Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "avtor" (Helena Motaln) .

1 - 10 / 13
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
1.
Proteases and cytokines as mediators of interactions between cancer and stromal cells in tumours
Barbara Breznik, Helena Motaln, Tamara Lah Turnšek, 2017, pregledni znanstveni članek

Povzetek: Proteolytic enzymes are highly relevant in different processes of cancer progression. Their interplay with other signalling molecules such as cytokines represents important regulation of multicellular cross-talk. In this review, we discuss protease regulation mechanisms of cytokine signalling in various types of cancer. Additionally, we highlight the reverse whereby cytokines have an impact on protease expression in an autocrine and paracrine manner, representing complex feedback mechanisms among multiple members of these two protein families. The relevance of the protease-cytokine axis is illustrated in glioblastoma, where interactions between normal mesenchymal stem cells and cancer cells play an important role in this very malignant form of brain cancer.
Ključne besede: cellular cross-talk, glioblastoma, invasion, mesenchymal stem cells, protease-cytokine signalling
Objavljeno v DiRROS: 06.08.2024; Ogledov: 32; Prenosov: 22
.pdf Celotno besedilo (781,03 KB)
Gradivo ima več datotek! Več...

2.
SegMine workflows for semantic microarray data analysis in Orange4WS
Vid Podpečan, Nada Lavrač, Igor Mozetič, Petra Kralj Novak, Igor Trajkovski, Laura Langohr, Kimmo Kulovesi, Hannu Toivonen, Marko Petek, Helena Motaln, Kristina Gruden, 2011, izvirni znanstveni članek

Povzetek: Background In experimental data analysis, bioinformatics researchers increasingly rely on tools that enable the composition and reuse of scientific workflows. The utility of current bioinformatics workflow environments can be significantly increased by offering advanced data mining services as workflow components. Such services can support, for instance, knowledge discovery from diverse distributed data and knowledge sources (such as GO, KEGG, PubMed, and experimental databases). Specifically, cutting-edge data analysis approaches, such as semantic data mining, link discovery, and visualization, have not yet been made available to researchers investigating complex biological datasets. Results We present a new methodology, SegMine, for semantic analysis of microarray data by exploiting general biological knowledge, and a new workflow environment, Orange4WS, with integrated support for web services in which the SegMine methodology is implemented. The SegMine methodology consists of two main steps. First, the semantic subgroup discovery algorithm is used to construct elaborate rules that identify enriched gene sets. Then, a link discovery service is used for the creation and visualization of new biological hypotheses. The utility of SegMine, implemented as a set of workflows in Orange4WS, is demonstrated in two microarray data analysis applications. In the analysis of senescence in human stem cells, the use of SegMine resulted in three novel research hypotheses that could improve understanding of the underlying mechanisms of senescence and identification of candidate marker genes. Conclusions Compared to the available data analysis systems, SegMine offers improved hypothesis generation and data interpretation for bioinformatics in an easy-to-use integrated workflow environment.
Objavljeno v DiRROS: 05.08.2024; Ogledov: 65; Prenosov: 53
.pdf Celotno besedilo (3,09 MB)
Gradivo ima več datotek! Več...

3.
Vloga matičnih celic pri napredovanju in zdravljenju glioma
Urška Verbovšek, Tamara Lah Turnšek, Helena Motaln, Mateja Robič, 2013, izvirni znanstveni članek

