Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

There are two search modes available: simple and advanced. Simple search can include one or more words from the title, summary, keywords or full text, but does not allow the use of search operators. Advanced search allows to limit the number of search results by entering the search terms of different categories in the search window, as well as the use of Boolean search operators (AND, OR and AND NOT). In search results short formats of records are displayed and some data are displayed as links, which open a detailed description of the material (title link) or perform a new search (author or keyword link).

Help
Search in:
Options:
 


831 - 840 / 2000
First pagePrevious page80818283848586878889Next pageLast page
831.
Overview of global long-distance road Transportation of industrial roundwood
Kärhä Kalle, Milla Seuri, Patricio Miguel Mac Donagh, Mauricio Acuna, Christian Kanzian, Vladimir Petković, Robert Renato Cesar Gonçalves, Costa Luis Henrique Suppi, da Cruz Rodrigo Coelho, Tihomir Krumov, Matevž Triplat, 2024, review article

Abstract: The aim of the study was to provide a comprehensive overview of global long-distance road transportation of industrial roundwood. The study focused on the maximum gross vehicle weight (GVW) limits allowed with different timber truck configurations, typical payloads in timber trucking, the road transportation share of the total industrial roundwood longdistance transportation volume, and the average long-distance transportation distances and costs of industrial roundwood. The study was carried out as a questionnaire survey. The questionnaire was sent to timber transportation logistics experts and research scientists in the 30 countries with the largest industrial roundwood removals in Europe, as well as selected major forestry countries in the world (Argentina, Australia, Brazil, Canada, Chile, China, Japan, New Zealand, South Africa, Türkiye, the United States of America and Uruguay) in February 2022, and closed in May 2022. A total of 31 countries took part in the survey. The survey illustrated that timber trucking was the main long-distance transportation method of industrial roundwood in almost every country surveyed. Road transportation averaged 89% of the total industrial roundwood long-distance transportation volume. Timber truck configurations of 4 to 9 axles with GVW limits of around 30 tonnes to over 70 tonnes were most commonly used. The results indicated that higher GVW limits allowed significantly higher payloads in timber trucking, with the lowest payloads at less than 25 tonnes, and the highest payloads more than 45 tonnes. The average road transportation distance with industrial roundwood was 128 km, and the average long-distance transportation cost in timber trucking was €11.1 per tonne of timber transported. In the entire survey material, there was a direct relationship between transportation distance and transportation costs and an inverse relationship between maximum GVW limits and transportation costs. Consequently, in order to reduce transportation costs, it is essential to maximise payloads (within legal limits) and minimise haul distances. Several measures to increase cost- and energy-efficiency, and to reduce greenhouse gas emissions in road transportation logistics, are discussed in the paper. On the basis of the survey, it is recommended that upto-date statistical data and novel research studies on the long-distance transportation of industrial roundwood be conducted in some countries in the future.
Keywords: timber logistics, timber hauling, timber trucking, gross vehicle weight, payload, transportation distance, transportation cost, cost efficiency, limit payload
Published in DiRROS: 28.02.2024; Views: 254; Downloads: 130
.pdf Full text (1,77 MB)
This document has many files! More...

832.
Enhancing ductility of hot-work tool steel through isothermal bainitic transformation
Anže Bajželj, Aleš Nagode, Tilen Balaško, Barbara Šetina, Jaka Burja, 2024, published scientific conference contribution

