Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (D'Amuri Andrea) .

31 - 40 / 56
First pagePrevious page123456Next pageLast page
31.
Defining the fire decay and the cooling phase of post-flashover compartment fires
Andrea Lucherini, Jose L. Torero, 2023, original scientific article

Abstract: The current research study discusses and characterises the fire decay and cooling phase of post-flashover compartment fires, as they are often mixed up despite their important heat transfer differences. The two pha- ses are defined according to the fire heat release rate time-history. The fire decay represents the phase in which the fire heat release rate decreases from the ventilation- or fuel-limited steady-state value of the fully-developed phase to fire extinguishment. This phase is highly influenced by the fuel characteristics, ranging from fast decays for hydrocarbon and liquid fuels to slow decays for charring cellulosic fuels (wood). Once the fuel is consumed, the compartment volume enters the cooling phase, where the cooling in the gas-phase and solid-phase happens with significantly different modes and characteristic times. The thermal boundary conditions at the structural elements are then defined according to physical characteristics and dynamics within the compartment. The research study also underlines how the existing performance-based methodologies lack explicit definitions of the decay and cooling phases and the corresponding thermal boundary conditions for the design of fire-safe struc- tural elements under realistic fire conditions.
Keywords: razpadanje ognja, hlajenje, izgorevanje, naravna izpostavljenost ognju, dinamika požara, požari v oddelkih, požarno inženirstvo, učinkovitost, požarna varnost, fire decay, cooling, burnout, natural fire exposure, fire dynamics, compartment fires, structural fire engineering, performance-based, fire safety
Published in DiRROS: 13.11.2023; Views: 430; Downloads: 205
.pdf Full text (4,91 MB)
This document has many files! More...

32.
Development of multi-component fluoropolymer based coating on simulated outdoor patina on quaternary bronze
Tadeja Kosec, Luka Škrlep, Erika Švara Fabjan, Andrijana Sever Škapin, Giulia Masi, Elena Bernardi, Cristina Chiavari, Claudie Josse, Jerome Esvan, Luc Robbiola, 2019, original scientific article

Abstract: Bronze reacts with oxygen, humidity, and pollutants in the atmosphere so that a patina forms. Natural exposure to an outdoor atmosphere can be simulated and accelerated in order to achieve a patina that mimics outdoor ancient patina. In order to avoid the uncontrolled dissolving of either the natural or artificially formed patina, protection of the patina is needed. In this study, a multi-component fluoropolymer based coating for the protection of bronze patina was developed. In order to provide various functionalities of the coating (such as the hydrophobicity of the coating surface, obtaining interactions within the coating itself as well as a bronze substrate and inhibiting the corrosion processes), a fluoroacrylate coating with appropriate adhesion promoter was suggested, with and without a silane modified benzotriazole inhibitor. The protective efficiency and durability of the applied coatings were investigated electrochemically using potentiodynamic tests and electrochemical impedance spectroscopy in a simulated acid rain solution. All of the developed coatings showed a significant decrease in the corrosion current density. The self-assembled single layer coating (FA-MS) also showed 100% inhibition efficiency. After ageing the coating remained transparent and did not change by UV exposure and/or thermal cycling. The patina and coating investigations using FIB-SEM and EDX showed that the latter coating (FA-MS) successfully covered the surface of the patinated bronze. The mechanism of the bonding was proposed and supported with the spectroscopic observation of a thin and even coating.
Keywords: bronze, patina, fluoropolymer coating, atmospheric corrosion
Published in DiRROS: 25.10.2023; Views: 466; Downloads: 257
.pdf Full text (2,17 MB)
This document has many files! More...

