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Abstract. We present the first summer sunshine reconstruc-
tion from tree-ring data for the western part of the Balkan
Peninsula. Summer sunshine is tightly connected with mois-
ture stress in trees, because the moisture stress and there-
fore the width of annual tree-rings is under the influence of
the direct and interactive effects of sunshine duration (tem-
perature, precipitation, cloud cover and evapotranspiration).
The reconstruction is based on a calibrated z-scored mean
chronology, calculated from tree-ring width measurements
from 7 representative black pine (Pinus nigraArnold) sites
in Bosnia and Herzegovina (BiH). A combined regression
and scaling approach was used for the reconstruction of the
summer sunshine. We found a significant negative correla-
tion (r = −0.54,p < 0.0001) with mean June–July sunshine
hours from Osijek meteorological station (Croatia). The de-
veloped model was used for reconstruction of summer sun-
shine for the time period 1660–2010. We identified extreme
summer events and compared them to available documentary
historical sources of drought, volcanic eruptions and other re-
constructions from the broader region. All extreme summers
with low sunshine hours (1712, 1810, 1815, 1843, 1899 and
1966) are connected with volcanic eruptions.

1 Introduction

Documentary proxies of climate data from the 15th to the
19th centuries are well distributed over the Mediterranean
region and are particularly abundant in Italy, France and the
Iberian Peninsula, while they are less frequently found for
the Balkan Peninsula area, i.e., Greece, former Yugoslavian
countries, Albania, Bulgaria and Romania (Camuffo et al.,

2010). Dendrochronological studies of climate-tree growth
relationships, such as the investigation of the southern part
of Balkan Peninsula (Xoplaki et al., 2001), can help val-
idate historical explanations of climate variability and its
impact on human life. One of the first dendrochronologi-
cal investigations on the Balkan Peninsula was a study cov-
ering the area of Greece, western Turkey, Cyprus and one
location from Bosnia and Herzegovina (BiH), by which an
Aegean master tree-ring chronology was constructed (Ku-
niholm and Striker, 1983). With additional sampling of old
houses and mosques, the chronology was extended back to
7000 BC and one location each from Italy and BiH were
added (Hughes et al., 2001). In the eastern part of the Balkan
Peninsula, in south-western Bulgaria, 655-yr Bosnian pine
(Pinus heldreichiiChrist.) and 305-yr Macedonian pine (Pi-
nus peuceGriseb.) chronologies were developed (Panayotov
et al., 2010). Later, summer temperature was reconstructed
(1768–2008), based on maximum latewood density measure-
ments ofP. heldreichii trees from a high-elevation stand in
the Pirin Mountains in Bulgaria (Trouet et al., 2012). In Ro-
mania, the first 1000-yr Carpathian tree-ring width (TRW)
stone pine (Pinus cembraL.) chronology has been estab-
lished and summer mean temperatures reconstructed for the
period 1163–2005 (Popa and Kern, 2009). In Albania, a
1391-yr TRW chronology (617–2008) was developed and
maximum density measurements were acquired on living and
deadP. heldreichiitrees (Seim et al., 2010). A high positive
correlation with summer, particularly August temperatures
was found, but no significant correlation with precipitation.
A similar study was performed on black pine (Pinus nigra
Arnold) in Albania, whereby Levanič and Toromani (2010)
developed a 238-yr TRW chronology. Tree-ring indices show
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a significantly negative response to summer temperatures and
positive response to June precipitation. In sub-Mediterranean
Slovenia, the formation of radial increments ofP. nigra
is stimulated by above-average winter and spring temper-
atures, while a negative impact of above-average temper-
atures in summer and during the entire vegetation period,
from April through September, are clear (Ogrin, 2005). How-
ever, despite the numerous dendrochronological investiga-
tions across the Balkan Peninsula, climate reconstructions in
the north-western part of Balkan Peninsula are still not avail-
able. Current dendrochronological investigations in develop-
ing TRW and maximum density chronologies from across the
Balkan Peninsula – Slovenia (Hafner et al., 2011), Croatia,
BiH (Poljaňsek et al., 2012), and Montenegro (T. Levanič,
personal communication, 2012), as well as Albania (Seim et
al., 2012; Levanǐc and Toromani, 2010), Bulgaria (Trouet et
al., 2012; Panayotov et al., 2010) and Romania (Levanič et
al., 2012), should soon yield results that enhance our knowl-
edge of past variation and contribute to dendroclimatological
network of Balkan Peninsula (Luterbacher et al., 2012).

1.1 Climate of the studied area

Geographically, the Balkan Peninsula represents the border
between Mediterranean and Central European climates. The
combined impact determines the climate in the western part
of the Balkan Peninsula as a mixture of continental climatic
influence from the interior of the peninsula, mountain cli-
matic influence from the Dinaric Alps and Mediterranean
influence from the Adriatic Sea (Zupan Hajna, 2012). An-
nual precipitation and temperature regimes are characterised
by seasonally diverse circulation patterns. In spring, an At-
lantic High extending eastwards and over the Balkan Penin-
sula joins a low centre approaching from the southeast, caus-
ing a north–north-easterly flow over the eastern Mediter-
ranean area. The extension of the summer Asian thermal
low is evident throughout the eastern Mediterranean in all
summer circulation patterns; however, it controls the weather
in the region jointly with other principal pressure features
(Kostopoulou and Jones, 2007). Multiproxy reconstructions
of monthly and seasonal surface temperature fields for Eu-
rope back to 1500 show that the late 20th- and early 21st-
century European climate is very likely warmer than that of
any time during the past 500 yr (Luterbacher et al., 2004).
In the light of projected climate change, heat waves in the
Mediterranean region and on the Balkan Peninsula will in-
tensify in the second half of the 21st century – they will be
more frequent and will last longer (IPCC, 2007). Accord-
ing to predictions, the minimum daily temperature during
the “worst heat” events is expected to rise by around 3◦C
(Meehl and Tebaldi, 2004). In the eastern Mediterranean
and the Middle East, there will be a gradual and relatively
strong warming of about 3.5–7◦C between the 1961–1990
reference period and the period 2070–2099 (Lelieveld et al.,
2012). The observed daytime maximum temperatures appear