Abstract: Hot-work tool steels are extensively used in industrial applications that require high resistance to mechanical and chemical degradation at elevated temperatures. To meet these requirements, hot-work tool steels must exhibit good mechanical properties, including high tensile strength, hardness, wear resistance, and tempering resistance, as well as high thermal conductivity and ductility. This study investigates the ductility of the hot-work tool steel HTCS-130, which suffers from low ductility due to the presence of stable molybdenum-tungsten carbides (M6C) on the prior austenite crystal grain boundaries. Increasing austenitisation temperatures or prolonging the dwelling time at temperature can promote intensive migration of grain boundaries, leading to negative effects on the mechanical properties of the steel. To address this issue, isothermal transformation in the bainitic area between 350 and 500 °C was performed. Isothermal transformation at around 350 °C leads to the formation of lower bainite, which has similar hardness to tempered martensite. As the temperature of isothermal transformation increases, the hardness of the material decreases, due to the formation of upper bainite. The hardness analysis was measured using the Vickers method, the impact toughness of the steel samples was measured using a Charpy test with V-notched samples. The microstructure characterization was performed using optical and scanning electron microscopy. The improvement of ductility can be achieved by controlling the isothermal transformation of bainite and adjusting the heat treatment conHot-work tool steels are extensively used in industrial applications that require high resistance to mechanical and chemical degradation at elevated temperatures. To meet these requirements, hot-work tool steels must exhibit good mechanical properties, including high tensile strength, hardness, wear resistance, and tempering resistance, as well as high thermal conductivity and ductility. This study investigates the ductility of the hot-work tool steel HTCS-130, which suffers from low ductility due to the presence of stable molybdenum-tungsten carbides (M6C) on the prior austenite crystal grain boundaries. Increasing austenitisation temperatures or prolonging the dwelling time at temperature can promote intensive migration of grain boundaries, leading to negative effects on the mechanical properties of the steel. To address this issue, isothermal transformation in the bainitic area between 350 and 500 °C was performed. Isothermal transformation at around 350 °C leads to the formation of lower bainite, which has similar hardness to tempered martensite. As the temperature of isothermal transformation increases, the hardness of the material decreases, due to the formation of upper bainite. The hardness analysis was measured using the Vickers method, the impact toughness of the steel samples was measured using a Charpy test with V-notched samples. The microstructure characterization was performed using optical and scanning electron microscopy. The improvement of ductility can be achieved by controlling the isothermal transformation of bainite and adjusting the heat treatment conditions. These findings provide useful insights into the design and optimization of heat treatment processes for hot-work tool steels.ditions. These findings provide useful insights into the design and optimization of heat treatment processes for hot-work tool steels.
Keywords: hot-work tool steel, austempering, bainitic transformation, ductility, dilatometry
Published in DiRROS: 28.02.2024; Views: 262; Downloads: 107
.pdf Full text (1,02 MB)
This document has many files! More...

833.
The genus Fomitopsis (Polyporales, Basidiomycota) reconsidered
Viacheslav Spirin, K. Runnel, J. Vlasák, I. Viner, M.D. Barrett, L. Ryvarden, Annarosa Bernicchia, B. Rivoire, A.M. Ainsworth, Tine Grebenc, 2024, original scientific article

Abstract: Based on seven- and three-gene datasets, we discuss four alternative approaches for a reclassification of Fomitopsidaceae (Polyporales, Basidiomycota). After taking into account morphological diversity in the family, we argue in favour of distinguishing three genera only, viz. Anthoporia, Antrodia and Fomitopsis. Fomitopsis becomes a large genus with 128 accepted species, containing almost all former Fomitopsis spp. and most species formerly placed in Antrodia, Daedalea and Laccocephalum. Genera Buglossoporus, Cartilosoma, Daedalea, Melanoporia, Neolentiporus, alongside twenty others, are treated as synonyms of Fomitopsis. This generic scheme allows for morphologically distinct genera in Fomitopsidaceae, unlike other schemes we considered. We provide arguments for retaining Fomitopsis and suppressing earlier (Daedalea, Caloporus) or simultaneously published generic names (Piptoporus) considered here as its synonyms. Taxonomy of nine species complexes in the genus is revised based on ITS, ITS + TEF1, ITS + TEF1 + RPB1 and ITS + TEF1 + RPB2 datasets. In total, 17 species are described as new to science, 26 older species are reinstated and 26 currently accepted species names are relegated to synonymy. A condensed identification key for all accepted species in the genus is provided.
Keywords: brown-rot fungi, new taxa, phylogeny, polypores, taxonomy
Published in DiRROS: 28.02.2024; Views: 381; Downloads: 284
.pdf Full text (12,89 MB)
This document has many files! More...