33.
Cost-benefit analysis in fire safety engineering : state-of-the-art and reference methodology
Ruben Van Coile, Andrea Lucherini, Ranjit Kumar Chaudhary, Shuna Ni, David Unobe, Thomas Gernay, 2023, original scientific article

Abstract: Cost-effectiveness is a key consideration within fire safety engineering. Currently, different approaches are being applied in literature. These approaches differ in how cost-effectiveness is evaluated, which costs are considered, and how the preferred design solution is defined. Recognizing this issue, the Fire Protection Research Foundation enrolled an international team of researchers, supported by a broad stakeholder panel, to develop a reference methodology. In this paper, this reference methodology for cost-benefit analysis in fire safety engineering is presented following an extensive literature review. The methodology clarifies the minimum requirements for assessing cost-effectiveness, and highlights that only a present net value evaluation can be used to compare design alternatives. Commonly used cost-benefit ratios should only be used when deciding on the effectiveness of a single package of fire safety measures. An illustrative case study demonstrates the application of the meth- odology and shows how designs based on cost-benefit ratios can be sub-optimal when evaluating multiple possible fire safety measures.
Keywords: cost-benefit analysis, fire safety, investment, maintenance, loss, statistics, reliability
Published in DiRROS: 23.10.2023; Views: 481; Downloads: 121
URL Link to file
This document has many files! More...

34.
Deformable polyurethane joints and fibre grids for resilient seismic performance of reinforced concrete frames with orthoblock brick infills
Theodoros Rousakis, Alper Ilki, Arkadiusz Kwiecień, Alberto Viskovic, Matija Gams, Petra Triller, Bahman Ghiassi, Andrea Benedetti, Zoran Rakicevic, Camilla Colla, Omer Faruk Halici, BogusŁaw Zając, Łukasz Hojdys, Piotr Krajewski, Fabio Rizzo, Vachan Vanian, Anastasios Sapalidis, Efthimia Papadouli, Aleksandra Bogdanovic, 2020, original scientific article

Abstract: The behaviour of reinforced concrete frames with masonry wall infills is influenced a lot by the stiffness and strength difference between the frame and the infill, causing early detrimental damage to the infill or to the critical concrete columns. The paper reports the results from shake table seismic tests on a full-scale reinforced concrete (RC) frame building with modified hollow clay block (orthoblock brick) infill walls, within INMASPOL SERA Horizon 2020 project. The building received innovative resilient protection using Polyurethane Flexible Joints (PUFJs) made of polyurethane resin (PU), applied at the frame-infill interface in different schemes. Further, PUs were used for bonding of glass fibre grids to the weak masonry substrate to form Fibre Reinforced Polyurethanes (FRPUs) as an emergency repair intervention. The test results showed enhancement in the in-plane and out-of-plane infill performance under seismic excitations. The results confirmed remarkable delay of significant infill damages at very high RC frame inter-story drifts as a consequence of the use of PUFJs. Further, the PUFJ protection enabled the resilient repair of the infill even after very high inter-story drift of the structure up to 3.7%. The applied glass FRPU system efficiently protected the damaged infills against collapse under out-of-plane excitation while they restored large part of their in-plane stiffness.
Keywords: polyurethane, flexible joint, RC column, brick infill, shake table, resilience
Published in DiRROS: 05.09.2023; Views: 423; Downloads: 162
.pdf Full text (5,77 MB)
This document has many files! More...

35.
Colorimetric cutoff indication of relative humidity based on selectively functionalized mesoporous silica
Erika Švara Fabjan, Peter Nadrah, Anja Ajdovec, Matija Tomšič, Goran Dražić, Matjaž Mazaj, Nataša Zabukovec Logar, Andrijana Sever Škapin, 2020, original scientific article

Abstract: We present a novel % cutoff concept of colorimetric indication of relative humidity based on dye dissolution in condensed water in capillaries of selectively functionalized mesoporours host SiO2 material. Consistently high levels of indoor air humidity induces mold and algae growth which represent a potential risks for human health and have deteriorating effect on walls as well. Simple localized humidity detection of high humidity with naked eye especially at places with low air circulation, where growth of mold usually starts first, is therefore highly desirable. The reporting dye was integrated in the non-functionalized mesoporous silica matrix with different pore diameters and selective-functionalized mesoporous silica material. After exposure to the environment of different air humidities the dye dissolved in water causing color change of adsorbent. With the use of adsorbents with different mesopore diameters high ability to tune the value of relative humidity when complete capillary condensation occurred was achieved. Materials with pore diameters of 3.0%nm, 3.5%nm and 7.0%nm exhibit gradual color change when reaching relative humidity up to 55, 79 and 88 RH% respectively. After selective methylation of the material with 7.0%nm pore diameter, non-gradual cutoff color change was achieved. Sample exhibited color change at narrow range of relative humidity (cutoff color change). Due to selective functionalized outer surface the dye dissolution occur only in condensed water in pores and therefore provide colorimetric indication only in this range. Selectively modified silica material has a great potential for a straightforward detection of high humid environment.
Keywords: turn-on colorimetric probe, selective functionalization, mesoporous silica, relative humidity, capillary condensation
Published in DiRROS: 05.09.2023; Views: 413; Downloads: 290
.pdf Full text (7,18 MB)
This document has many files! More...

