Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

There are two search modes available: simple and advanced. Simple search can include one or more words from the title, summary, keywords or full text, but does not allow the use of search operators. Advanced search allows to limit the number of search results by entering the search terms of different categories in the search window, as well as the use of Boolean search operators (AND, OR and AND NOT). In search results short formats of records are displayed and some data are displayed as links, which open a detailed description of the material (title link) or perform a new search (author or keyword link).

Help
Search in:
Options:
 


521 - 530 / 2000
First pagePrevious page49505152535455565758Next pageLast page
521.
Poročilo o preskusu št.: LVG 2024-141 : vzorec št. 2024/00143
Tine Hauptman, Maarten De Groot, 2024, expertise, arbitration decision

Keywords: varstvo gozdov, morfološke analize
Published in DiRROS: 23.10.2024; Views: 125; Downloads: 0
This document has many files! More...

522.
Poročilo o preskusu št.: LVG 2024-144 : vzorec št. 2024/00753
Tine Hauptman, Špela Hočevar, Patricija Podkrajšek, Barbara Piškur, 2024, expertise, arbitration decision

Keywords: varstvo gozdov, morfološke analize
Published in DiRROS: 23.10.2024; Views: 136; Downloads: 0
This document has many files! More...

523.
524.
Poročilo o preskusu št.: LVG 2024-145 : vzorec št. 2024/00764
Tine Hauptman, Zina Devetak, Špela Hočevar, Patricija Podkrajšek, Barbara Piškur, 2024, expertise, arbitration decision

Keywords: varstvo gozdov, morfološke analize
Published in DiRROS: 23.10.2024; Views: 136; Downloads: 0
This document has many files! More...

525.
Poročilo o preskusu št.: LVG 2024-146 : vzorec št. 2024/00771
Tine Hauptman, Zina Devetak, Špela Hočevar, Patricija Podkrajšek, Barbara Piškur, 2024, expertise, arbitration decision

Keywords: varstvo gozdov, morfološke analize
Published in DiRROS: 23.10.2024; Views: 133; Downloads: 0
This document has many files! More...

526.
527.
Poročilo o preskusu št.: LVG 2024-156 : vzorec št. 2024/00627
Barbara Piškur, Patricija Podkrajšek, Zina Devetak, Nikica Ogris, 2024, expertise, arbitration decision

Keywords: varstvo gozdov, morfološke analize, Pseudocercospora pini-densiflorae, rdeči bor, bolezen iglic
Published in DiRROS: 23.10.2024; Views: 140; Downloads: 0
This document has many files! More...

528.
Poročilo o preskusu št.: LVG 2024-154 : vzorec št. 2024/00830
Nikica Ogris, 2024, expertise, arbitration decision

Keywords: varstvo gozdov, morfološke analize
Published in DiRROS: 23.10.2024; Views: 129; Downloads: 0
This document has many files! More...

529.
530.
Knots and $\theta$-curves identification in polymeric chains and native proteins using neural networks
Fernando Bruno da Silva, Boštjan Gabrovšek, Marta Korpacz, Kamil Luczkiewicz, Szymon Niewieczerzal, Maciej Sikora, Joanna I. Sulkowska, 2024, original scientific article

Abstract: Entanglement in proteins is a fascinating structural motif that is neither easy to detect via traditional methods nor fully understood. Recent advancements in AI-driven models have predicted that millions of proteins could potentially have a nontrivial topology. Herein, we have shown that long short-term memory (LSTM)-based neural networks (NN) architecture can be applied to detect, classify, and predict entanglement not only in closed polymeric chains but also in polymers and protein-like structures with open knots, actual protein configurations, and also $\theta$-curves motifs. The analysis revealed that the LSTM model can predict classes (up to the $6_1$ knot) accurately for closed knots and open polymeric chains, resembling real proteins. In the case of open knots formed by protein-like structures, the model displays robust prediction capabilities with an accuracy of 99%. Moreover, the LSTM model with proper features, tested on hundreds of thousands of knotted and unknotted protein structures with different architectures predicted by AlphaFold 2, can distinguish between the trivial and nontrivial topology of the native state of the protein with an accuracy of 93%.
Keywords: machine learning, topology, protein databases, entanglements, open knots, closed knots
Published in DiRROS: 23.10.2024; Views: 150; Downloads: 407
.pdf Full text (3,61 MB)
This document has many files! More...

Search done in 0.6 sec.
Back to top