834.
Effect of heat treatment on thermal conductivity of additively manufactured AISI H13 tool steel
Samo Tome, Blaž Karpe, Irena Paulin, Matjaž Godec, 2024, published scientific conference contribution

Abstract: AISI H13 is commonly used for tooling, where higher wear resistance, thermal fatigue resistance, or hot toughness is required. Such examples include forging dies, plastic molds, hot shear blades, high-pressure die casting, and extrusion dies. Thus, thermal conductivity is one of the most important factors for hot work tools. Typically, the work cycle of a hot work tool designed for forging consists of four main phases: the forging stroke, with which the die imparts its shape onto the part, a brief pause while the die is reset to its original position, a lubrication phase, and a post lubrication dwell phase. During the forging phase, a significant amount of heat is transferred to the die while it is in contact with the part. This heat must then be dispelled for the part to return to a working temperature. While somewhat different, other hot work processes mentioned above are similar in that the hot work tool gets heated to a high temperature due to the contact with the object of deformation. The process of additive manufacturing (AM) promises better, more efficient tool production with features like conforming cooling channels, which would reduce the thermal fatigue of tools, prolonging tool life. However, the powder bed fusion (PBF) method creates a columnar microstructure, which has a detrimental effect on the thermal conductivity of H13 tool steel. Our investigation focused on the beneficial effect of heat treatment, specifically annealing at different temperatures, on the thermal conductivity of AM-produced H13 parts.
Keywords: SLM, thermal conductivity, tool steel, heat treatment
Published in DiRROS: 28.02.2024; Views: 217; Downloads: 91
.pdf Full text (655,96 KB)
This document has many files! More...

835.
Extreme environments simplify reassembly of communities of arbuscular mycorrhizal fungi
Nataša Šibanc, Dave R. Clark, Thorunn Helgason, Alex J. Dumbrell, Irena Maček, 2024, original scientific article

Abstract: The ecological impacts of long-term (press) disturbance on mechanisms regulating the relative abundance (i.e., commonness or rarity) and temporal dynamics of species within a community remain largely unknown. This is particularly true for the functionally important arbuscular mycorrhizal (AM) fungi; obligate plant-root endosymbionts that colonize more than two-thirds of terrestrial plant species. Here, we use high-resolution amplicon sequencing to examine how AM fungal communities in a specific extreme ecosystem—mofettes or natural CO2 springs caused by geological CO2 exhalations—are affected by long-term stress. We found that in mofettes, specific and temporally stable communities form as a subset of the local metacommunity. These communities are less diverse and dominated by adapted, “stress tolerant” taxa. Those taxa are rare in control locations and more benign environments worldwide, but show a stable temporal pattern in the extreme sites, consistently dominating the communities in grassland mofettes. This pattern of lower diversity and high dominance of specific taxa has been confirmed as relatively stable over several sampling years and is independently observed across multiple geographic locations (mofettes in different countries). This study implies that the response of soil microbial community composition to long-term stress is relatively predictable, which can also reflect the community response to other anthropogenic stressors (e.g., heavy metal pollution or land use change). Moreover, as AM fungi are functionally differentiated, with different taxa providing different benefits to host plants, changes in community structure in response to long-term environmental change have the potential to impact terrestrial plant communities and their productivity
Keywords: arbuscular mycorrhiza, elevated CO2, long-term experiments, soil biodiversity, soil hypoxia, next-generation sequencing, NGS
Published in DiRROS: 28.02.2024; Views: 278; Downloads: 152
.pdf Full text (1,45 MB)
This document has many files! More...

836.
Development of the recycling procedure for rapid antigen tests
Rebeka Rudolf, Darja Feizpour, Žiga Jelen, Peter Majerič, Tilen Švarc, Matej Zadravec, Timi Gomboc, Aleksandra Kocijan, 2024, original scientific article

Keywords: rapid antigen tests, recycling, characterization, nanogold, plastic
Published in DiRROS: 28.02.2024; Views: 264; Downloads: 92
.pdf Full text (1,74 MB)
This document has many files! More...

837.
A numerical study of gas focused non-Newtonian micro-jets
Rizwan Zahoor, Saša Bajt, Božidar Šarler, 2024, original scientific article

Keywords: serial crystallography, micro jets, multiphase flow, fluid rheology, non-Newtonian fluid, flow focusing
Published in DiRROS: 28.02.2024; Views: 230; Downloads: 112
.pdf Full text (11,78 MB)
This document has many files! More...

