1. First discovery of the North American leaf-mining moth Chrysaster ostensackenella (Lepidoptera: Gracillariidae) in Russia : the genetic diversity of a novel pest in invaded vs. native rangeNatalia I. Kirichenko, Nina A. Kolyada, Stanislav Gomboc, 2023, original scientific article Abstract: Here, we report the first detection of the North American leaf-mining moth Chrysaster ostensackenella (Fitch, 1859) (Lepidoptera: Gracillariidae) on North American black locust Robinia pseudoacacia (Fabaceae) in Primorsky Krai (the Russian Far East) in July 2022. Overall, six moths were reared from the leaf mines and identified based on adult morphology (forewing pattern and male genitalia) and three of them were DNA barcoding. Description of the leaf mines that allowed us to distinguish the damage of Ch. ostensackenella from other gracillariids associated with R. pseudoacacia is provided. The phylogeographic analysis comparing the DNA barcodes from Russia with those from other invaded countries in Europe (Italy) and East Asia (South Korea and Japan) and from the native range (North America) was performed. Intraspecific genetic diversity reached 3.29%. Altogether, 10 haplotypes were revealed among 21 studied specimens in the Holarctic. The detection of one haplotype common for Japan and the USA (North Carolina) suggests that the invasion to East Asia could have happened from the USA directly, rather than through Europe. A shared haplotype defined for Japan and the Russian Far East points at a possible moth species’ spread to Primorsky Krai from earlier invaded Hokkaido. Further distribution of Ch. ostensackenella in East Asia and Europe is expected, bearing in mind the wide planting of R. pseudoacacia in these continents. Furthermore, an accidental introduction of the moth to the Southern Hemisphere, where black locust was introduced, is not ruled out. Keywords: alien species, black locust, first record, gracillariid moth, invasive species, Russian Far East Published in DiRROS: 17.01.2025; Views: 21; Downloads: 8 Full text (9,70 MB) This document has many files! More... |
2. Invasion genetics of the horse-chestnut leaf miner, Cameraria ohridella (Lepidoptera: Gracillariidae), in European Russia : a case of successful involvement of citizen science in studying an alien insect pestNatalia I. Kirichenko, Natalia N. Karpun, Elena N. Zhuravleva, Elena I. Shoshina, Vasily V. Anikin, Dmitrii L. Musolin, 2023, original scientific article Abstract: Based on the intensive monitoring conducted by our team and volunteers in 2021, the secondary range of an alien horse-chestnut leaf miner, Cameraria ohridella Deschka & Dimić, 1986 (Lepidoptera: Gracillariidae), was specified in European Russia. This invasive pest was confirmed in 24 out of 58 administrative regions of Russia, which it has occupied for approximately 16 years. Analysis of the COI mtDNA gene sequenced in 201 specimens collected in 21 regions of the European part of Russia indicates the occurrence of two haplotypes (A and B), which are also present in the secondary range of C. ohridella in Eastern and Western Europe. The haplotype A dominated and was present in 87.5% of specimens from European Russia. In 2021, C. ohridella produced spectacular outbreaks in Aesculus hippocastanum in southern Russia, where it damaged more than 50% of the leaves in trees in 24 out of 30 distant localities. In the south of the country, the pest infested Acer pseudoplatanus, whereas other species of Acer of European, East Asian, and North American origin showed no signs of attacks. Taking into account that Ae. hippocastanum is present in most regions of European Russia, we expect a further range expansion of C. ohridella up to the Ural Mountains. Keywords: leaf-mining moth, invasion, European Russia, citizen science, DNA barcoding, phylogeography, Aesculus, Acer, damage level Published in DiRROS: 17.01.2025; Views: 21; Downloads: 8 Full text (11,43 MB) This document has many files! More... |
3. The diversity of parasitoids and their role in the control of the Siberian moth, Dendrolimus sibiricus (Lepidoptera: Lasiocampidae), a major coniferous pest in Northern AsiaNatalia I. Kirichenko, Alexander A. Ageev, Sergey A. Astapenko, Anna N. Golovina, Dmitry R. Kasparyan, Oksana V. Kosheleva, Alexander V. Timokhov, Ekaterina V. Tselikh, Evgeny V. Zakharov, Dmitrii L. Musolin, Sergey A. Belokobylskij, 2024, original scientific article Abstract: The Siberian moth, Dendrolimus sibiricus Tschetv., 1908 (Lepidoptera: Lasiocampidae) is a conifer pest that causes unprecedented forest mortality in Northern Asia, leading to enormous ecological and economic losses. This is the first study summarizing data on the parasitoid diversity and parasitism of this pest over the last 118 years (1905–2022). Based on 860 specimens of freshly reared and archival parasitoids, 16 species from two orders (Hymenoptera and Diptera) were identified morphologically and/or with the use of DNA barcoding. For all of them, data on distribution and hosts and images of parasitoid adults are provided. Among them, the braconid species, Meteorus versicolor (Wesmael, 1835), was documented as a parasitoid of D. sibiricus for the first time. The eastern Palaearctic form, Aleiodes esenbeckii (Hartig, 1838) dendrolimi (Matsumura, 1926), status nov., was resurrected from synonymy as a valid subspecies, and a key for its