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Abstract— We propose a human-robot cooperation scheme
for bimanual robots. After the initial task demonstration, the
human co-worker can modify both the spatial course of motion
as well as the speed of execution in an intuitive way. To achieve
this goal, speed-scaled dynamic motion primitives are applied
for the underlying task representation. The proposed adaptation
scheme adjusts the robot’s stiffness in path operational space,
i.e. along the trajectory. It allows a human co-worker to be
less precise in the parts of the task that require high precision,
as the precision aspect can be provided by the robot. The
required dynamic capabilities of the robot were obtained by
decoupling the bimanual robot dynamics in operational space,
which is attached to the desired trajectory. The proposed
scheme was validated in a task where two Kuka LWR-4 robot
arms cooperate with a human to carry an object.

I. INTRODUCTION

Physical human-robot interaction (pHRI) with an aim
towards cooperatively performing a task (human-robot co-
operation) distinguishes between two levels of control [1].
In the most common one, the human operator has complete
control over the evolution of the joint task and plays the
role of a master, while the robot plays the role of the slave.
The interaction is provided through force or visual feedback
[2]. Alternatively, the task can be controlled by the robot and
only initiated by the human [3]. Finally, in some applications,
e. g. in rehabilitation robotics [4], the control over the task
evolution is dynamically shared between the human and the
robot [5].

A. Problem statement

In this paper we investigate the learning of robot behavior
during bimanual human-robot cooperative tasks. In order to
achieve natural learning and adaptive execution of human
robot cooperation, the task control must

« allow non-uniform changes of execution speeds,

o enable effective bimanual robot control by properly
representing the kinematics and dynamics of a bimanual
system,

« enable adaptation of a trajectory during its execution,
without the need to re-plan the whole task when a new
situation arises,

« provide a certain degree of cooperative intelligence, i.e.,
it should be compliant when accuracy is not needed, but
stiff when it is needed.
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While pHRI has been heavily investigated in the past [2],
[3], [4], [6], including for bimanual robot operations [7], [5],
[8], an approach that fulfils the given problem statement, to
the best of our knowledge, has not yet been proposed.

In this paper we propose a bimanual control scheme where
the robot constantly learns from the interaction with the
human. During the initial learning of the task, the control is
handled by the human operator. During the task repetition,
the task is analyzed and the robot gradually takes control
over the parts with low variance of executed trajectories. The
human can at any time take back the control over the task
execution by again increasing the variance through physical
interaction.

B. Related work

Related work can be separated into two distinct research
topics: policy representations and bimanual robot control.
Policy representations include learning by demonstration,
variability distribution and non-uniform speed changes.

Policy representation with variability distribution

One of the important characteristics of motor skills is
not only the path that the robot should follow, but also the
variation of coordination patterns during the movement [9].
A promising paradigm to cope with such requirements is
to encode the task as a dynamical system. Calinon et al.
[10] proposed a representation based on Gaussian mixture
model (GMM), which sequentially superimposes dynamical
systems with varying full stiffness matrices. Another suitable
representation is probabilistic motion primitives (ProMP)
[11], which allows to encode behavior of a stochastic system.
Although both representations allow speed scaling, they can
not handle non-uniform speed scaling in its original form.
In our approach we will apply the framework of dynamic
motion primitives (DMP) [12] and its extension to cope with
non-uniform speed changes [13].

Bimanual control

There are several approaches how to deal with the biman-
ual robot. Earlier control architectures [14], which exploit
physical interaction between the robots are often enhanced
with learning to synchronize motion of both arms [15], [16].
Using the concept of augmented object and virtual linkage
model, Khatib [17] implemented a decentralized control
between multiple mobile manipulators, applicable also to the
bimanual control. Nowadays, most of the bimanual control
architectures are based on the decomposition of the task into
so called absolute and relative coordinates and underlying



internal and external forces [18]. We proposed an extension
of this scheme [19] that properly decouples both subspaces
— motion in absolute coordinates does not affects relative
coordinates and vice versa. This property allows us to apply
kinematic control to both subsystems independently. In this
paper we further extend this approach to decouple also the
dynamic properties of both subspaces.

The paper is organized as follows. In section II we outline
the dynamic movement primitives framework along with the
extension for speed profile encoding. Next, in section III we
present the bimanual control architecture with our extensions.
The main contribution is described in Section IV, where we
combine the sub-aspects of the solution. An application of
the proposed approach to bimanual physical human-robot
cooperation is presented in section V. A short summary
concludes the paper.