to be increasing most rapidly in the northern part of the re-
gion, i.e., the Balkan Peninsula and Turkey. Hot summer
conditions that rarely occurred in the reference period may
become the norm by the middle or end of the 21st century
(Lelieveld et al., 2012). Moreover, a decrease in annual mean
precipitation from 10 % to more than 20 % over some re-
gions of the Mediterranean basin is expected by the end of the
21st century (IPCC, 2001). In the eastern part of the Mediter-
ranean basin, the observed strong drought period of the end
of the twentieth century seems to be the strongest of the last
500 yr (Nicault et al., 2008). It is therefore important to in-
vestigate whether extreme events have already occurred in
BiH in the past and how trees responded to them. Results
from our study can support study of climate, aridification
processes (Kertész and Mika, 1999) and glaciation investi-
gations (Hughes, 2010) from surrounding regions and BiH.

1.2 Species selection

Selecting tree species growing on sites with limited between-
tree competition and climate as the prevailing growth-
limiting factor maximises the climate signal in tree-rings
(Fritts, 1976).P. nigra was chosen for this study, since it
grows on extreme sites, has a good response to climate
(Lebourgeois, 2000) and reaches ages up to 500 yr (Brus,
2004). TheP. nigra area distribution covers the majority of
the Mediterranean region (Vidaković, 1991), so the results of
the climate-growth relationship from BiH can be compared
to studies from other regions. Its growth response to climate
has been studied in the western (Martı́n-Benito et al., 2010b,
2011) and eastern Mediterranean (Sevgi and Akkemik, 2007;
Touchan et al., 2003), in the northern limit of its natural areal
– in Austria (Leal et al., 2008) and south-eastern Romania
(Levanǐc et al., 2012). Since the species is well-adapted to
the Mediterranean and southern European climate,P. nigra
tolerates summer droughts and high temperatures (Penue-
las and Pilella, 2003), but poorly tolerates drought during
early spring (Wimmer et al., 2000). Similar to trees in Spain
(Mart́ın-Benito et al., 2012)P. nigra growth on high ele-
vated sites of Dinaric Mountains should be most strongly
influenced by soil moisture. This environmental factor is in
a tight connection with temperature, precipitation and cloud
cover (Seneviratne et al., 2010). Variability in all these fac-
tors is explained with sunshine values, which also indirectly
influences tree-growth (Fritts, 1976). Therefore, it should
be possible to recover moisture stress-linked sunshine vari-
ance from tree-ring data (Stahle et al., 1991). As the differ-
ent species respond to different climate parameters (Garcı́a-
Súarez et al., 2009), it is important to test the presence of
sunshine/moisture stress in TRW ofP. nigra in BiH.

In this paper we present results of climate/tree-growth
analysis, based on aP. nigra TRW chronology from the
north-western part of the Balkan Peninsula. The following
aims were set:
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– Identification of the climate signal in the tree-ring
widths ofP. nigra in BiH.

– Reconstruction of the most growth-limiting factor(s) for
P. nigra.

– Identification of extreme climatic events in the past.

– Comparison of identified extreme events with published
historical sources.

2 Materials and methods

2.1 Site description and tree-ring data

BiH is located between 42◦26′–45◦15′ north and 15◦44′–
19◦41′ east, in the north-western part of Balkan Peninsula.
Seven sites, dispersed along the main mountain chain in BiH,
to cover the diverse climate of the studied region, were se-
lected for this study (Fig. 1). The Krivaja and Konjuh sites
are close to one another, but differ in altitude and aspect (Ta-
ble 1). All sites are under the influence of a moist meridional
maritime airflow from the Adriatic Sea, which often intrudes
into the Balkan Peninsula where it collides with cooler air
above the NW–SE oriented Dinaric mountain chain. This is
the reason why there is a relatively high amount of precip-
itation over Dinaric mountains during growth season (Zu-
pan Hajna, 2012). Average mean June–August temperature
on high mountainous sites is 8.8◦C, while the amount of
precipitation varies from 100 mm (Bjelašnica) to 280 mm
(Čemerno station). Although there is more than 1000 mm
(Bjelǎsnica) or 1600 mm (̌Cemerno) of annual of precipita-
tion, the studied sites are in summer time generally dry be-
cause of mostly southern exposure, steep slopes and shallow
soils.

Trees, used in this research, were sampled in the years
2005 and 2010. Individual TRW series were fitted with a
cubic smoothing spline with a 50% frequency response at
67 % of the series length to remove non-climatic trends
due to the tree’s age, size, and the effects of stand dynam-
ics (Cook and Briffa, 1990). Standardisation was done us-
ing ARSTAN for Windows, version 4.1d, the program pro-
vided by Cook and Krusic, Lamonth-Doherty Earth Obser-
vatory, Columbia University (http://www.ldeo.columbia.edu/
trl). The signal strength in the standardised chronology was
tested using the Expressed Population Signal – EPS (Wigley
et al., 1984). The calculation of EPS was based on a 50-yr
running window, with a 25-yr overlap. The usable portion of
a chronology was defined as the part in which a minimum
number of trees maintained an EPS value≥ 0.85 (Briffa and
Jones, 1990). The data are archived at the Slovenia Forestry
Institute and the full details of the sites and sampling strate-
gies are included in Poljanšek et al. (2012).

Fig. 1. Sampled sites, distributed along Dinaric mountains;Šator
(SAT), Šipovo (SIP), Prusac (PRU), Blace (BLA), Peručica (PER),
Konjuh (KON) and Krivaja (KRI), with meteorological station Os-
ijek.

