Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Barbara Šetina) .

1 - 10 / 13
First pagePrevious page12Next pageLast page
1.
Characterization of micro-threaded stem taper surface of cementless hip endoprostheses
Drago Dolinar, Boštjan Kocjančič, Klemen Avsec, Barbara Šetina, Aleksandra Kocijan, Matjaž Godec, Marko Sedlaček, Mojca Debeljak, John T. Grant, Timon Zupanc, Monika Jenko, 2024, original scientific article

Abstract: We investigated micro-threaded stem taper surface and its impact on premature failures, aseptic loosening, and infection in cementless hip endoprostheses. Our study focused on the fretting, and crevice corrosion of micro-threaded tapers, as well as the characterization of the microstructure and surface properties of two new and three retrieved Zweymüller stem tapers. The retrieved samples were selected and examined based on the head–stem taper interface being the sole source of modularity with a metallic component, specifically between the Ti alloy taper stem and the ceramic head. To determine the surface chemistry and microstructures of both new and retrieved hip endoprostheses stem taper titanium alloy, scanning -electron microscopy (SEM) was employed for morphological and microstructural analyses. Energy dispersive spectroscopy (EDS) was utilized for characterizing chemical element distribution, and electron backscattered diffraction (EBSD) was used for phase analysis. The roughness of the micro-threated stem tapers from different manufacturers was investigated using an optical profilometer, with standard roughness parameters Ra (average surface roughness) and Rz (mean peak to valley height of the roughness profile) being measured. Electrochemical studies revealed no fretting corrosion in retrieved stem tapers with ceramic heads. Consequently, three retrieved tapers and two new ones for comparison underwent potentiodynamic measurements in Hank’s solution to determine the corrosion rate of new and retrieved stem taper surfaces. The results showed a low corrosion rate for both new and prematurely failed retrieved samples due to aseptic loosening. However, the corrosion rate was higher in infected and low-grade infected tapers. In conclusion, our study suggests that using ceramic heads reduces taper corrosion and subsequently decreases the incidence of premature failures in total hip arthroplasty.
Keywords: total hip arthroplasty, stem micro-threaded taper, taper surface morphology, microstructure, corrosion, Ti implant alloy
Published in DiRROS: 06.06.2024; Views: 60; Downloads: 49
.pdf Full text (8,47 MB)
This document has many files! More...

2.
3.
Enhancing ductility of hot-work tool steel through isothermal bainitic transformation
Anže Bajželj, Aleš Nagode, Tilen Balaško, Barbara Šetina, Jaka Burja, 2024, published scientific conference contribution

Abstract: Hot-work tool steels are extensively used in industrial applications that require high resistance to mechanical and chemical degradation at elevated temperatures. To meet these requirements, hot-work tool steels must exhibit good mechanical properties, including high tensile strength, hardness, wear resistance, and tempering resistance, as well as high thermal conductivity and ductility. This study investigates the ductility of the hot-work tool steel HTCS-130, which suffers from low ductility due to the presence of stable molybdenum-tungsten carbides (M6C) on the prior austenite crystal grain boundaries. Increasing austenitisation temperatures or prolonging the dwelling time at temperature can promote intensive migration of grain boundaries, leading to negative effects on the mechanical properties of the steel. To address this issue, isothermal transformation in the bainitic area between 350 and 500 °C was performed. Isothermal transformation at around 350 °C leads to the formation of lower bainite, which has similar hardness to tempered martensite. As the temperature of isothermal transformation increases, the hardness of the material decreases, due to the formation of upper bainite. The hardness analysis was measured using the Vickers method, the impact toughness of the steel samples was measured using a Charpy test with V-notched samples. The microstructure characterization was performed using optical and scanning electron microscopy. The improvement of ductility can be achieved by controlling the isothermal transformation of bainite and adjusting the heat treatment conHot-work tool steels are extensively used in industrial applications that require high resistance to mechanical and chemical degradation at elevated temperatures. To meet these requirements, hot-work tool steels must exhibit good mechanical properties, including high tensile strength, hardness, wear resistance, and tempering resistance, as well as high thermal conductivity and ductility. This study investigates the ductility of the hot-work tool steel HTCS-130, which suffers from low ductility due to the presence of stable molybdenum-tungsten carbides (M6C) on the prior austenite crystal grain boundaries. Increasing austenitisation temperatures or prolonging the dwelling time at temperature can promote intensive migration of grain boundaries, leading to negative effects on the mechanical properties of the steel. To address this issue, isothermal transformation in the bainitic area between 350 and 500 °C was performed. Isothermal transformation at around 350 °C leads to the formation of lower bainite, which has similar hardness to tempered martensite. As the temperature of isothermal transformation increases, the hardness of the material decreases, due to the formation of upper bainite. The hardness analysis was measured using the Vickers method, the impact toughness of the steel samples was measured using a Charpy test with V-notched samples. The microstructure characterization was performed using optical and scanning electron microscopy. The improvement of ductility can be achieved by controlling the isothermal transformation of bainite and adjusting the heat treatment conditions. These findings provide useful insights into the design and optimization of heat treatment processes for hot-work tool steels.ditions. These findings provide useful insights into the design and optimization of heat treatment processes for hot-work tool steels.
Keywords: hot-work tool steel, austempering, bainitic transformation, ductility, dilatometry
Published in DiRROS: 28.02.2024; Views: 250; Downloads: 92
.pdf Full text (1,02 MB)
This document has many files! More...

