831. |
832. |
833. |
834. |
835. |
836. |
837. |
838. Role of isotropic lipid phase in the fusion of photosystem II membranesKinga Böde, Uroš Javornik, Ondřej Dlouhý, Ottó Zsiros, Avratanu Biswas, Ildikó Domonkos, Primož Šket, Václav Karlický, Bettina Ughy, Petar H. Lambrev, Vladimír Špunda, Janez Plavec, Győző Garab, 2024, izvirni znanstveni članek Objavljeno v DiRROS: 27.08.2024; Ogledov: 308; Prenosov: 205 Celotno besedilo (1,84 MB) Gradivo ima več datotek! Več... |
839. |
840. Graphs with total mutual-visibility number zero and total mutual-visibility in Cartesian productsJing Tian, Sandi Klavžar, 2024, izvirni znanstveni članek Povzetek: If $G$ is a graph and $X\subseteq V(G)$, then $X$ is a total mutual-visibility set if every pair of vertices $x$ and $y$ of $G$ admits a shortest $x,y$-path $P$ with $V(P) \cap X \subseteq \{x,y\}$. The cardinality of a largest total mutual-visibility set of $G$ is the total mutual-visibility number $\mu_{\rm t}(G)$ of $G$. Graphs with $\mu_{\rm t}(G) = 0$ are characterized as the graphs in which no vertex is the central vertex of a convex $P_3$. The total mutual-visibility number of Cartesian products is bounded and several exact results proved. For instance, $\mu_{\rm t}(K_n\,\square\, K_m) = \max\{n,m\}$ and $\mu_{\rm t}(T\,\square\, H) = \mu_{\rm t}(T)\mu_{\rm t}(H)$, where $T$ is a tree and $H$ an arbitrary graph. It is also demonstrated that $\mu_{\rm t}(G\,\square\, H)$ can be arbitrary larger than $\mu_{\rm t}(G)\mu_{\rm t}(H)$. Ključne besede: mutual-visibility set, total mutual-visibility set, bypass vertex, Cartesian product of graphs, trees Objavljeno v DiRROS: 26.08.2024; Ogledov: 294; Prenosov: 132 Celotno besedilo (184,44 KB) Gradivo ima več datotek! Več... |