2.2 Climate data

Two different climate datasets, available for BiH, were used
in this research. The Histalp dataset contains temperature and
precipitation data from various locations in BiH, as well as
sunshine data (1958–2007) for town Osijek in the continental
part of Croatia (Auer et al., 2007). The second climate dataset
consists of individual weather stations, provided by the Fed-
eral Hydrometeorological Institute of BiH. These stations are
Bjelǎsnica (2000 m a.s.l.),̌Cemerno (1305 m a.s.l.), Sarajevo-
Bjelave (630 m a.s.l.),Šipovo (460 m a.s.l.) and Tjentište
(580 m a.s.l.). Some datasets have gaps in the annual base
because climate data collection was disturbed twice due to
a state of war. Bjelǎsnica mountainous weather station con-
tains temperature data for time periods: 1895–1940, 1951–
1992 and 2000-present, while precipitation data is available
for time period 1952–2009. Sarajevo-Bjelave has a complete
dataset from 1888 until the present. Other weather stations
stopped collecting data due to disruption in 1992;Šipovo
(1965–1992), Tjentište (1964–1992) anďCemerno (1958–
1992).

2.3 Statistical analysis

Pearson’s correlation coefficient (r) was used to evaluate
the relationship between annual radial growth ofP. nigra
and climate factors: precipitation, temperatures and sunshine.
Simple mean of all standardised site chronologies was com-
pared to monthly mean temperatures, monthly sum of pre-
cipitation and sunshine hours, to identify the most strongly
correlated growth factor. In addition to simple monthly cli-
mate values, a number of seasonal climate data variables
were generated and correlated with the tree-ring indices
as well. After identification of the sunshine seasonal vari-
able, we normalised the individual site chronologies us-
ing z-score values (Ljungqvist, 2010) and calculated their
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Table 1.General characteristics of sampled sites and number of trees sampled (n) in Bosnia and Herzegovina.

Site Latitude/Longitude Elevation Slope exposure Bedrockn Time span EPS≥ 0.85

Blace 43◦31′ N/18◦07′ E 950 m 50◦ SE dolomite 21 1625–2010 1830
Konjuh 44◦17′ N/18◦32′ E 1100 m 45◦ S serpentine 24 1626–2010 1705
Krivaja 44◦13′ N/18◦29′ E 500 m 60◦ NE serpentine 18 1667–2010 1745
Perǔcica 43◦19′ N/18◦42′ E 1450 m 55◦ S limestone 33 1603–2010 1660
Prusac 44◦04′ N/17◦21′ E 1100 m 65◦ S limestone 15 1694–2010 1825
Šator 44◦11′ N/16◦36′ E 1300 m 55◦ S dolomite 20 1813–2010 1870
Šipovo 44◦17′ N/17◦12′ E 1100 m 60◦ S & N limestone 35 1576–2005 1730

correlation coefficient with the most influential sunshine
variable. Squared correlation coefficient (r2) shows the pro-
portion of explained variance in each chronology and this
value was used for the weighted mean regional chronology
calculation (McCarroll et al., 2003). The significance of the
summer sunshine signal strength between site chronologies
in the two different time periods; the period of sunshine data
(1958–2007) and the period pre-sunshine data (1813–1957)
were tested using a z-test for the two correlation coefficients
(Kanji, 1993). Linear model between regional chronology
and sunshine season variable was calculated using linear re-
gression. To assess the quality of the linear model for sun-
shine reconstruction, the period of the measured sunshine
hours (1958–2007) was split into two equally long periods
for calibration (1983–2007) and verification (1958–1982).
The procedure was then repeated with the periods reversed.
The reliability and prediction skill of the model was tested
using reduction of error (RE) (Fritts, 1976), coefficient of ef-
ficiency (CE) (Cook et al., 1999) and the proportion of ex-
plained variability (r2). If RE and CE coefficients are higher
than zero, the relationship has a predictive value, then a
transfer function can be calculated and applied on the re-
gional chronology. Applications of the transfer function on
the chronology over a period of time for which there is no
climate data results in reconstruction of the climate. We used
this approach on the chronologies from 2010 to the year of
1660, when value of EPS drops below 0.85 threshold (Ta-
ble 1). Finally, years of extreme summer sunshine values
were defined as years with summer sunshine values of above
or below a specified threshold. Positive and negative thresh-
olds were calculated as one and two standard deviations (SD)
from the mean value. The mean value of sunshine hours was
calculated over the entire period of reconstruction (1660–
2010). Positive values denote sunny summers, while negative
values denote less-sunny summers. We used the term “less-
sunny” to denote years with an unusually (below 1 or 2 SD)
low number of mean June–July sunshine hours. Because the
solar radiation can be reduced not only by the cloud cover
(Suehrcke, 2000; Arking et al., 1996), but also by other fac-
tors, such as volcano eruptions (Handler, 1989), forest fires
(Chubarova et al., 2008) and other aerosols (Satheesh and Kr-
ishna Moorthy, 2005; Moosm̈uller et al., 2009), we decided
that the term less-sunny is the most appropriate.

3 Results

3.1 Climate signal analysis

Climate signal in the TRW ofP. nigra was analysed us-
ing Pearson’s correlation coefficient between climate data
and mean standardised chronology; an average of seven site
chronologies. The highest correlation coefficients for tem-
perature and precipitation data were found using Bjelašnica
weather station. There are positive correlations between
spring temperature and summer precipitation and negative
with summer temperature and tree growth. Above average
number of sunshine hours in June and July has a significant
negative effect on tree growth. Additionally, the correlation
improves if months are combined into spring and summer
periods (Fig. 2). According to the results of the correlation
analysis, the strongest correlation among sunshine values
was found with mean June–July sunshine hours (r = −0.44,
n = 50, p < 0.01). This climate proxy was tested for the
long-term reconstruction. Between TRW and temperature,
the strongest correlation was calculated with mean June–
August temperature (r = −0.45,n = 87,p < 0.001), but this
negative influence is more likely indirect, rather than direct,
because temperature on mountainous sites cannot negatively
influence tree-growth. The mean summer temperature at the
Bjelǎsnica weather station site of 10◦C does not exceed the
optimal temperature for tree growth, set at 20◦C for the mod-
erate climate zone (Fritts, 1976). Negative influence of above
average temperature onP. nigragrowth is reasonable in area
where summer temperature exceeds 20◦C, e.g. in Mediter-
ranean area (Ogrin, 2005) but not at high elevations, where
the majority of our sites are located. Precipitation signal is
also significant (r = 0.34,n = 59,p < 0.01), but lower than
temperature signal. Sunshine is not the growth limiting factor
on this site, but its values are closely connected to moisture
stress, which most logically drives the tree-growth (Alavi,
2002).