Povzetek: Izvor tumorjev in stohastično naravo procesa karcinogeneze najbolje opisuje hierarhični model, ki predvideva obstoj tumorskih matičnih celic (TMC). Slednje predstavljajo populacijo celic z neomejenim samoobnovitvenim potencialom, ki so se sposobne diferencirati v vrste celic vseh treh zarodnih linij in so manj občutljive na večino protirakavih učinkovin. Zato predstavljajo glavni vir za razvoj in rast tumorja, zaradi svoje odpornosti na kemoterapijo pa so vzrok za ponovitev bolezni. Za uspešno zdravljenje možganskega tumorja glioma in njegove najbolj maligne oblike, glioblastoma multiformae (GBM), bi zato bilo potrebno odstraniti prav vse TMC. Žal slednjega zaradi prehitre infiltrativne vrasti subpopulacije GBM celic z visoko izraženimi geni za gibljivost (migratom) v okolno zdravo možgansko tkivo, ni možno doseči s trenutno uporabljanimi načini zdravljenja (npr. kirurškim izrezom) Poleg TMC, ki so ključne za razvoj in razrast tumorja, tkivo tumorja vsebuje še hematopoetske matične celice, endotelne predniške celice in mezenhimske matične celice (MMC). Delovanje teh drugih vrst matičnih celic, kjer je bila celicam MMC že dokazana protitumorska aktivnost v GBM, pa je odvisno od tumorskega mikrookolja. Žal mehanizmi in delovanje MMC med modulacijo rasti tumorja preko parakrinih in neposrednih interakcij z GBM (matičnimi) celicami še niso znani. Kljub temu pa matične celice, s poudarkom na MMC, predstavljajo nove nosilce npr. za ciljni vnos terapevtske učinkovine v tumor, ki bi lahko izboljšali učinkovitost trenutnih protitumorskih terapij. Razvoj celičnih zdravil veliko obeta, saj so MMC, poleg svojih imunomodulacijskih lastnosti, sposobne tudi usmerjenega gibanja v GBM in tam učinkovati, o čemer razpravlja ta prispevek.
Ključne besede: tumorske matične celice, mezenhimske matične celice, mikrookolje tumorja, celična terapija
Objavljeno v DiRROS: 02.08.2024; Ogledov: 66; Prenosov: 59
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

4.
Identification of plasma biomarker candidates in glioblastoma using an antibody-array-based proteomic approach
Klemen Zupančič, Marjan Koršič, Urška Verbovšek, Primož Rožman, Tamara Lah Turnšek, Andrej Blejec, Kristina Gruden, Helena Motaln, Miomir Knežević, Matija Veber, Ana Herman, 2014, izvirni znanstveni članek

Povzetek: Background. Glioblastoma multiforme (GBM) is a brain tumour with a very high patient mortality rate, with a median survival of 47 weeks. This might be improved by the identification of novel diagnostic, prognostic and predictive therapy-response biomarkers, preferentially through the monitoring of the patient blood. The aim of this study was to define the impact of GBM in terms of alterations of the plasma protein levels in these patients. Materials and methods. We used a commercially available antibody array that includes 656 antibodies to analyse blood plasma samples from 17 healthy volunteers in comparison with 17 blood plasma samples from patients with GBM. Results. We identified 11 plasma proteins that are statistically most strongly associated with the presence of GBM. These proteins belong to three functional signalling pathways: T-cell signalling and immune responses; cell adhesion and migration; and cell-cycle control and apoptosis. Thus, we can consider this identified set of proteins as potential diagnostic biomarker candidates for GBM. In addition, a set of 16 plasma proteins were significantly associated with the overall survival of these patients with GBM. Guanine nucleotide binding protein alpha (GNAO1) was associated with both GBM presence and survival of patients with GBM. Conclusions. Antibody array analysis represents a useful tool for the screening of plasma samples for potential cancer biomarker candidates in small-scale exploratory experiments; however, clinical validation of these candidates requires their further evaluation in a larger study on an independent cohort of patients.
Ključne besede: glioblastoma, proteomics, biomarker
Objavljeno v DiRROS: 02.08.2024; Ogledov: 111; Prenosov: 78
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

5.
TRIM28 and [beta]-actin identified via nanobody-based reverse proteomics approach as possible human glioblastoma biomarkers
Ivana Jovchevska, Neja Šamec, Nina Kočevar Britovšek, Daniela Cesselli, Neža Podergajs, Clara Limbaeck Stanic, Michael P. Myers, Serge Muyldermans, Gholamreza Hassanzadeh Ghassabeh, Helena Motaln, Maria Elisabetta Ruaro, Evgenia Bourkoula, Tamara Lah Turnšek, Radovan Komel, 2014, izvirni znanstveni članek