838.
A hybrid radial basis function-finite difference method for modelling two-dimensional thermo-elasto-plasticity : Application to cooling of hot-rolled steel bars on a cooling bed
Gašper Vuga, Boštjan Mavrič, Umut Hanoglu, Božidar Šarler, 2024, original scientific article

Abstract: This paper represents Part 2 of the parallel paper Part 1, where the strong form hybrid RBF-FD method was developed for solving thermo-elasto-plastic problems. It addresses the industrial application of this novel meshless method to steel bars cooling on a cooling bed (CB) where the formation of residual stress is of primary interest. The study investigates the impact of the distance between the bars and the distance to the heat shield above the CB on radiative heat fluxes and, consequently, on thermo-mechanical response. The thermal model is solved on bars cross-section with a RBF-FD method where augmented polyharmonic splines are used for the local approximation. View factors, computed with a Monte-Carlo method, are included in radiative heat fluxes. The thermal solution is incrementally applied on a mechanical model that assumes a generalised plane strain state and captures bars bending. The study employs a hybrid RBF-FD method to resolve a nonlinear discontinuous mechanical problem successfully. The simulation of the process shows how different process parameters influence the thermo-mechanical response of the bars.
Keywords: steel bars, cooling bed, thermo-mechanical modelling, hybrid radial basis function, generated finite differences, residual stresses
Published in DiRROS: 28.02.2024; Views: 189; Downloads: 118
.pdf Full text (8,55 MB)
This document has many files! More...

839.
A hybrid radial basis function-finite difference method for modelling two-dimensional thermo-elasto-plasticity, Part 1 : method formulation and testing
Gašper Vuga, Boštjan Mavrič, Božidar Šarler, 2024, original scientific article

Abstract: A hybrid version of the strong form meshless Radial Basis Function-Finite Difference (RBF-FD) method is introduced for solving thermo-mechanics. The thermal model is spatially discretised with RBF-FD, where trial functions are polyharmonic splines augmented with polynomials. For time discretisation, the explicit Euler method is employed. An extension of RBF-FD, the hybrid RBF-FD, is introduced for solving mechanical problems. The model is one-way coupled, where temperature affects displacements. The thermo-elastoplastic material response is considered where the stress field is generally non-smooth. The hybrid RBF-FD, where the finite difference method is used to discretise the divergence operator from the balance equation, is shown to be successful when dealing with such problems. The mechanical model is introduced in a plane strain and in a generalised plane strain (GPS) assumption. For the first time, this work presents a strong form RBF-FD for GPS problems subjected to integral form constraints. The proposed method is assessed regarding h-convergence and accuracy on the benchmark with heating an elastoplastic square. It is proven to be successful at solving one-way coupled thermo-elastoplastic problems. The proposed novel meshless approach is efficient, accurate, and robust. Its use in an industrial situation is provided in Part 2 of this paper.
Keywords: thermo-mechanical modelling, von Mises small strain plasticity, hybrid radial basis function generated finite differences, polyharmonic splines
Published in DiRROS: 28.02.2024; Views: 220; Downloads: 116
.pdf Full text (2,69 MB)
This document has many files! More...

840.
Formulation of the method of fundamental solutions for two-phase Stokes flow
Zlatko Rek, Božidar Šarler, 2024, original scientific article

Abstract: The method of fundamental solutions with a subdomain technique is used for the solution of the free boundary problem associated with a two-phase Stokes flow in a 2D geometry. The solution procedure is based on the collocation of the boundary conditions with the Stokeslets. It is formulated for the flow of unmixing fluids in contact, where the velocity, pressure field, and position of the free boundary between the fluids must be determined. The standard formulation of the method of fundamental solutions is, for the first time, upgraded for the case with mixed velocity and pressure boundary conditions and verified on a T-splitter single-phase flow with unsymmetric pressure boundary conditions. The standard control volume method is used for the reference solution. The accurate evaluation of the velocity derivatives, which are required to calculate the balance of forces at the free boundary between the fluids, is achieved in a closed form in contrast to previous numerical attempts. An algorithm for iteratively calculating the position of the free boundary that involves displacement, smoothing and repositioning of the nodes is elaborated. The procedure is verified for a concurrent flow of two fluids in a channel. The velocity and velocity derivatives show fast convergence to the analytical solution. The developed boundary meshless method is easy to code, accurate and computationally efficient since only collocation at the fixed and free boundaries is needed.
Keywords: Stokes equations, two-phase flow, free boundary problems, method of fundamental solutions, subdomain technique
Published in DiRROS: 28.02.2024; Views: 216; Downloads: 124
.pdf Full text (3,40 MB)
This document has many files! More...

Search done in 2.67 sec.
Back to top