3.2 Transfer function development

We used z-test to test the differences in inter-correlations
of seven site chronologies between the periods with and
without sunshine data (1813–1957 and 1958–2007) – Ta-
ble 2. The period of pre-sunshine data is omitted with the
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Fig. 2. Correlation coefficients (columns) between standardised
chronology (average of seven site chronologies) and climate data
from Bjelǎsnica weather station; precipitation with light grey, tem-
perature with dark grey and sunshine hours with white columns
(Osijek weather station). Columns with pattern represent significant
value (95 %).

length of the shortest site chronology from̌Sator (1813–
2010). The z-test confirmed that the results of correlation
values among individual site chronologies in the period of
sunshine data (1958–2007) and in the period of pre-sunshine
data (1813–1957) do not differ. This confirms that the rel-
ative strength of the climate signal in the seven proxies
remains constant through time. There are several ways in
which the seven site chronologies can be combined to re-
construct the climate of the past (Trachsel et al., 2012;
Briffa et al., 1988). We used weighted averaging, where the
weight of each series is determined by the amount of vari-
ance in site chronologies, explained by sunshine. In this
case all proxies that correlate strongly with sunshine data re-
ceive a high weight, irrespective of how highly they corre-
late with each other. This approach ensures that all strong
proxies are included (McCarroll et al., 2013). The mean
chronology, constructed using weighted averaging, corre-
lates with mean June–July sunshine hours at−0.54 (n = 50,
p < 0.0001), more strongly than with simple averaging the
site chronologies (r = −0.44). The equation for the linear
model between BiH regional chronology and sunshine hours
from Osijek isY = 271.424−11.592·X (n = 50,F = 12.9,
p < 0.001), whereY represents the mean June–July sunshine
hours andX are weighted TRW indices. Prediction skill and
the stability of developed model were verified using a split-
sample procedure (Table 3). The calibration-validation ex-
ercise indicated stability of the relationship over the two
halves of the available instrumental data period. The simi-
larity and strength of the derived calibration equations and
verification tests of the two subset periods (Fig. 4) justify
using the full period for developing the sunshine recon-
struction. Additionally, the spatial strength of the weighted
standardised chronology was tested using spatial correla-
tion calculations in the KNMI Climate Explorer (van Old-
enborgh, 1999). Our chronology correlates best with mean
June–July Palmer Drought Severity Index (PDSI) for Eu-
rope, as a measure of soil moisture. Even though that so-
lar radiation and sunshine hours vary significantly within
the Carpathian-Balkan-Dinaric region (Niedźwied́z, 2012),

Table 2. Correlation values (Pearson’sr) between the TRW series
(individual site chronology and average, calculated as simple mean
of all sites) over the calibration (upper triangle-period of measured
sunshine data) and in the remainder of the common period (lower
triangle-period before the measured sunshine data). No statistically
significant differences were discovered between any of the pairs of
correlation coefficients (z-test for two correlation coefficients).

Calibration period of measured sunshine data 1958–2007

Site Blace Konjuh Krivaja Perǔcica Prusac Šator Šipovo average

Blace 0.33 0.30 0.42 0.39 0.06 0.36 0.61
Konjuh 0.45 0.39 0.62 0.51 0.34 0.55 0.78
Krivaja 0.32 0.42 0,36 0.39 0.33 0.44 0.66
Perǔcica 0.52 0.59 0.40 0.65 0.37 0.62 0.78
Prusac 0.40 0.61 0.38 0.57 0.42 0.70 0.79
Šator 0.08 0.30 0.22 0.25 0.33 0.43 0.55
Šipovo 0.30 0.52 0.47 0.62 0.58 0.25 0.79
average 0.66 0.80 0.66 0.79 0.78 0.48 0.74

Period before measured sunshine data 1813–1957.

we have calculated high correlation values in the region of
Croatia (0.6< r < 0.5, p < 0.05) and in the “triangle-like”
area (0.4< r < 0.3, p < 0.05) extending from Slovenia to
Slovakia in the north and south to Greece (Fig. 3). This
makes our regional chronology a valuable proxy for large-
scale summer sunshine hours reconstruction.

3.3 Reconstruction and identification of extreme
summers

Mean value of June–July sunshine hours in the period of
available data is 268 h, with minimum value of 220 in the
year of 1989 and maximum of 317 in 2000. The total range
of measured mean June–July sunshine values over the en-
tire instrumental period 1958–2007 is 96 h, but the recon-
structed range over the same period is only 43; a reduction
of 55 %. To avoid this bias we “scaled” the proxy series so
that it has the same mean and variance as the climatic tar-
get data over the calibration period (Esper et al., 2005; Mc-
Carroll et al., 2013). After scaling, reconstruction produces
a range of 80 h over the instrumental period, a loss of only
17 % comparing to the measured data. The threshold June–
July sunshine values of the period 1660–2010 were com-
puted at 247 h (1 SD) and 226 h (2 SD) for identification of
less-sunny summers and at 289 h (1 SD) and 310 h (2 SD)
for very sunny summers. With sunny weather thresholds we
were able to reconstruct 5 (2 SD) and 55 (1 SD) very sunny
summers, while with less-sunny thresholds we identified 6
(2 SD) and 58 (1 SD) summers with less-sunny weather (Ta-
ble 4). In the period of available sunshine data (1958–2007),
we were successful at identifying the very sunny summer of
2000 and the less-sunny summers of 1966, 1974, 1975 and
1983, while we were just beneath 1 SD threshold level for
extreme years (by just 4 sunshine hours per month) in years
1959, 1968, 1969, 1986 and 1988. Sampled trees failed to
respond to low June–July sunshine values in 1989 and 2004,
and high sunshine values in 2006 and 2007.
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Fig. 3. Correlation values (p < 0.05) between weighted-TRW in-
dices and mean June–July CRU Palmer Drought Severity Index
(scPDSI), calculated in KNMI explorer (van Oldenborgh, 1999).