Povzetek: Malignant gliomas are among the rarest brain tumours, and they have the worst prognosis. Grade IV astrocytoma, known as glioblastoma multiforme (GBM), is a highly lethal disease where the standard therapies of surgery, followed by radiation and chemotherapy, cannot significantly prolong the life expectancy of the patients. Tumour recurrence shows more aggressive form compared to the primary tumour, and results in patient survival from 12 to 15 months only. Although still controversial, the cancer stem cell hypothesis postulates that cancer stem cells are responsible for early relapse of the disease after surgical intervention due to their high resistance to therapy. Alternative strategies for GBM therapy are thus urgently needed. Nanobodies are single-domain antigen-binding fragments of heavy-chain antibodies, and together with classical antibodies, they are part of the camelid immune system. Nanobodies are small and stable, and they share a high degree of sequence identity to the human heavy chain variable domain, and these characteristics offer them advantages over classical antibodies or antibody fragments. We first immunised an alpaca with a human GBM stem-like cell line prepared from primary GBM cultures. Next, a nanobody library was constructed in a phage-display vector. Using nanobody phage-display technology, we selected specific GBM stem-like cell binders through a number of affinity selections, using whole cell protein extracts and membrane protein-enriched extracts from eight different GBM patients, and membrane protein-enriched extracts from two established GBM stem-like cell lines (NCH644 and NCH421K cells). After the enrichment, periplasmic extract ELISA was used to screen for specific clones. These nanobody clones were recloned into the pHEN6 vector, expressed in Escherichia coli WK6, and purified using immobilised metal affinity chromatography and size-exclusion chromatography. Specific nanobody:antigen pairs were obtained and mass spectrometry analysis revealed two proteins, TRIM28 and β-actin, that were up-regulated in the GBM stem-like cells compared to the controls.
Ključne besede: malignant gliomas, cancer stem cells, nanobodies
Objavljeno v DiRROS: 02.08.2024; Ogledov: 90; Prenosov: 69
.pdf Celotno besedilo (652,32 KB)
Gradivo ima več datotek! Več...

6.
Expression analysis of all protease genes reveals cathepsin K to be overexpressed in glioblastoma
Urška Verbovšek, Helena Motaln, Ana Rotter, Nadia A. Atai, Kristina Gruden, Cornelis J. F. van Noorden, Tamara Lah Turnšek, 2014, izvirni znanstveni članek

Povzetek: Background Cancer genome and transcriptome analyses advanced our understanding of cancer biology. We performed transcriptome analysis of all known genes of peptidases also called proteases and their endogenous inhibitors in glioblastoma multiforme (GBM), which is one of the most aggressive and deadly types of brain cancers, where unbalanced proteolysis is associated with tumor progression. Methods Comparisons were performed between the transcriptomics of primary GBM tumors and unmatched non-malignant brain tissue, and between GBM cell lines (U87-MG and U373) and a control human astrocyte cell line (NHA). Publicly-available data sets and our own datasets were integrated and normalized using bioinformatics tools to reveal protease and protease inhibitor genes with deregulated expression in both malignant versus non-malignant tissues and cells. Results Of the 311 protease genes identified to be differentially expressed in both GBM tissues and cells, 5 genes were highly overexpressed, 2 genes coding for non-peptidase homologues transferrin receptor (TFRC) and G protein-coupled receptor 56 (GPR56), as well as 3 genes coding for the proteases endoplasmic reticulum aminopeptidase 2 (ERAP2), glutamine-fructose-6-phosphate transaminase 2 (GFPT2) and cathepsin K (CTSK), whereas one gene, that of the serine protease carboxypeptidase E (CPE) was strongly reduced in expression. Seventy five protease inhibitor genes were differentially expressed, of which 3 genes were highly overexpressed, the genes coding for stefin B (CSTB), peptidase inhibitor 3 (PI3 also named elafin) and CD74. Seven out of 8 genes (except CSTB) were validated using RT-qPCR in GBM cell lines. CTSK overexpression was validated using RT-qPCR in GBM tissues as well. Cathepsin K immunohistochemical staining and western blotting showed that only proteolytically inactive proforms of cathepsin K were overexpressed in GBM tissues and cells. Conclusions The presence of high levels of inactive proforms of cathepsin K in GBM tissues and cells indicate that in GBM the proteolytic/collagenolytic role is not its primary function but it plays rather a different yet unknown role.
Ključne besede: glioblastoma multiforme, genes
Objavljeno v DiRROS: 02.08.2024; Ogledov: 97; Prenosov: 120
.pdf Celotno besedilo (1,38 MB)
Gradivo ima več datotek! Več...

