf-vein homogenate has the same performance as qPCR
Polona Kogovšek, Nataša Mehle, Anja Pugelj, Tjaša Jakomin, Hans-Josef Schroers, Maja Ravnikar, Marina Dermastia, 2017, izvirni znanstveni članek

Povzetek: A fluorescence-based real-time loop-mediated isothermal amplification (LAMP) assay for ‘Candidatus Phytoplasama solani’ (Bois noir phytoplasma; BNp) detection was developed and optimised for rapid laboratory and on-site BNp detection. This assay is highly specific, rapid and as sensitive as qPCR. It was validated according to European and Mediterranean Plant Protection Organisation recommendations. In addition, 286 grapevine leaf samples from the 2015 growing season were tested with this new real-time LAMP assay and an assay previously developed for detection of Flavescence dorée phytoplasma (FDp). These LAMP assays for detection of both BNp and FDp used without any DNA extraction step, which is a required step for qPCR analysis, were comparably effective to qPCR, and positive results were obtained in less than 35 min.
Ključne besede: real-time LAMP, grapevine yellows phytoplasma, validation
Objavljeno v DiRROS: 24.07.2024; Ogledov: 123; Prenosov: 91
.pdf Celotno besedilo (335,75 KB)
Gradivo ima več datotek! Več...

2.
Physiological and transcriptional responses to saline irrigation of young ‘Tempranillo’ vines grafted onto different rootstocks
Ignacio Buesa, Juan G. Pérez-Pérez, Fernando Visconti, Rebeka Strah, Diego S. Intrigliolo, Luis Bonet, Kristina Gruden, Maruša Pompe Novak, Jose M. de Paz, 2022, izvirni znanstveni članek

Povzetek: The use of more salt stress-tolerant vine rootstocks can be a sustainable strategy for adapting traditional grapevine cultivars to future conditions. However, how the new M1 and M4 rootstocks perform against salinity compared to conventional ones, such as the 1103-Paulsen, had not been previously assessed under real field conditions. Therefore, a field trial was carried out in a young ‘Tempranillo’ (Vitis vinifera L.) vineyard grafted onto all three rootstocks under a semi-arid and hot-summer Mediterranean climate. The vines were irrigated with two kinds of water: a non-saline Control with EC of 0.8 dS m–1 and a Saline treatment with 3.5 dS m–1. Then, various physiological parameters were assessed in the scion, and, additionally, gene expression was studied by high throughput sequencing in leaf and berry tissues. Plant water relations evidenced the osmotic effect of water quality, but not that of the rootstock. Accordingly, leaf-level gas exchange rates were also reduced in all three rootstocks, with M1 inducing significantly lower net photosynthesis rates than 1103-Paulsen. Nevertheless, the expression of groups of genes involved in photosynthesis and amino acid metabolism pathways were not significantly and differentially expressed. The irrigation with saline water significantly increased leaf chloride contents in the scion onto the M-rootstocks, but not onto the 1103P. The limitation for leaf Cl– and Na+ accumulation on the scion was conferred by rootstock. Few processes were differentially regulated in the scion in response to the saline treatment, mainly, in the groups of genes involved in the flavonoids and phenylpropanoids metabolic pathways. However, these transcriptomic effects were not fully reflected in grape phenolic ripeness, with M4 being the only one that did not cause reductions in these compounds in response to salinity, and 1103-Paulsen having the highest overall concentrations. These results suggest that all three rootstocks confer short-term salinity tolerance to the scion. The lower transcriptomic changes and the lower accumulation of potentially phytotoxic ions in the scion grafted onto 1103-Paulsen compared to M-rootstocks point to the former being able to maintain this physiological response in the longer term. Further agronomic trials should be conducted to confirm these effects on vine physiology and transcriptomics in mature vineyards.
Ključne besede: osmotic adjustment, gas exchange, gene expression, water relations, Vitis vinifera L. (grapevine), salinity tolerance
Objavljeno v DiRROS: 17.07.2024; Ogledov: 114; Prenosov: 90
.pdf Celotno besedilo (2,32 MB)
Gradivo ima več datotek! Več...