4 Discussion

4.1 Climate signal and reconstruction

Investigation of the climate signal in theP. nigra TRW
chronologies is based on previously developed site chronolo-
gies for the north-western part of the Balkan Peninsula (Pol-
jaňsek et al., 2012). Each site chronology was compared to
Bjelǎsnica climate data and sunshine data for Osijek area.
Studies from the Alps report positive correlations with sum-
mer mean temperature (Rossi et al., 2007; Frank and Es-
per, 2005; Carrer et al., 2007), while sites from the Mediter-
ranean area are more precipitation sensitive (Touchan et al.,
2005). Variability of the radial growth ofP. nigra from the
mountainous western part of the Balkan Peninsula can be ex-
plained with the amount of summer sunshine hours, because
June–July sunshine can be indirectly connected to moisture
stress. So far, there are no results on cambium activity ofP.
nigra from BiH, but we can assume that the June–July period
is the most important part of the growing season for tree ring
formation (Grǐcar andČufar, 2008).

Although significantly positive, the precipitation signal in
the TRW is not as strong as the sunshine signal. NaturalP.
nigra stands on mountainous sites are found on south facing
slopes (Bussotti, 2002), where the trees with maximised cli-
mate signal can be expected. Soils on these sites have quite
high infiltration rates in summer and much lower rates dur-
ing the wet seasons (Cerdà, 1997). During spring trees ac-
cess water, available in the shallow soil layers, while dur-
ing summer drought, when the highest response to moisture
stress would be expected,P. nigratrees conduct hydraulic lift
and access deep water source (Penuelas and Pilella, 2003).
They also have efficient drought-response of needle tracheids

Fig. 4. Time series plots of measured (solid grey line) and recon-
structed mean June–July sunshine hours for the calibration and ver-
ification periods of the split sample procedure (solid and dashed
black line).

Table 3.Statistics of calibration/verification procedure between the
P. nigra weighted mean chronology and mean June–July sunshine
hours; RE – reduction of error; CE – coefficient of efficiency;r2 –
squared regression coefficient or explained variance.

Calibration Verification

Period r2 r2 RE CE

1983–2007 0.25a 0.26b 0.38 0.15
1958–1982 0.26b 0.25a 0.34 0.17
1958–2007 0.29c

Stars denote significance (a =p < 0.05, b =p < 0.01,c =p < 0.001).

(Cochard et al., 2004) and possibly similar toP. sylvestris,
water storage in the stem and branches (Waring et al., 1979).
Furthermore, precipitation is locally distributed and therefore
weather station data does not show the actual amount of pre-
cipitation at the sites. Annual precipitation along western part
of Dinaric mountain chain reaches amounts of 2000 mm or
more, for example, in year 1900, Bjelašnica station recorded
3157 mm of precipitation. One of the reasons for the high
amount of precipitation is the Dinaric Mountains, which acts
as a climatic barrier between Mediterranean and continen-
tal climate, similar to the Pirin Mountains in southwest Bul-
garia which spatially mark a transition between the Mediter-
ranean and temperate climate zones (Grunewald et al., 2009).
All these factors contribute to relatively low correlation be-
tween mean monthly precipitation and tree-ring indices in
BiH, whereas an increasing influence of precipitation on tree-
growth is observed towards the interior of the Balkan Penin-
sula in Romania (Levanič et al., 2012) and in the Central Eu-
rope in the Vienna basin region (Strumia et al., 1997), where
P. nigra reacts more strongly to July rainfall. Similar re-
sults have also been reported from Turkey, whereP. nigrare-
sponds positively to summer precipitation and not to temper-
ature (Sevgi and Akkemik, 2007). In contrast to the relatively
uniform response to a single climatic factor, a combined re-
sponse ofP. nigra to precipitation and temperature has been
reported from Albania and Spain. In Albania, a significant
negative response to June, July and August temperatures
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Table 4.List of years with extreme summers, aligned from the years
with the highest standard deviation (SD) from the mean to years,
closer to mean value. Event years in bold are common to results
from other studies, see Table 5.

Sunny summers

2 SD 1742, 1908, 1945, 1695, 1931

1 SD 1725, 1696, 1929, 1950, 1697, 1947, 1865, 2000,
1802, 1944, 1806, 1782, 1808, 1694, 1830, 1958,
1854, 1948, 1909, 1891,1803, 1773, 1788, 1932,
1707, 1825, 1933, 1893, 1779, 1869, 1702, 1957,
1698, 1875, 1840,1807, 1907, 1703, 1952, 1741,
1763, 1666,1784, 1755, 1726, 1789, 1785, 1863,
1922, 1868, 1769,1874, 1946, 1665,1720

Less-sunny summers

2 SD 1899, 1843, 1810, 1815, 1712, 1966

1 SD 1818, 1816, 1814, 1799, 1736,1772, 1985, 1838,
1984, 1885, 1926,1845, 1871, 1821, 1914, 1681,
1682, 1683,1692, 1819, 1714, 1833, 1879, 1975,
1691, 1680, 1913, 1876, 1837, 1693, 1897, 1915,
1900, 1713,1832, 1846, 1844, 1898, 1820, 1886,
1974, 1978, 1684, 1722,1783, 1902, 1679, 1813,
1826, 1738,1970, 1983, 2009,1729, 1912, 1927,
1780, 1936