36.
Improving the flame retardancy of wood using an eco-friendly mineralisation process
Andreja Pondelak, Andrijana Sever Škapin, Nataša Knez, Friderik Knez, Tomaž Pazlar, 2021, original scientific article

Abstract: A novel environmentally friendly method for in situ formation of CaCO3 deep inside a wood’s structure is presented. The method is based on vacuum-pressure impregnation using a one-component treatment medium – a water solution of calcium acetoacetate - and a single stage process to significantly improve the fire retardancy of the treated material.
Keywords: mineralisation, flame retardancy, calcium acetoacetate, calcium carbonate, wood
Published in DiRROS: 31.07.2023; Views: 448; Downloads: 311
.pdf Full text (2,69 MB)
This document has many files! More...

37.
Antifungal effect of polymethyl methacrylate resin base with embedded Au nanoparticles
Ivan Marić, Anamarija Zore, Franc Rojko, Andrijana Sever Škapin, Roman Štukelj, Aleksander Učakar, Rajko Vidrih, Valentina Veselinović, Marijan Gotić, Klemen Bohinc, 2023, original scientific article

Abstract: Full and partial restorations in dentistry must replicate the characteristics of the patient’s natural teeth. Materials must have good mechanical properties and be non-toxic and biocompatible. Microbes, which can form biofilms, are constantly in contact with restorations. In this study, we investigate how well Candida albicans adheres to a polymethyl methacrylate (PMMA) resin base with gold (Au) nanoparticles. We synthesized Au nanoparticles and characterized them. The average size of Au nanoparticles embedded in PMMA was 11 nm. The color difference ∆E between PMMA and PMMA/Au composites was 2.7 and was still esthetically acceptable to patients. PMMA/Au surfaces are rougher and more hydrophilic than pure PMMA surfaces, and the isoelectric point of both types of surfaces was 4.3. Above the isoelectric point, PMMA/Au surfaces are more negatively charged than PMMA surfaces. The added Au nanoparticles decreased the tensile strength, while the hardness did not change significantly. Adhesion measurements showed that PMMA surfaces modified with Au nanoparticles reduced the extent of microbial adhesion of Candida albicans.
Keywords: fungal adhesión, C. albicans, polymethyl methacrylate resin, Au, surface properties, composites
Published in DiRROS: 24.07.2023; Views: 511; Downloads: 200
.pdf Full text (2,90 MB)
This document has many files! More...

38.
Corrosion protection of brown and green patinated bronze
Tadeja Kosec, Živa Novak, Erika Švara Fabjan, Luka Škrlep, Andrijana Sever Škapin, Polonca Ropret, 2021, original scientific article