3.
The physiological impact of GFLV virus infection on grapevine water status : first observations
Anastazija Jež Krebelj, Maja Cigoj, Marija Stele, Marko Chersicola, Maruša Pompe Novak, Paolo Sivilotti, 2022, izvirni znanstveni članek

Povzetek: In a vineyard, grapevines are simultaneously exposed to combinations of several abiotic (drought, extreme temperatures, salinity) and biotic stresses (phytoplasmas, viruses, bacteria). With climate change, the incidences of drought in vine growing regions are increased and the host range of pathogens with increased chances of virulent strain development has expanded. Therefore, we studied the impact of the combination of abiotic (drought) and biotic (Grapevine fanleaf virus (GFLV) infection) stress on physiological and molecular responses on the grapevine of cv. Schioppettino by studying the influence of drought and GFLV infection on plant water status of grapevines, on grapevine xylem vessel occlusion, and on expression patterns of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1), 9-cis-epoxycarotenoid dioxygenase 2 (NCED2), WRKY encoding transcription factor (WRKY54) and RD22-like protein (RD22) genes in grapevines. A complex response of grapevine to the combination of drought and GFLV infection was shown, including priming in the case of grapevine water status, net effect in the case of area of occluded vessels in xylem, and different types of interaction of both stresses in the case of expression of four abscisic acid-related genes. Our results showed that mild (but not severe) water stress can be better sustained by GFLV infection rather than by healthy vines. GFLV proved to improve the resilience of the plants to water stress, which is an important outcome to cope with the challenges of global warming.
Ključne besede: grapevine, water status, virus infection, GFLV, xylem vessel occlusion, gene expression
Objavljeno v DiRROS: 16.07.2024; Ogledov: 89; Prenosov: 101
.pdf Celotno besedilo (4,43 MB)
Gradivo ima več datotek! Več...

4.
Epidemiology of Flavescence dorée and hazelnut decline in Slovenia : geographical distribution and genetic diversity of the associated 16SrV phytoplasmas
Zala Kogej Zwitter, Gabrijel Seljak, Tjaša Jakomin, Jakob Brodarič, Ana Vučurović, Sandra Pedemay, Pascal Salar, Sylvie Malembic-Maher, Xavier Foissac, Nataša Mehle, 2023, izvirni znanstveni članek

Povzetek: Flavescence dorée (FD) phytoplasma from 16SrV-C and -D subgroups cause severe damage to grapevines throughout Europe. This phytoplasma is transmitted from grapevine to grapevine by the sap-sucking leafhopper Scaphoideus titanus. European black alder and clematis serve as perennial plant reservoirs for 16SrV-C phytoplasma strains, and their host range has recently been extended to hazelnuts. In Slovenia, hazelnut orchards are declining due to 16SrV phytoplasma infections, where large populations of the non-autochthonous leafhopper Orientus ishidae have been observed. To better characterise the phytoplasma-induced decline of hazelnut and possible transmission fluxes between these orchards and grapevine, genetic diversity of 16SrV phytoplasmas in grapevine, hazelnut and leafhoppers was monitored from 2017 to 2022. The nucleotide sequence analysis was based on the map gene. The most prevalent map genotype in grapevine in all wine-growing regions of Slovenia was M54, which accounted for 84 % of the 176 grapevines tested. Besides M54, other epidemic genotypes with lower frequency were M38 (6 %), M51 (3 %), M50 (2 %) and M122 (1 %). M38, M50 and M122 were also detected in infected cultivated hazelnuts and in specimens of O. ishidae leafhopper caught in declining hazelnut orchards. It suggests that this polyphagous vector could be responsible for phytoplasma infection in hazelnut orchards and possibly for some phytoplasma exchanges between hazelnuts and grapevine. We hereby describe new genotypes: M158 in grapevine as well as four never reported genotypes M159 to M162 in hazelnut. Of these four genotypes in hazelnut, one (M160) was also detected in O. ishidae. Analysis of additional genes of the new genotypes allowed us to assign them to the VmpA-III cluster, which corresponds to the 16SrV-C strains previously shown to be compatible with S. titanus transmission.
Ključne besede: phytoplasmas, haselnuts, grapevine, Flavescence dorée, epidemiology, plant disease
Objavljeno v DiRROS: 26.07.2023; Ogledov: 629; Prenosov: 456
.pdf Celotno besedilo (3,82 MB)
Gradivo ima več datotek! Več...

5.
6.
7.
Iskanje izvedeno v 0.53 sek.
Na vrh