and positive response to June precipitation on the tree radial
growth has been observed (Levanič and Toromani, 2010). In
Spain, the standardised precipitation-evapotranspiration in-
dex is recognised as the main climatic driver ofP. nigra ra-
dial growth (Mart́ın-Benito et al., 2012), although the trees
are still sensitive to July and August temperature and precip-
itation (Mart́ın-Benito et al., 2010a). Beside significant cor-
relations between summer climate factors and TRW indices
in BiH, we also discovered a positive correlation (r = 0.35,
p < 0.01) with spring temperatures as well (Fig. 2). Spring
(January to March) temperatures have no direct influence
on cambium activity, but their positive influence on radial
growth can be explained through early start of cambium ac-
tivity in warm March and with water availability at the be-
ginning of the growing period. Mild and wet winters over
the western part of the Balkan Peninsula are connected to
negative North Atlantic Oscillation (NAO) phases (López-
Moreno et al., 2011; Vicente-Serrano and López-Moreno,
2005). In negative NAO winters, the western Balkans expe-
rience anomalously cyclonic circulation and enhanced pre-
cipitation and therefore sufficient soil recharge which has a
positive influence on a wider radial increment ofP. nigra.

When testing the ability of the linear model to reconstruct
June–July sunshine hours, decreased sensitivity of radial
growth to summer sunshine between 1977 and 1985 was no-
ticed (Fig. 4). In this period trees have complacent rings, giv-
ing an impression of very little climatic influence on annual
tree growth. According to Mariotti and Dell’Aquila (2012),

this period from the end of the 1960s to the beginning of the
1990s was characterised by outstanding decadal variations of
summer sunshine values and therefore temperatures over the
entire Mediterranean region, with maximum of the precipi-
tation trends in the 1960s (Xoplaki et al., 2006). The sum-
mer of 1976 was the coolest summer of the second half of
the twentieth century over the northeastern Mediterranean,
while this same summer was one of the hottest and driest in
the United Kingdom (Xoplaki et al., 2003a). Mediterranean
summer temperature anomalies were also very well reflected
in BiH, where the coolest summer was recorded in 1974 and
the warmest summers in 1994, 1998 and 2000. The trend for
the period 1950 to 1960 is−1.15◦C per decade, whereas a
trend of 0.5◦C per decade was recorded for the period be-
tween 1980 and 1999 (Xoplaki et al., 2003b). There is also
a clear tendency for wetter summers between 1967 and 1985
over the Balkan region, when compared to previous decades
(Blade et al., 2011). In our research we identified summer
2000 as sunny and 1974 as less-sunny (Table 4). Also, from
the period of wetter summers 1967–1985, we identified 7
out of 19 summers as less-sunny (1970, 1974, 1975, 1978
and 1983–1985). Regional processes and feedbacks modu-
late the influence of large scale anomalies during summer
over the Mediterranean. Mariotti and Dell’Aquilla (2012)
have shown that these processes may involve cloud cover,
land surface modifications and include positive soil moisture-
precipitation and soil moisture-temperature feedback. Many
regional processes that were modified due to increased sum-
mer NAO could mask the significant relationships among
precipitation, temperature and tree growth. These processes
can have a profound impact on tree growth, since incoming
solar radiation and moderate heat flux are supporting factors
for growth (Weitzenkamp et al., 2007). Changes in incoming
solar radiation due to increased cloud cover could weaken
the temperature and precipitation growth relationships ofP.
nigra by having a direct effect on gross primary production.
Identification of significant processes is beyond the scope of
this article but should be addressed in future studies.

4.2 Identification of extreme summer events

In our reconstruction there is a noticeable period from the
beginning of the reconstruction in 1660 until 1695 (Fig. 5).
This period is part of the Late Maunder Minimum (Luter-
bacher et al., 2001) and it signifies the climax of the so-called
“Little Ice Age” in which Europe experienced predominant
cooling (Xoplaki et al., 2001) and marked climate variabil-
ity (Luterbacher et al., 2000). Summers in western and cen-
tral Europe were wetter and slightly cooler than they are to-
day due to a weaker Azores high (Luterbacher et al., 2001).
During “Little Ice Age”, the period 1725–1775 was warm
and sunny in northern Norway (Young et al., 2010), while in
BiH we noticed sunny period from 1695–1790 (Fig. 5). The
coldest decade of the millennium over the Northern Hemi-
sphere was in 1691–1700 (Jones et al., 1998). This partly
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Table 5.Records of reconstructed sunny/less-sunny summers based on TRW from BiH, with standard deviations (SD) and their comparison
with other related available documentary sources.

Sunny Less-sunny SD Historical event Reference

1975 1 Slovakia: wet in June–August Büntgen et al. (2010b)
1970 1 Slovakia: wet in June–August Büntgen et al. (2010b)

1950 1 Italy, south area: one of the hottest summers Camuffo et al. (2010)
1948 1 Slovakia: dry spell from March–August Büntgen et al. (2010b)
1946 1 SW Romania: year of great famine Levanič et al. (2012)
1945 2 Driest years in Bulgaria during the 20th Koleva and Alexandrov (2008)

century (1945 and 2000)
1931 2 Warm period in Bulgaria Trouet et al. (2012)

1927 1 Slovakia: wet from March–August Büntgen et al. (2010b)
1912–1915 1 Taal eruption, Indonesia in 1911 Mastin and Witter (2000)

1908 2 Anatolia: major drought and famine event Akkemik et al. (2005)
1899 2 Etna eruption: central explosion in July Bonaccorso et al. (2004)
1876 1 Czech Lands: downpours in summer with local floods Büntgen et al. (2010b)

1874 1 Province of Ankara, Turkey: a devastating drought Touchan et al. (2007)
1871 1 Czech Lands: 3 weeks of rain in July–August Büntgen et al. (2010b)
1844–1846 1 Etna eruption in 1842 and 1843, clouds in 1844–1846 Bonaccorso et al. (2004)
1843 2 Etna eruption in 1842 and 1843, clouds in 1844–1846 Bonaccorso et al. (2004)
1832–1833 1 Etna eruptions in 1831 caused clouds in 1832–1833 Bonaccorso et al. (2004)