Abstract: Bronze surfaces, whether bare or patinated, tend to change when exposed to an outdoor atmosphere. Art made of bronze which is exposed to the outdoors is usually artificially patinated. This patina changes when exposed to rain, especially in polluted rain, where sulphuric, nitric or carbonic acids are present. In order to gain optimal protection of different patinas and consequently reduce the patina changes over the time different protection systems were developed, tested and tailored. Three types of patina (brown, green sulphate, and green persulphate) were prepared, protected and subsequently studied. The protections were based on two coatings (i) fluoropolymer based coating (FA-MS) and (ii) newly developed fluoropolymer based coating with addition of mercaptopropyl groups, named as alternative fluoropolymer coating (FA-MS-SH). Both the pure patinas applied on bronze surfaces as well as the bare bronze were electrochemically tested, first unprotected and then following the application of two different types of protection. After the protection was applied to the pa- tinas, the change in colour was defined. Different techniques were utilised in order to define the morphology and structure of the patinas, as well as the change in colour following application of the coating. It was shown that a fluoropolymer coating (FA-MS) provided the most efficient protection to bare bronze and the sulphate patina, while a newly proposed alternative fluoropolymer coating (FA-MS-SH) offered good protection to bare and brown patinated bronze. A mechanism for the protection of bare and patinated bronze was suggested.
Keywords: bronze, patina, protection
Published in DiRROS: 17.07.2023; Views: 407; Downloads: 229
.pdf Full text (5,46 MB)
This document has many files! More...

39.
Environmentally friendly protection of European beech against fire and fungal decay using a combination of thermal modification and mineralisation
Rožle Repič, Andreja Pondelak, Davor Kržišnik, Miha Humar, Nataša Knez, Friderik Knez, Andrijana Sever Škapin, 2024, original scientific article

Abstract: The demand for construction timber is continuously increasing, due to its favourable characteristics. However, the adequate protection of wood is key to its successful use, as it is flammable and susceptible to biodegradation. Given that thermal modification enhances the durability of wood, and mineralisation with CaCO3 considerably improves its fire properties, it is worth considering the combined effects of the two methods. European beech (Fagus sylvatica) was selected to determine the effects of a) thermal modification, b) mineralisation through the in-situ formation of CaCO3, and c) a combination of the two procedures, on resistance to decay fungi, reaction to fire and the mechanical properties of the wood. Microscopic analysis and comparisons of the samples before and after exposure to fungi were also conducted. Mineralised wood generally had a slightly alkaline pH value and higher equilibrium moisture content, while thermal modification lowered the equilibrium moisture content. The present study demonstrated the combined effect of thermal modification and mineralisation: the best response to fire as well as resistance to fungi was achieved when the two treatments were combined. Results from the Brinell hardness and three-point bending tests indicate that both modification procedures can slightly impair the mechanical properties of the wood.
Keywords: wood, protection, durability, mechanical properties
Published in DiRROS: 12.07.2023; Views: 446; Downloads: 327
.pdf Full text (3,26 MB)
This document has many files! More...

40.
Electrochemical cycling behaviour and shape changes of Zn electrodes in mildly acidic aqueous electrolytes containing quaternary ammonium salts
Benedetto Bozzini, Marco Boniardi, Tommaso Caielli, Andrea Casaroli, Elisa Emanuele, Lucia Mancini, Nicola Sodini, Jacopo Strada, 2023, original scientific article

Abstract: Secondary Zn–based batteries are a valid alternative to Li for stationary storage, but commercial devices are not yet available, chiefly owing to anode shape-change and passivation issues. Mildly acidic aqueous solutions are actively studied, since they seem to limit unstable growth of Zn, with respect to the alkaline ones, customary for primary batteries. Additives can further improve the performance of mildly acidic electrolytes. In this work we focus on the impact of a series of quaternary ammonium salts (TBAB, CTAB, DMDTDAB, BDMPAC, BPPEI, PDADMAC), selected to represent a comprehensive range of molecular functionalities. Electrochemical measurements (cyclic voltammetry, chronopotentiometry and galvanostatic-cycling in split-cells), combined with 2D and 3D imaging techniques (SEM, stereomicroscopy and in situ tomography) were adopted for the assessment Zn behaviour. This multi-technique approach pinpointed TBAB as the single most effective additive for low-current density operation, while at high current densities the additive-free electrolyte allows better cycling performance, coherently with similar results for alkaline electrolytes.
Keywords: battery, electrolyte, electrochemical measurements, quaternary Ammomium salt, X-ray computed microtomography, mobility
Published in DiRROS: 06.07.2023; Views: 487; Downloads: 232
.pdf Full text (2,52 MB)
This document has many files! More...

Search done in 0.31 sec.
Back to top