Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Irena Maček) .

1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
DNAqua-Net : developing new genetic tools for bioassessment and monitoring of aquatic ecosystems in Europe
Florian Leese, Tina Eleršek, Cene Fišer, Ana Rotter, Bojana Žegura, Irena Maček, 2016, original scientific article

Abstract: The protection, preservation and restoration of aquatic ecosystems and their functions are of global importance. For European states it became legally binding mainly through the EU-Water Framework Directive (WFD). In order to assess the ecological status of a given water body, aquatic biodiversity data are obtained and compared to a reference water body. The quantified mismatch obtained determines the extent of potential management actions. The current approach to biodiversity assessment is based on morpho-taxonomy. This approach has many drawbacks such as being time consuming, limited in temporal and spatial resolution, and error-prone due to the varying individual taxonomic expertise of the analysts. Novel genomic tools can overcome many of the aforementioned problems and could complement or even replace traditional bioassessment. Yet, a plethora of approaches are independently developed in different institutions, thereby hampering any concerted routine application. The goal of this Action is to nucleate a group of researchers across disciplines with the task to identify gold-standard genomic tools and novel eco-genomic indices for routine application in biodiversity assessments of European fresh- and marine water bodies. Furthermore, DNAqua-Net will provide a platform for training of the next generation of European researchers preparing them for the new technologies. Jointly with water managers, politicians, and other stakeholders, the group will develop a conceptual framework for the standard application of eco-genomic tools as part of legally binding assessments.
Keywords: aquatic ecosystems, biodiversity, monitoring, genomic tools
Published in DiRROS: 25.07.2024; Views: 127; Downloads: 64
.pdf Full text (361,20 KB)
This document has many files! More...

2.
Extreme environments simplify reassembly of communities of arbuscular mycorrhizal fungi
Nataša Šibanc, Dave R. Clark, Thorunn Helgason, Alex J. Dumbrell, Irena Maček, 2024, original scientific article

Abstract: The ecological impacts of long-term (press) disturbance on mechanisms regulating the relative abundance (i.e., commonness or rarity) and temporal dynamics of species within a community remain largely unknown. This is particularly true for the functionally important arbuscular mycorrhizal (AM) fungi; obligate plant-root endosymbionts that colonize more than two-thirds of terrestrial plant species. Here, we use high-resolution amplicon sequencing to examine how AM fungal communities in a specific extreme ecosystem—mofettes or natural CO2 springs caused by geological CO2 exhalations—are affected by long-term stress. We found that in mofettes, specific and temporally stable communities form as a subset of the local metacommunity. These communities are less diverse and dominated by adapted, “stress tolerant” taxa. Those taxa are rare in control locations and more benign environments worldwide, but show a stable temporal pattern in the extreme sites, consistently dominating the communities in grassland mofettes. This pattern of lower diversity and high dominance of specific taxa has been confirmed as relatively stable over several sampling years and is independently observed across multiple geographic locations (mofettes in different countries). This study implies that the response of soil microbial community composition to long-term stress is relatively predictable, which can also reflect the community response to other anthropogenic stressors (e.g., heavy metal pollution or land use change). Moreover, as AM fungi are functionally differentiated, with different taxa providing different benefits to host plants, changes in community structure in response to long-term environmental change have the potential to impact terrestrial plant communities and their productivity
Keywords: arbuscular mycorrhiza, elevated CO2, long-term experiments, soil biodiversity, soil hypoxia, next-generation sequencing, NGS
Published in DiRROS: 28.02.2024; Views: 392; Downloads: 201
.pdf Full text (1,45 MB)
This document has many files! More...

3.
Plants play a crucial role in the development of soil fungal communities in the remediated substrate after EDTA washing of metal-contaminated soils
Irena Maček, Sara Pintarič, Nataša Šibanc, Tatjana Rajniš, Damjana Kastelec, Domen Leštan, Marjetka Suhadolc, 2022, original scientific article

Abstract: In this study, we investigated the importance of plant cover for secondary succession and soil fungal community development in remediated substrates after EDTA washing of metal-contaminated soils. The abundance of the total fungal community, determined by ITS fungal marker genes (Internal Transcribed Spacer region), and root colonisation by arbuscular mycorrhizal (AM) fungi were monitored in two types of soil material (calcareous and acidic) sown with perennial ryegrass (Lolium perenne L.) and without plant cover (bulk soil). Four months after the start of the experiment, the abundance of ITS genes in the soil clearly showed that the presence of plants was the main factor affecting the total fungal community, which increased in the rhizosphere soil in most treatments, while it remained at a low level in the bulk soil (without plants). Interestingly, the addition of environmental inoculum, i.e., rhizosphere soil from a semi-natural meadow, did not have a positive effect on the abundance of the total fungal community. While fungal ITS genes were detected in soils at the end of the first growing season, arbuscular mycorrhizal (AM) structures were scarce in Lolium roots in all treatments throughout the first season. However, in the second season, more than a year after the start of the experiment, AM fungal colonisation was detected in Lolium roots in virtually all treatments, with the frequency of colonised root length ranging from 30% to >75% in some treatments, the latter also in remediated soil. This study demonstrates the importance of plants and rhizosphere in the development and secondary succession of fungal communities in soil, which has important implications for the revitalisation of remediated soils and regenerative agriculture.
Keywords: heavy metals, arbuscular mycorrhiza, remediation, revitalisation, secondary succession, biodiversity, qPCR, toxic metals pollution
Published in DiRROS: 19.09.2022; Views: 833; Downloads: 355
.pdf Full text (1,18 MB)
This document has many files! More...

Search done in 2.19 sec.
Back to top