Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (indicated coloring) .

1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
Indicated domination game
Boštjan Brešar, Csilla Bujtás, Vesna Iršič, Douglas F. Rall, Zsolt Tuza, 2024, original scientific article

Abstract: Motivated by the success of domination games and by a variation of the coloring game called the indicated coloring game, we introduce a version of domination games called the indicated domination game. It is played on an arbitrary graph $G$ by two players, Dominator and Staller, where Dominator wants to finish the game in as few rounds as possible while Staller wants just the opposite. In each round, Dominator indicates a vertex $u$ of $G$ that has not been dominated by previous selections of Staller, which, by the rules of the game, forces Staller to select a vertex in the closed neighborhood of $u$. The game is finished when all vertices of $G$ become dominated by the vertices selected by Staller. Assuming that both players are playing optimally according to their goals, the number of selected vertices during the game is the indicated domination number, $\gamma_{\rm i}(G)$, of $G$. We prove several bounds on the indicated domination number expressed in terms of other graph invariants. In particular, we find a place of the new graph invariant in the well-known domination chain, by showing that $\gamma_{\rm i}(G)\ge \Gamma(G)$ for all graphs $G$, and by showing that the indicated domination number is incomparable with the game domination number and also with the upper irredundance number. In connection with the trivial upper bound $\gamma_{\rm i}(G)\le n(G)-\delta(G)$, we characterize the class of graphs $G$ attaining the bound provided that $n(G)\ge 2\delta(G)+2$. We prove that in trees, split graphs and grids the indicated domination number equals the independence number. We also find a formula for the indicated domination number of powers of paths, from which we derive that there exist graphs in which the indicated domination number is arbitrarily larger than the upper irredundance number. We provide some partial results supporting the statement that $\gamma_{\rm i}(G)=n(G)/2$ if $G$ is a cubic bipartite graph, and leave this as an open question.
Keywords: domination game, indicated coloring, independence number, upper domination number
Published in DiRROS: 16.05.2024; Views: 103; Downloads: 81
.pdf Full text (367,70 KB)
This document has many files! More...

2.
Injective coloring of graphs revisited
Boštjan Brešar, Babak Samadi, Ismael G. Yero, 2023, original scientific article

Abstract: An open packing in a graph $G$ is a set $S$ of vertices in $G$ such that no two vertices in $S$ have a common neighbor in $G$. The injective chromatic number $\chi_i(G)$ of $G$ is the smallest number of colors assigned to vertices of ▫$G$▫ such that each color class is an open packing. Alternatively, the injective chromatic number of $G$ is the chromatic number of the two-step graph of $G$, which is the graph with the same vertex set as $G$ in which two vertices are adjacent if they have a common neighbor. The concept of injective coloring has been studied by many authors, while in the present paper we approach it from two novel perspectives, related to open packings and the two-step graph operation. We prove several general bounds on the injective chromatic number expressed in terms of the open packing number. In particular, we prove that $\chi_i(G) \ge \frac{1}{2}\sqrt{\frac{1}{4}+\frac{2m-n}{\rho^{o}}}$ holds for any connected graph $G$ of order $n\ge 2$, size $m$, and the open packing number ${\rho^{o}}$, and characterize the class of graphs attaining the bound. Regarding the well known bound $\chi_i(G)\ge \Delta(G)$, we describe the family of extremal graphs and prove that deciding when the equality holds (even for regular graphs) is NP-complete, solving an open problem from an earlier paper. Next, we consider the chromatic number of the two-step graph of a graph, and compare it with the clique number and the maximum degree of the graph. We present two large families of graphs in which $\chi_i(G)$ equals the cardinality of a largest clique of the two-step graph of $G$. Finally, we consider classes of graphs that admit an injective coloring in which all color classes are maximal open packings. We give characterizations of three subclasses of these graphs among graphs with diameter 2, and find a partial characterization of hypercubes with this property.
Keywords: two-step graph of a graph, injective coloring, open packing, hypercubes
Published in DiRROS: 09.04.2024; Views: 177; Downloads: 77
.pdf Full text (460,72 KB)
This document has many files! More...

3.
Packings in bipartite prisms and hypercubes
Boštjan Brešar, Sandi Klavžar, Douglas F. Rall, 2024, original scientific article

Abstract: The $2$-packing number $\rho_2(G)$ of a graph $G$ is the cardinality of a largest $2$-packing of $G$ and the open packing number $\rho^{\rm o}(G)$ is the cardinality of a largest open packing of $G$, where an open packing (resp. $2$-packing) is a set of vertices in $G$ no two (closed) neighborhoods of which intersect. It is proved that if $G$ is bipartite, then $\rho^{\rm o}(G\Box K_2) = 2\rho_2(G)$. For hypercubes, the lower bounds $\rho_2(Q_n) \ge 2^{n - \lfloor \log n\rfloor -1}$ and $\rho^{\rm o}(Q_n) \ge 2^{n - \lfloor \log (n-1)\rfloor -1}$ are established. These findings are applied to injective colorings of hypercubes. In particular, it is demonstrated that $Q_9$ is the smallest hypercube which is not perfect injectively colorable. It is also proved that $\gamma_t(Q_{2^k}\times H) = 2^{2^k-k}\gamma_t(H)$, where $H$ is an arbitrary graph with no isolated vertices.
Keywords: 2-packing number, open packing number, bipartite prism, hypercube, injective coloring, total domination number
Published in DiRROS: 19.02.2024; Views: 268; Downloads: 93
.pdf Full text (231,57 KB)
This document has many files! More...

4.
Strong edge geodetic problem on complete multipartite graphs and some extremal graphs for the problem
Sandi Klavžar, Eva Zmazek, 2024, original scientific article

Abstract: A set of vertices $X$ of a graph $G$ is a strong edge geodetic set if to any pair of vertices from $X$ we can assign one (or zero) shortest path between them such that every edge of $G$ is contained in at least one on these paths. The cardinality of a smallest strong edge geodetic set of $G$ is the strong edge geodetic number ${\rm sg_e}(G)$ of $G$. In this paper, the strong edge geodetic number of complete multipartite graphs is determined. Graphs $G$ with ${\rm sg_e}(G) = n(G)$ are characterized and ${\rm sg_e}$ is determined for Cartesian products $P_n\,\square\, K_m$. The latter result in particular corrects an error from the literature.
Keywords: strong edge geodetic problem, complete multipartite graph, edge-coloring, Cartesian product of graphs
Published in DiRROS: 19.02.2024; Views: 213; Downloads: 84
.pdf Full text (430,75 KB)
This document has many files! More...

Search done in 0.14 sec.
Back to top