4.
Mechanisms of premature fracture in modular neck stems made of CoCrMo/Ti6Al4V and Ti6Al4V/Ti6Al4V alloy
Drago Dolinar, Miro Gorenšek, Klemen Avsec, Barbara Šetina, Matej Hočevar, Matjaž Godec, Borut Žužek, Mojca Debeljak, Monika Jenko, John T. Grant, Boštjan Kocjančič, 2023, original scientific article

Abstract: In this paper, we present the mechanisms of premature fracture of modular neck stems in two case studies: (I) when the neck and stem are both made of the same Ti6Al4V alloy, and (II) when the neck and stem are made from two different alloys, CoCrMo and Ti6Al4V alloy. Our study integrates two orthopedic patients who have undergone primary uncemented THA for usual indications in two orthopedic centers (Community Health Centre and University Medical Centre). Both centers are part of the national public health care system. Both surgeries were performed by two skilled orthopedic surgeons with more than 10 years of experience in THA. The survivorship of the modular neck of cast CoCrMo alloy was 24 months. The survivorship of the modular neck from Ti6Al4V alloy was 84 months. Multivariate analyses were performed to assess the differences in the fretting, corrosion, and fatigue of the two prematurely failed modular neck stems: stereo light microscopy (SLM), scanning electron microscopy (SEM), X-ray energy-dispersive spectroscopy (EDS), and electron backscatter diffraction (EBSD). Patient demographic information, including sex, age, body mass index, survivorship of implants, and reason for the revision, was collected from medical records. We found that fretting and fatigue occurred on both neck-stem retrievals due to additional galvanic corrosion, but the CoCrMo/Ti6Al4V alloy system suffered more corrosion due to additional galvanic corrosion and fractured earlier than the Ti6Al4V/Ti6Al4V metal alloy system. Both metallic alloy systems used in this application are known to be highly corrosion-resistant, but the bio-tribo-corrosion processes need to be understood in detail and characterized so that appropriate improvements in design and materials can be made.
Keywords: total hip arthroplasty, modular neck, Ti6Al4V alloy, CoCrMo alloy, corrosion
Published in DiRROS: 07.02.2024; Views: 298; Downloads: 155
.pdf Full text (5,12 MB)
This document has many files! More...

5.
6.
7.
8.
9.
High-temperature oxidation of boiler steels at 650 °C
Jaka Burja, Barbara Šetina, Borut Žužek, Tilen Balaško, 2023, original scientific article

Abstract: This study presents a comprehensive investigation of the formation, composition and behaviour of oxide layers during the high-temperature oxidation of four different steel alloys (16Mo3, 13Cr, T24 and P91) at a uniform temperature of 650 °C. The study is aimed at assessing the oxidation damage due to short-term overheating. The research combines CALPHAD (CALculation of PHAse Diagrams) calculations, thermogravimetric analysis (TGA) and advanced microscopy techniques, in- cluding scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD), to elucidate the complex mechanisms controlling oxidation kinetics and oxide layer development. CALPHAD calculations were used to determine the thermodynamically stable phases for each steel type at 650 ◦C and different oxygen activities. The results showed different phase compositions, highlighting the importance of the chromium content in steel for the formation of oxide layers. The different oxidation kinetics and oxide layer compositions are presented and associated with the increased risk of material degradation due to overheating. These results have significant implications for industrial applications, mainly the susceptibility to oxidation of low-alloyed steels like 16Mo3 and 13 Cr and contribute to a deeper understanding of oxidation processes in steels.
Keywords: high-temperature oxidation, thermogravimetric analysis, kinetics, CALPHAD, boiler steels, SEM, EBSD
Published in DiRROS: 26.01.2024; Views: 320; Downloads: 143
.pdf Full text (12,99 MB)
This document has many files! More...

10.
Search done in 0.39 sec.
Back to top