differentiation from the western Palaearctic subspecies Aleiodes esenbeckii ssp. esenbecki is provided. DNA barcodes of 11 parasitoid species from Siberia, i.e., nine hymenopterans and two dipterans, represented novel records and can be used for accurate molecular genetic identification of species. An exhaustive checklist of parasitoids accounting for 93 species associated with D. sibirisus in northern Asia was compiled. Finally, the literature and original data on parasitism in D. sibiricus populations for the last 83 years (1940–2022) were analysed taking into account the pest population dynamics (i.e., growth, outbreak, decline, and depression phases). A gradual time-lagged increase in egg and pupal parasitism in D. sibiricus populations was detected, with a peak in the pest decline phase. According to long-term observations, the following species are able to cause significant mortality of D. sibiricus in Northern Asia: the hymenopteran egg parasitoids Telenomus tetratomus and Ooencyrtus pinicolus; the larval parasitoids Aleiodes esenbeckii sp. dendrolimi, Cotesia spp., and Glyptapanteles liparidis; and the dipteran pupal parasitoids Masicera sphingivora, Tachina sp., and Blepharipa sp. Their potential should be further explored in order to develop biocontrol programs for this important forest pest. Keywords: Hymenoptera, Diptera, Lasiocampidae, Siberia, Asia, archival specimens, morphological identification, DNA barcoding, check list, parasitism Published in DiRROS: 17.01.2025; Views: 19; Downloads: 7 Full text (17,35 MB) This document has many files! More... |
4. Advancing oxygen evolution catalysis with dual-phase nickel sulfide nanostructuresNeelakandan Marath Santhosh, Suraj Gupta, Vasyl Shvalya, Martin Košiček, Janez Zavašnik, Uroš Cvelbar, 2024, original scientific article Abstract: The production, conversion and storage of energy based on electrocatalysis, mainly assisted by oxygen evolution reaction (OER), plays a crucial role in alkaline water electrolyzers (AWEs) and fuel cells. Nevertheless, the insufficient availability of highly efficient catalyst materials at a reasonable cost that overcome the sluggish electrochemical kinetics of the OER is one of the significant obstacles. Herein, we report a fast and facile synthesis of vapor phase deposition of dual-phase nickel sulfide (Ni-sulfide) using low-temperature annealing in the presence of H2S and demonstrated as an efficient catalyst for OER to address the issues with sluggish electrochemical kinetics. The dual-phase Ni-sulfide structures consist of densely packed 10–50 μm microcrystals with 40–50 individual dual-phase layers, such as NiS and Ni7S6. As an electrocatalyst, the dual-phase Ni-sulfide exhibits excellent OER activity by achieving a current density of 10 mA/cm2 at an overpotential (η10) of 0.29 V and excellent electrochemical stability over 50 h. Besides, the Ni-sulfide displays considerable electrochemical robustness in alkaline conditions and forms OER-active Ni-oxide/hydroxide species during the process. Using an energy-efficient synthesis method, the fabricated unique crystalline nanodesign of dual-phase Ni-sulfide could open new pathways for the controlled synthesis of a high-efficiency group of electrocatalysts for a long-time stable electrochemical catalytic activity. Keywords: electrocatalysts Published in DiRROS: 17.01.2025; Views: 29; Downloads: 8 Full text (9,26 MB) This document has many files! More... |
5. Smart bionanomaterials for treatment and diagnosis of inflammatory bowel diseaseSpase Stojanov, Aleš Berlec, 2024, review article Abstract: Inflammatory bowel disease (IBD) encompasses a group of chronic inflammatory disorders that affect the gastrointestinal tract, with Crohn’s disease and ulcerative colitis being the primary subtypes. Diagnosis and treatment of IBD are challenging due to their unknown etiology and complex pathology. Smart bionanomaterials, which are biocompatible nanometer-sized materials that respond to external stimuli, can be used in the treatment and diagnosis of diseases. In the context of IBD, these materials can deliver drugs, primarily aminosalicylates, and corticosteroids, as well as live probiotics to the inflamed parts of the intestine, with a specific focus on the colon. The controlled release of drugs can be triggered by the conditions present in the IBD-affected intestine, such as inflammation, anaerobic environment, neutral pH, and gut microbiota. This article provides an overview of the use of smart bionanomaterials, including hydrogels, nanoparticles, nanofibers, and hybrid systems. It discusses their manufacturing process and their ability to deliver active ingredients in response to various stimuli, such as pH, temperature, reactive oxygen species, magnetic field, and biomolecules, for the treatment of IBD. We also describe the use of smart probiotics, which have been genetically engineered to recognize specific stimuli and synthesize recombinant proteins for the treatment of IBD. The qualitative or quantitative response to inflammatory stimuli can be exploited in diagnostic applications, with some examples already developed. Smart bionanomaterials offer several advantages, such as encapsulation, targeted delivery, responsiveness to stimuli, and controlled release. These features make them a valuable adjunct tool in the diagnosis and treatment of IBD. Keywords: bionanomaterials, responsive materials, gut microbiota Published in DiRROS: 17.01.2025; Views: 18; Downloads: 6 Full text (2,12 MB) This document has many files! More... |