1830 1 Slovenia: great heat and drought in July and August Ogrin (2002)
1825 1 Slovakia: dry and warm April; long-lasting drought before Büntgen et al. (2010b)

late July; Czech Lands: very dry in July
1815 2 Volcano Tambora explosion, Indonesia in April Xoplaki et al. (2001), Boers (1995)
1810 2 Large stratospheric eruption in 1809 of a volcano in the tropics Cole-Dai et al. (2009)

1806–1808 1 Slovakia: dry and warm in May–August Büntgen et al. (2010b)
1802–1803 1 Serbia: the lack of rain from May until October Xoplaki et al. (2001)
1789 1 Slovakia: great drought in May–June Büntgen et al. (2010b)
1782, 1784 1 Romania: extremely dry years Levanič et al. (2012)

1783 1 Eruption of Laki in southern Iceland Grattan and Pyatt (1999)
1782 1 Slovakia: hot two weeks in June, warmth continuing in July–August Büntgen et al. (2010b)

1772 1 Czech Lands: rainy June Büntgen et al. (2010b)
1742 2 Anatolia: extremely dry year Akkemik et al. (2005)

1729 1 SE Romania: extremely wet year Levanič et al. (2012)
1725, 1726 1 SE Romania: drought in 1725 Levanič et al. (2012)

Anatolia: 2-yr long major drought Touchan et al. (2007)
1720 1 Mediterranean: one of the hottest summers Camuffo et al. (2010)

1712 2 Greece: drought, bad harvest, high prices, famine Xoplaki et al. (2001)
1712–1714 2 Awu eruption on December, 1711 in Indonesia Clor et al. (2005)

1707 1 Anatolia: dry year Akkemik et al. (2005)
1696, 1697 1 Anatolia: dry years Akkemik et al. (2005)
1695 2 Cold summer, famine in England, Ireland Lindgrén and Neumann (1981)

1691–1694 1 Crete: bad harvest, famine, high prices olive-oil Xoplaki et al. (2001)
1691–1693 1 Northern Hemisphere: Jones et al. (1998)

The coldest decade 1691–1700 of the millennium

fits to our results, as the years of 1679–1684 and 1691–1693
were recognised as years with less-sunny summers. But af-
terwards, our reconstruction shows the period of 1694–1698
as years with sunny summers and even more; the summer of
1695 was recognised as the fourth sunniest summer in our
reconstruction (Table 4). In the northern and continental part
of Europe, this year was extremely cold and wet (Lindgrén
and Neumann, 1981), while in Aegean sea area drought in
the autumn destroyed harvest (Xoplaki et al., 2001). This
long dry period from the late autumn of November 1695
to January–February of 1696 resulted from anticyclone con-
ditions prevailing over central, eastern and south-eastern
Europe, which prevented crossing of low-pressure systems

towards the Balkans (Xoplaki et al., 2001). This, dominant
atmospheric circulation pattern between the British Isles and
Balkan Peninsula, has been also recorded by a summer re-
construction from north-eastern Mediterranean (Trouet et al.,
2012). On a smaller scale, our results support this strong and
consistent anti-phase relationship, which suggests that the
summer NAO pattern is the main driving force of the tele-
connection between summer temperatures in south-eastern
versus north-western Europe (Trouet et al., 2012). We sup-
port this idea with identification of extremes (Table 4). In
general, summers with low values of sunshine hours are re-
lated to oscillation patterns from continental Europe and re-
gions north of BiH; e.g. 1975, 1970, 1927, 1876, 1871 and
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Fig. 5. Reconstructed (black line) and measured (shorter red line) mean June–July sunshine hours. Solid grey lines delineate two, while
dashed grey lines represent one standard deviation from the mean, calculated over the reconstructed period 1660–2010. Black dots mark
identified extreme summers and arrows indicate larger volcano eruptions; Awu (Clor et al., 2005), Vesuvius (Scandone et al., 2008), unknown
and Tambora (Cole-Dai et al., 2009), Etna (Bonaccorso et al., 2004) and Taal (Mastin and Witter, 2000).

1772. On the other hand, sunny summers are more related
to oscillations from the south-eastern and continental part of
Balkan Peninsula; e.g. 1945, 1931, 1802, 1784 and 1729, or
south-eastern/eastern Mediterranean; e.g. 1950, 1908, 1874,
1742, 1725, 1726, 1720, 1707 etc. (Table 5). The BiH area
proved to be a good area for further extreme climatic events
investigations, as it is located in the transition zone between
Mediterranean and continental influence, therefore the trees
react to climatic extremes from both zones. This could be the
reason why we have many common summer climatic events
with Slovakia, and on the other hand years when growth sea-
sons were different between these two regions. For example,
cold and wet conditions in the spring of 1725 prevailed over
Slovakia and later during the summer, extensive anomalous
low-pressure conditions, extending from northern to central
Europe, have been connected with disastrous floods in Slo-
vakia (Bŕazdil et al., 2008), while BiH and Romania (Lev-
anǐc et al., 2012) were influenced by the hot, sunny summer
weather from the eastern Mediterranean, similar to Anato-
lia and Syria (Touchan et al., 2007). After severe and snowy
winter 1725/1726 in Slovakia (Brázdil et al., 2008), summer
drought extended from Turkey (Touchan et al., 2007) and in-
fluenced both; BiH and Slovakia area (Brázdil et al., 2008).