7.
Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistance
Ana Koren, Helena Motaln, Živa Ramšak, Kristina Gruden, Christian Schichor, Tamara Lah Turnšek, 2015, izvirni znanstveni članek

Povzetek: Glioblastoma multiforme is the most lethal of brain cancer, and it comprises a heterogeneous mixture of functionally distinct cancer cells that affect tumor progression. We examined the U87, U251, and U373 malignant cell lines as in vitro models to determine the impact of cellular cross-talk on their phenotypic alterations in co-cultures. These cells were also studied at the transcriptome level, to define the mechanisms of their observed mutually affected genomic stability, proliferation, invasion and resistance to temozolomide. This is the first direct demonstration of the neural and mesenchymal molecular fingerprints of U87 and U373 cells, respectively. U87-cell conditioned medium lowered the genomic stability of U373 (U251) cells, without affecting cell proliferation. In contrast, upon exposure of U87 cells to U373 (U251) conditioned medium, U87 cells showed increased genomic stability, decreased proliferation rates and increased invasion, due to a plethora of produced cytokines identified in the co-culture media. This cross talk altered the expression 264 genes in U87 cells that are associated with proliferation, inflammation, migration, and adhesion, and 221 genes in U373 cells that are associated with apoptosis, the cell cycle, cell differentiation and migration. Indirect and direct co-culturing of U87 and U373 cells showed mutually opposite effects on temozolomide resistance. In conclusion, definition of transcriptional alterations of distinct glioblastoma cells upon co-culturing provides better understanding of the mechanisms of glioblastoma heterogeneity, which will provide the basis for more informed glioma treatment in the future.
Ključne besede: glioblastoma heterogeneity, U87 cells, temozolomide resistance, cellular cross-talk, transcriptomics
Objavljeno v DiRROS: 29.07.2024; Ogledov: 132; Prenosov: 111
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

8.
Analysis of glioblastoma patients' plasma revealed the presence of microRNAs with a prognostic impact on survival and those of viral origin
Klemen Zupančič, Helena Motaln, Miomir Knežević, Urška Verbovšek, Marjan Koršič, Tamara Lah Turnšek, Primož Rožman, Matjaž Jeras, Matjaž Hren, Kristina Gruden, Andrej Blejec, Matija Veber, Ana Herman, Andrej Porčnik, Vid Podpečan, 2015, izvirni znanstveni članek

Povzetek: Background Glioblastoma multiforme (GBM) is among the most aggressive cancers with a poor prognosis in spite of a plethora of established diagnostic and prognostic biomarkers and treatment modalities. Therefore, the current goal is the detection of novel biomarkers, possibly detectable in the blood of GBM patients that may enable an early diagnosis and are potential therapeutic targets, leading to more efficient interventions. Experimental Procedures MicroRNA profiling of 734 human and human-associated viral miRNAs was performed on blood plasma samples from 16 healthy individuals and 16 patients with GBM, using the nCounter miRNA Expression Assay Kits. Results We identified 19 miRNAs with significantly different plasma levels in GBM patients, compared to the healthy individuals group with the difference limited by a factor of 2. Additionally, 11 viral miRNAs were found differentially expressed in plasma of GBM patients and 24 miRNA levels significantly correlated with the patients’ survival. Moreover, the overlap between the group of candidate miRNAs for diagnostic biomarkers and the group of miRNAs associated with survival, consisted of ten miRNAs, showing both diagnostic and prognostic potential. Among them, hsa miR 592 and hsa miR 514a 3p have not been previously described in GBM and represent novel candidates for selective biomarkers. The possible signalling, induced by the revealed miRNAs is discussed, including those of viral origin, and in particular those related to the impaired immune response in the progression of GBM. Conclusion The GBM burden is reflected in the alteration of the plasma miRNAs pattern, including viral miRNAs, representing the potential for future clinical application. Therefore proposed biomarker candidate miRNAs should be validated in a larger study of an independent cohort of patients
Ključne besede: microRNAs, glioblastoma multiforme, biomarkers, RNA extraction, viral disease diagnosis
Objavljeno v DiRROS: 26.07.2024; Ogledov: 131; Prenosov: 57
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

