Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (cadmium) .

1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Adsorption efficiency of cadmium (II) by different alkali-activated materials
Nataša Mladenović Nikolić, Ljiljana Kljajević, Snežana B. Nenadović, Jelena Potočnik, Sanja Knežević, Sabina Dolenec, Katarina Trivunac, 2024, izvirni znanstveni članek

Povzetek: The objective of this study was to demonstrate the potential utilization of fly ash (FA), wood ash (WA), and metakaolin (MK) in developing new alkali-activated materials (AAMs) for the removal of cadmium ions from waste water. The synthesis of AAMs involved the dissolution of solid precursors, FA, WA, and MK, by a liquid activator (Na2SiO3 and NaOH). In concentrated solutions of the activator, the formation of an aluminosilicate gel structure occurred. DRIFT spectroscopy of the AAMs indicated main vibration bands between 1036 cm−1 and 996 cm−1, corresponding to Si-O-Si/Si-O-Al bands. Shifting vibration bands were seen at 1028 cm−1 to 1021 cm−1, indicating that the Si-O-Si/Si-O-Al bond is elongating, and the bond angle is decreasing. Based on the X-ray diffraction results, alkali-activated samples consist of an amorphous phase and residual mineral phases. The characteristic “hump” of an amorphous phase in the range from 20 to 40◦ 2θ was observed in FA and in all AWAFA samples. By the XRD patterns of the AAMs obtained by the activation of a solid three-component system, a new crystalline phase, gehlenite, was identified. The efficiency of AAMs in removing cadmium ions from aqueous solutions was tested under various conditions. The highest values of adsorption capacity, 64.76 mg/g (AWAFA6), 67.02 mg/g (AWAFAMK6), and 72.84 mg/gmg/g (AWAMK6), were obtained for materials activated with a 6 M NaOH solution in the alkali activator. The Langmuir adsorption isotherm and pseudo-second kinetic order provided the best fit for all investigated AAMs.
Ključne besede: fly ash, metakaolin, wood ash, adsorption kinetics, cadmium (II)
Objavljeno v DiRROS: 23.05.2024; Ogledov: 78; Prenosov: 42
.pdf Celotno besedilo (7,68 MB)
Gradivo ima več datotek! Več...

2.
3.
Environmental impacts and immobilization mechanisms of cadmium, lead and zinc in geotechnical composites made from contaminated soil and paper-ash
Marija Đurić, Primož Oprčkal, Vesna Zalar Serjun, Alenka Mauko Pranjić, Janez Ščančar, Radmila Milačič, Ana Mladenovič, 2021, izvirni znanstveni članek

Povzetek: Paper-ash is used for remediation of heavily contaminated soils with metals, but remediation efficiency after longer periods has not been reported. To gain insights into the mechanisms of immobilization of cadmium (Cd), lead (Pb), and znic (Zn), a study was performed in the laboratory experiment in uncontaminated, artificially contaminated, and remediated soils, and these soils treated with sulfate, to mimic conditions in contaminated soil from zinc smelter site. Remediation was performed by mixing contaminated soil with paper-ash to immobilize Cd, Pb, and Zn in the geotechnical composite. Partitioning of Cd, Pb, and Zn was studied over one year in seven-time intervals applying the sequential extraction procedure and complementary X-ray diffraction analyses. This methodological approach enabled us to follow the redistribution of Cd, Pb, and Zn over time, thus, to studying immobilization mechanisms and assessing the remediation efficiency and stability of newly formed mineral phases. Cd, Pb, and Zn were effectively immobilized by precipitation of insoluble hydroxides after the addition of paper-ash and by the carbonization process in insoluble carbonate minerals. After remediation, Cd, Pb, and Zn concentrations in the water-soluble fraction were well below the limiting values for inertness: Cd by 100 times, Pb by 125 times, and Zn by 10 times. Sulfate treatment did not influence the remediation efficiency. Experimental data confirmed the high remediation efficiency and stability of insoluble Cd, Pb, and Zn mineral phases in geotechnical composites.
Ključne besede: cadmium, lead, zinc, contaminated soil, paper ash, immobilization mechanisms
Objavljeno v DiRROS: 04.07.2023; Ogledov: 372; Prenosov: 242
.pdf Celotno besedilo (2,95 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.09 sek.
Na vrh