6. Predlog optimalnega števila in lokacij kontrolno-lovnih nastav za prezimele osebke osmerozobegasmrekovega lubadarja ( Ips typographus ) v Slovenijiza leto 2025Nikica Ogris, Marija Kolšek, 2025, other scientific articles Abstract: Pripravili smo predlog optimalnega števila in lokacij kontrolno-lovnih nastav za prezimele osebke osmerozobega smrekovega lubadarja (Ips typographus ) (nastave I. serije) za leto 2025. Pri pripravi smo sledili predlogu postopka za določitev optimalnega števila in lokacij kontrolno-lovnih nastav za osmerozobega smrekovega lubadarja. Predlagamo, da se nastave I. serije v letu 2025 položi na88 lokacijah. Keywords: gozdovi, varstvo gozdov, kontrolno-lovne nastave, postopek optimizacije, osmerozobi smrekov lubadar, Ips typographus, smreka, Picea abies, spremljanje, monitoring, zatiranje Published in DiRROS: 17.01.2025; Views: 18; Downloads: 8 Full text (565,37 KB) This document has many files! More... |
7. New treatment approaches for Clostridioides difficile infections : alternatives to antibiotics and fecal microbiota transplantationTomaž Bratkovič, Abida Zahirović, Maruša Bizjak, Maja Rupnik, Borut Štrukelj, Aleš Berlec, 2024, review article Abstract: Clostridioides difficile causes a range of debilitating intestinal symptoms that may be fatal. It is particularly problematic as a hospital-acquired infection, causing significant costs to the health care system. Antibiotics, such as vancomycin and fidaxomicin, are still the drugs of choice for C. difficile infections, but their effectiveness is limited, and microbial interventions are emerging as a new treatment option. This paper focuses on alternative treatment approaches, which are currently in various stages of development and can be divided into four therapeutic strategies. Direct killing of C. difficile (i) includes beside established antibiotics, less studied bacteriophages, and their derivatives, such as endolysins and tailocins. Restoration of microbiota composition and function (ii) is achieved with fecal microbiota transplantation, which has recently been approved, with standardized defined microbial mixtures, and with probiotics, which have been administered with moderate success. Prevention of deleterious effects of antibiotics on microbiota is achieved with agents for the neutralization of antibiotics that act in the gut and are nearing regulatory approval. Neutralization of C. difficile toxins (iii) which are crucial virulence factors is achieved with antibodies/antibody fragments or alternative binding proteins. Of these, the monoclonal antibody bezlotoxumab is already in clinical use. Immunomodulation (iv) can help eliminate or prevent C. difficile infection by interfering with cytokine signaling. Small-molecule agents without bacteriolytic activity are usually selected by drug repurposing and can act via a variety of mechanisms. The multiple treatment options described in this article provide optimism for the future treatment of C. difficile infection. Keywords: microbiota, immunomodulators Published in DiRROS: 17.01.2025; Views: 18; Downloads: 8 Full text (4,12 MB) This document has many files! More... |
8. |
9. |
10. Modified vaginal lactobacilli expressing fluorescent and luminescent proteins for more effective monitoring of their release from nanofibers, safety and cell adhesionSpase Stojanov, Tina Vida Plavec, Špela Zupančič, Aleš Berlec, 2024, original scientific article Abstract: Electrospun nanofibers offer a highly promising platform for the delivery of vaginal lactobacilli, providing an innovative approach to preventing and treating vaginal infections. To advance the application of nanofibers for the delivery of lactobacilli, tools for studying their safety and efficacy in vitro need to be established. In this study, fluorescent (mCherry and GFP) and luminescent (NanoLuc luciferase) proteins were expressed in three vaginal lactobacilli (Lactobacillus crispatus, Lactobacillus gasseri and Lactobacillus jensenii) and a control Lactiplantibacillus plantarum with the aim to use this technology for close tracking of lactobacilli release from nanofibers and their adhesion on epithelial cells. The recombinant proteins influenced the growth of the bacteria, but not their ability to produce hydrogen peroxide. Survival of lactobacilli in nanofibers immediately after electrospinning varied among species. Bacteria retained fluorescence upon incorporation into PEO nanofibers, which was vital for evaluation of their rapid release. In addition, fluorescent labelling facilitated efficient tracking of bacterial adhesion to Caco-2 epithelial cells, while luminescence provided important quantitative insights into bacterial attachment, which varied from 0.5 to 50% depending on the species. The four lactobacilli in dispersion or in nanofibers were not detrimental for the viability of Caco-2 cells, and did not demonstrate hemolytic activity highlighting the safety profiles of both bacteria and PEO nanofibers. To summarize, this study contributes to the development of a promising delivery system, tailored for local administration of safe vaginal lactobacilli. Published in DiRROS: 17.01.2025; Views: 20; Downloads: 5 Full text (2,68 MB) |