Special awareness must be made when identifying extreme
years and their possible causes. With mean June–July sun-
shine hours, we explain 21 % of the variability of the TRW
indices. Aside to negative summer sunshine correlation val-
ues, there is also a positive correlation between TRW indices
and spring temperatures (Fig. 2). This means that extremely
cold winters could affect the cambium and limit its activ-
ity (Jyske et al., 2012). In such years TRW could be nar-
rower, despite the possible good growth conditions later in
the summer. Therefore, it is important to verify newly iden-
tified extreme climatic events (Table 5). One such case is the
winter 1782. This winter is reported to be harsh and cold
in Greece, with Lake Karla freezing and the destruction of
olive and fruit trees, death of animals; for BiH plague and

the deaths of people are mentioned (Xoplaki et al., 2001).
Later in that year, drought events during the summer sea-
son extended north to Slovakia (Büntgen et al., 2010a), east
to Romania (Levanič et al., 2012) and to the western Black
Sea region of Turkey (Akkemik et al., 2005). The summer of
1782 was also recognised in our reconstruction as a year with
high moisture stress during the growing season. The next ex-
ample happened in the period of existing instrumental data
in BiH. Winter of 1928/1929 was characterised as extremely
cold in Slovakia (B̈untgen et al., 2011) and as the winter
when sea froze in the Venice lagoon (Winchester, 1930).
The measured mean January–March temperature in 1929 for
Sarajevo-Bjelave was, according to Federal Hydrometeoro-
logical Institute of BiH,−20◦C, while the long-term aver-
age (1889–2009) is−11◦C. In the following summer season
mean temperature did not differ from long-term mean, but
our reconstruction showed summer with above average sun-
shine hours (Table 4).

In search for explanations for less-sunny summer events,
we also reviewed the influence of natural forcing on climate
of the western part of Balkan Peninsula. The years with sur-
prisingly low summer sunshine values matched well with
years of major volcanic eruption, similar to strong volcanic
forcing system in the North (McCarroll et al., 2013). This im-
pact can be seen in abrupt change in the same growth year,
lagged by one year, or as a prolonged effect, due to the in-
fluence of volcanic eruptions and sulphate loadings and con-
sequently on tree-growth (Breitenmoser et al., 2012). We no-
ticed the importance of strength, location and the length of
volcano eruption, as well as the season of activity (Mastin
and Witter, 2000). In the years of 1666, 1695 and 1698
Kuwae volcano erupted in the southwest Pacific (Briffa et
al., 1998). While years 1666 and 1695 are both the dates
of the eruption, our study identifies them as sunny. This in-
dicates that western part of Balkan Peninsula was not in-
fluenced by volcanic eruptions from south-western Pacific.
On the other hand, Tambora explosion in Indonesia (1815),

www.clim-past.net/9/27/2013/ Clim. Past, 9, 27–40, 2013
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whose eruption is counted as the largest historically docu-
mented eruption of the modern (instrumental) era (Briffa et
al., 1998), is recorded in our tree ring series as the fourth
summer with the lowest sunshine values in the reconstruc-
tion period. After Tambora, eruptions of Raung and Ijen, also
from Indonesia, took place in the year 1817 (Mastin and Wit-
ter, 2000). Our reconstruction describes the period of 1813–
1821, with exception of 1817, as summers with a low num-
ber of sunshine hours. This decade is also counted as prob-
ably the coolest in the last 500 yr (Cole-Dai et al., 2009).
We can consider that one massive eruption has influence on
more growth periods, like Taal volcanic eruption from Philip-
pines in the 1911 (Mastin and Witter, 2000), which seems to
have affected tree growth in BiH in the following 4 yr (1912–
1915). We observed the same results in the years after Kraka-
toa eruption in 1883 (Rampino and Self, 1982). Closer to BiH
an eruption of volcano Vesuvius (Italy) happened in May,
1771 and lasted for a whole month (Scandone et al., 2008).
Its influence is not recorded in the same year, but the follow-
ing summer had low value of sunshine hours (Table 4). Influ-
ence of longer volcanic eruptions on tree-growth is seen in
the long Vesuvius eruption, starting in July, 1895 and lasting
till September, 1899, being active for more than 1500 days
(Scandone et al., 2008). Vesuvius is located southwest from
BiH, but as there is in the beginning of the growing season
a north–northeasterly flow over the eastern Mediterranean
area (Kostopoulou and Jones, 2007), volcanic dust was trans-
ported towards the Dinaric mountains. This explains why we
identified following years 1897–1900 and 1902 as less-sunny
(1 SD) and 1899 as year with extremely low amount of sun-
shine (Table 4). With volcanic eruptions, we connected all
summers with sunshine values below 2 SD; Vesuvius in 1899
(Scandone et al., 2008), Etna (Italy) in 1843 (Bonaccorso et
al., 2004), unknown in 1810 and Tambora in 1815 (Cole-Dai
et al., 2009), Awu (Indonesia) in 1712 (Clor et al., 2005) and
Taal in 1966 (Mastin and Witter, 2000). The results of this
research open many new fields of potential future investiga-
tions. But for a more detailed examination of the discovered
BiH extreme summer sunshine events and their connection
to volcanic eruptions, further inquiries with applications of
data on sulphur loadings, power of eruption and its length
should be addressed. Further, special investigation on avail-
able documentary archives with an emphasis on the whole
region of the western Balkans is needed. Especially for those
events which may be limited to the BiH area only and are not
confirmed by documentary sources from outside the BiH.

5 Conclusions

We conclude that summer mean June–July sunshine hours
from Osijek station (Croatia) are the most appropriate proxy
for the moisture stress, which influences the radial growth
of P. nigra in mountainous sites in the Bosnia and Herze-
govina area. With application of the z-score method and

weighted mean calculation, one reliable regional chronol-
ogy, as a representative for the whole western part of Balkan
Peninsula, was calculated. With values of 2 SD for identi-
fying extreme climatic events, we discovered 5 extremely
sunny (1742, 1908, 1945, 1695, 1931) and 6 summers with
extremely low values of sunshine hours (1899, 1843, 1810,
1815, 1712, 1966). All identified 6 summers with the low-
est number of sunshine hours from BiH area are connected
to volcanic eruptions in the past. Major part of other less-
sunny summer events overlap with reported events from re-
gions north of the Balkan Peninsula, while sunny summer
events are more related to events from inner, continental part
of Balkan Peninsula or Mediterranean area. Besides climate
forcing of moisture stress, impact of volcanic eruptions have
been connected and their influence discussed, but for detailed
explanation of the relation between moisture stress and sun-
shine values, more thorough identification of these relation-
ships, including multispecies tree ring network and/or iso-
tope analysis, should be addressed in the future.
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