II. LEARNING BY DEMONSTRATION FOR HUMAN-ROBOT
COOPERATION SCHEME

Human-robot cooperative task execution is usually initi-
ated by demonstration, where kinesthetic guiding can be used
to capture the desired robot motion. This process is followed
by encoding trajectories in a more compact parametric rep-
resentation, which allows us to store lengthy demonstration
with a limited set of parameters. In our work we rely
on motion representation with dynamical motion primitives
(DMPs) [12], extended for Cartesian space movements [20].
In the original formulation of DMPs it is not possible to
variate the speed of movement in a non-uniform way without
changing the course of movement. In our approach we need
to apply non-uniform speed changes, thus an appropriate tra-
jectory representation is required. A suitable representation
is Speed-Scaled Dynamic Motion Primitives (SS-DMPs),
which we originally developed in [13].

First we acquire the initial movement policy in Cartesian
coordinates by kinesthetic gudining
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where pr € R? are the positions, q, € S3 are the unit
quaternions describing orientation, S? is a unit sphere in R?,
k are trajectory samples, and 7" is the number of samples.

Next, we parameterize the demonstrated policy with a
nonlinear dynamical system [12], [13], [20], which enables
the encoding of general trajectories. For positions p and ori-
entations q, the trajectory can be specified by the following
system of nonlinear differential equations
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where x is the phase variable and z and 7 are auxiliary
variables. The system (2) — (6) converges to the unique
equilibrium point at p = g,, 2 = 0, q = go, 7 = 0,

and x = 0. Asterix * denotes the quaternion multiplication
and g quaternion conjugation. See Eq. (28) for the definition
of quaternion logarithm. The nonlinear forcing terms f,(z)
and f,(z) are formed in such a way that the response of
the second-order differential equation system (2) — (6) can
approximate any smooth point-to-point trajectory from the
initial position py and orientation gq to the final position g,
and orientation g,. They are defined as linear combinations
of radial basis functions (RBFs)
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where free parameters w;,, w;, determine the shape of
position and orientation trajectory. Centers ¢; of RBFs with
widths h; are evenly distributed along the trajectory. By
setting o, = 45, > 0 and «, > 0, the underlying second
order linear dynamic system becomes critically damped.

Compared to [20] and analogous to [13], we introduced the
temporal scaling function v(x) with which we can specify
variations form the demonstrated speed profile. Similarly
to the forcing terms (7) and (8), it is encoded as a linear
combination of RBFs
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where v; are the corresponding weights.

In order to parameterize the demonstrated control policy
with a DMP, the weights w;, w;, and v; need to be
calculated. The shape weights w; , and w; , are calculated
by applying standard regression techniques [20], using the
demonstrated trajectory (1). For v we initially set v; = 0,
i.e. v = 1, meaning that the demonstrated speed profile is
left unchanged.

vizg) =1+ (10)

III. BIMANUAL ROBOT CONTROL

The control scheme used in our bimanual human-robot co-
operation scheme is an extension of the previously proposed
approach [21]. It allows the specification of the task in terms
of geometrically meaningful motion variables, referred to as
relative and absolute task motion of the cooperative system
[7], [18]. In this work we further extend the control scheme
in order to independently set also the dynamic properties in
both subspaces.

First, we define the common base coordinate systems 7
for both arms, as illustrated in Fig. 1. We use the notation
where superscript {1,2,b} denotes that the given quantity
is specified relative to the coordinate system 7;', while the
subscript 4, ¢ € {1,2} denotes the arm of a bimanual system

11 relates to the tool center point frame of the first robot arm, 2 to the
tool center point frame of the second robot arm, and b to the common base
of the dual arm system.



Fig. 1.
paper.

Dual arm manipulator and the corresponding notation used in the

and j, j € {a,r} denotes relative and absolute coordinates.
Absolute and relative task coordinates are defined as

1
o pI{ + pg)a
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where p,,p, € R? are the position vectors and R,, R, €
R3*3 the rotational matrices. ki, and 2 are the axis and
angle that realize the rotation that describes the orientation of
tool center point frame 2 with respect to frame 1. Note that
our definition of relative coordinates is different from [21]
because we multiply the difference vector p} — p% by R .
This makes the relative motion independent of the absolute
motion. In quaternion notation, (12) — (14) are in the form

o = da *a (021/2), (15)
(0,p,) = @} =(0,p—p})*qj (16)
a = a3=a g, (17)

where the unit quaternions q%, q5 € R* express the
orientation of the tool center point of the first and the second
robot in the common base coordinate frame 7, respectively.
;. (921/2) denotes the unit quaternion corresponding to
Rll(él(ﬂgl/Q).

