Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "avtor" (D'Amuri Andrea) .

51 - 56 / 56
Na začetekNa prejšnjo stran123456Na naslednjo stranNa konec
51.
Neuromuscular junction instability and altered intracellular calcium handling as early determinants of force loss during unloading in humans
Elena Monti, Carlo Reggiani, Martino V. Franchi, Luana Toniolo, Marco Sandri, Andrea Armani, Sandra Zampieri, Boštjan Šimunič, Rado Pišot, Marco Vicenzo Narici, 2021, izvirni znanstveni članek

Povzetek: Unloading induces rapid skeletal muscle atrophy and functional decline. Importantly, force is lost at a much higher rate than muscle mass. We aimed to investigate the early determinants of the disproportionate loss of force compared to that of muscle mass in response to unloading. Ten young participants underwent 10 days of bed rest (BR). At baseline (BR0) and at 10 days (BR10), quadriceps femoris (QF) volume (VOL) and isometric maximum voluntary contraction (MVC) were assessed. At BR0 and BR10 blood samples and biopsies of vastus lateralis (VL) muscle were collected. Neuromuscular junction (NMJ) stability and myofibre innervation status were assessed, together with single fibre mechanical properties and sarcoplasmic reticulum (SR) calcium handling. From BR0 to BR10, QFVOL and MVC decreased by 5.2% (P = 0.003) and 14.3% (P < 0.001), respectively. Initial and partial denervation was detected from increased neural cell adhesion molecule (NCAM)-positive myofibres at BR10 compared with BR0 (+3.4%, P = 0.016). NMJ instability was further inferred from increased C-terminal agrin fragment concentration in serum (+19.2% at BR10, P = 0.031). Fast fibre cross-sectional area (CSA) showed a trend to decrease by 15% (P = 0.055) at BR10, while single fibre maximal tension (force/CSA) was unchanged. However, at BR10 SR Ca2+ release in response to caffeine decreased by 35.1% (P < 0.002) and 30.2% (P < 0.001) in fast and slow fibres, respectively, pointing to an impaired excitation%contraction coupling. These findings support the view that the early onset of NMJ instability and impairment in SR function are eligible mechanisms contributing to the greater decline in muscle force than in muscle size during unloading.
Ključne besede: Ca2+ dynamics, muscle atrophy, neuromuscular junction instability, sarcoplasmic reticulum, single fibre atrophy, single fibre contractile impairment, unloading
Objavljeno v DiRROS: 16.06.2021; Ogledov: 1232; Prenosov: 1163
.pdf Celotno besedilo (3,39 MB)
Gradivo ima več datotek! Več...

52.
53.
KEYLINK : towards a more integrative soil representation for inclusion in ecosystem scale models : I. : review and model concept
Gabrielle I. Deckmyn, Omar Flores, Mathias Mayer, Xavier Domene, Andrea Schnepf, Katrin Kuka, Kris van Looy, Daniel P. Rasse, Maria J.I. Briones, Sébastien Barot, Matty Berg, E. I. Vanguelova, Ivika Ostonen, Harry Vereecken, Laura Martinez Suz, Beat Frey, Aline Frossard, Alexei Tiunov, Jan Frouz, Tine Grebenc, Maarja Öpik, Mathieu Javaux, Alexei Uvarov, Olga Vindušková, Paul Henning Krogh, Oskar Franklin, Juan Jiménez, Jorge Curiel Yuste, 2020, izvirni znanstveni članek

Povzetek: The relatively poor simulation of the below-ground processes is a severe drawback for many ecosystem models, especially when predicting responses to climate change and management. For a meaningful estimation of ecosystem production and the cycling of water, energy, nutrients and carbon, the integration of soil processes and the exchanges at the surface is crucial. It is increasingly recognized that soil biota play an important role in soil organic carbon and nutrient cycling, shaping soil structure and hydrological properties through their activity, and in water and nutrient uptake by plants through mycorrhizal processes. In this article, we review the main soil biological actors (microbiota, fauna and roots) and their effects on soil functioning. We review to what extent they have been included in soil models and propose which of them could be included in ecosystem models. We show that the model representation of the soil food web, the impact of soil ecosystem engineers on soil structure and the related effects on hydrology and soil organic matter (SOM) stabilization are key issues in improving ecosystem-scale soil representation in models. Finally, we describe a new core model concept (KEYLINK) that integrates insights from SOM models, structural models and food web models to simulate the living soil at an ecosystem scale.
Ključne besede: soil fauna, model, Soil Organic Matter, SOM, hydrology, pore size distribution, PSD, soil biota, ecosystem
Objavljeno v DiRROS: 23.09.2020; Ogledov: 1583; Prenosov: 1298
.pdf Celotno besedilo (5,28 MB)
Gradivo ima več datotek! Več...

54.
55.
56.
Action 6 - ForC : report n. 3 (2014-02) : action ForC & ForC-SI
E. D'Andrea, Matjaž Čater, B. De Cinti, Mitja Ferlan, Milan Kobal, M. Micali, F. Sicuriello, Primož Simončič, G. Matteucci, 2014, elaborat, predštudija, študija

Objavljeno v DiRROS: 12.07.2017; Ogledov: 2626; Prenosov: 739
.pdf Celotno besedilo (15,36 MB)

Iskanje izvedeno v 0.12 sek.
Na vrh