9.
Transmembrane protein CD9 is glioblastoma biomarker, relevant for maintenance of glioblastoma stem cells
Neža Podergajs, Helena Motaln, Uroš Rajčević, Urška Verbovšek, Marjan Koršič, Nina Obad, Heidi Espedal, Miloš Vittori, Christel Herold-Mende, Hrvoje Miletic, Rolf Bjerkvig, Tamara Lah Turnšek, 2016, izvirni znanstveni članek

Povzetek: The cancer stem cell model suggests that glioblastomas contain a subpopulation of stem-like tumor cells that reproduce themselves to sustain tumor growth. Targeting these cells thus represents a novel treatment strategy and therefore more specific markers that characterize glioblastoma stem cells need to be identified. In the present study, we performed transcriptomic analysis of glioblastoma tissues compared to normal brain tissues revealing sensible up-regulation of CD9 gene. CD9 encodes the transmembrane protein tetraspanin which is involved in tumor cell invasion, apoptosis and resistance to chemotherapy. Using the public REMBRANDT database for brain tumors, we confirmed the prognostic value of CD9, whereby a more than two fold up-regulation correlates with shorter patient survival. We validated CD9 gene and protein expression showing selective up-regulation in glioblastoma stem cells isolated from primary biopsies and in primary organotypic glioblastoma spheroids as well as in U87-MG and U373 glioblastoma cell lines. In contrast, no or low CD9 gene expression was observed in normal human astrocytes, normal brain tissue and neural stem cells. CD9 silencing in three CD133+ glioblastoma cell lines (NCH644, NCH421k and NCH660h) led to decreased cell proliferation, survival, invasion, and self-renewal ability, and altered expression of the stem-cell markers CD133, nestin and SOX2. Moreover, CD9-silenced glioblastoma stem cells showed altered activation patterns of the Akt, MapK and Stat3 signaling transducers. Orthotopic xenotransplantation of CD9-silenced glioblastoma stem cells into nude rats promoted prolonged survival. Therefore, CD9 should be further evaluated as a target for glioblastoma treatment.
Ključne besede: biomarker, CD9, glioblastoma stem cells, neural stem cells, tetraspanin
Objavljeno v DiRROS: 26.07.2024; Ogledov: 110; Prenosov: 83
.pdf Celotno besedilo (6,28 MB)
Gradivo ima več datotek! Več...

10.
Improved protective effect of umbilical cord stem cell transplantation on cisplatin-induced kidney injury in mice pretreated with antithymocyte globulin
Željka Večerić-Haler, Andreja Erman, Anton Cerar, Helena Motaln, Katja Kološa, Tamara Lah Turnšek, Snežna Sodin-Šemrl, Katja Lakota, Katjuša Mrak Poljšak, Špela Škrajnar, Simona Kranjc Brezar, Miha Arnol, Martina Perše, 2016, izvirni znanstveni članek

Povzetek: Mesenchymal stem cells (MSCs) are recognised as a promising tool to improve renal recovery in experimental models of cisplatin-induced acute kidney injury. However, these preclinical studies were performed on severely immunodeficient animals. Here, we investigated whether human umbilical cord derived MSC treatment could equally ameliorate acute kidney injury induced by cisplatin and prolong survival in mice with a normal immune system and those with a suppressed immune system by polyclonal antithymocyte globulin (ATG). We demonstrated that ATG pretreatment, when followed by MSC transplantation, significantly improved injured renal function parameters, as evidenced by decreased blood urea nitrogen and serum creatinine concentration, as well as improved renal morphology. This tissue restoration was also supported by increased survival of mice. The beneficial effects of ATG were associated with reduced level of inflammatory protein serum amyloid A3 and induced antioxidative expression of superoxide dismutase-1 (SOD-1), glutathione peroxidase (GPx), and hem oxygenase-1 (HO-1). Infused MSCs became localised predominantly in peritubular areas and acted to reduce renal cell death. In conclusion, these results show that ATG diminished in situ inflammation and oxidative stress associated with cisplatin-induced acute kidney injury, the effects that may provide more favourable microenvironment for MSC action, with consequential synergistic improvements in renal injury and animal survival as compared to MSC treatment alone.
Ključne besede: mesenchymal stem cells, nephrotoxicity
Objavljeno v DiRROS: 25.07.2024; Ogledov: 107; Prenosov: 105
.pdf Celotno besedilo (9,54 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.46 sek.
Na vrh