In order to control the robot, we have to map the desired
relative and absolute task coordinates to the correspond-
ing joint coordinates of both robots, denoted with § =
07,05]T € RN1+N2 where Ny and N, is the number
of joints of the first and the second robot, respectively.
This transformation is obtained through relative and absolute
geometrical Jacobian, which maps the corresponding trans-
lational and angular velocities to the joint velocities
[ Pr } =1J,0, “’j } —7J,0.

a

(18)

As explained in [21], the absolute Jacobian can be computed
as follows

Jo=1[ 331 132 ]. (19)

The derivation of relative coordinates (13) is more complex
because they involve multiplication with R} . Since these
formulas are different from [21], we provide the full deriva-
tion. By differentiating (13) we obtain
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where S(z) is a skew-symmetric matrix constructed from
y
vector £ € R3. Here we used the fact that R = S(w)R,
S(Rz)Ry = R(S(z)y), Réw} = w} (because rotatlon
doesn’t change the axis it is rotating about), and S(z)y =
—S(y)z. Similarly, by differentiating R,. we obtain
T T
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Where we used the fact that RS(z)R* = S(Rz) and
R1 w’ = wb. Tt follows from (20) and (21) that
T
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To control both absolute and relative coordinates, we
define extended task coordinates X, = [pl,ql,pl,ql]"
and extended Jacobian J. = [JT,JT]T. We apply the well
known impedance control law for kinematically redundant
robots [22] in the form

pe=JITM, ( ~J 0) +H,NO +h, (23)
where p. is the control torque input for the motors, M, =
(J.H-1IT)~1 denotes the positive definite matrix of inertia

expressed in rotated operational space coordinates, H, =

H 0 . - L .
[ 01 H is the extended joint space inertia matrix

2

composed of inertia matrices of both arms, N =I1—-J.J. is
the null space matrix that maps manipulator joint velocities
and manipulator torques to the null space of J.. h, =
[hi,h3]" is a vector that compensates for Coriolis, radial
and gravity forces of the manipulator and the load. J. =
H_'JTM denotes the inertia weighted pseudo-inverse of
J.. 6y € RVi+N2 g a vector that defines the null space

motion. The task command input X, =

[Bac: Wacr Pres @yl
is chosen as
Pac = Pad+ Dap€ap + Kap€ap, (24)
Wae = Wad T Dageaw + Kag€ag, (25)
Pre = DPrd + Drpérp + Kipepp, (26)
Wre = Wrd + Drgery + Kigerg, (27)



where position and orientation tracking errors are defined as
€ = Pi— D, € = wg —w, e = 2log(q, * qq). The
quaternion logarithm log : S — R? is given as

u
—_— 0
Tl 7

[0,0,0]T, otherwise

arccos(v)

log(q) = log(v,u) = (28)

Its inverse, i. e. the exponential map exp : R3 — 8, is defined
as

L7 r#0

x| (29)
1+10,0,0]T, otherwise

cos (||r[]) + sin (||r[])
exp(r) =

Subscripts (.), and (.), stand for absolute and relative
coordinates, respectively. Subscript (.)q denotes the desired
values and variables without the subscript denote the current
entities calculated from the robot joints. Dgy, Dyg, Dy,
D,q, Kop, Kug, Kip, K, are diagonal, positive definite
positional damping, rotational damping, positional stiffness
and rotational stiffness matrices for absolute and relative part
of motion, respectively. They specify the properties of the
controller in the Cartesian coordinate system.

In this study we are not interested in the null-space
optimization. However, the null space has to be controlled in
order to prevent non-conservative motion. One appropriate
choice is given in the form 8, = —K,0 [22] , where
K, € RIN1+N2)x(N1+N2) g 3 positive definite diagonal gain
matrix.

IV. HUMAN-ROBOT COOPERATION SCHEME

In the proposed system, the human operator first demon-
strates the desired cooperative humanoid robot motion by
kinesthetically guiding the robot arms. The demonstrated
motion is transformed into relative and absolute coordi-
nates as described in Section III and encoded by SS-DMPs
(Pa,4a; Pr,d:) as explained in Section II. The demonstra-
tion of the absolute motion is typically performed slower than
actually desired because it is not possible to demonstrate the
movement with both high speed and high accuracy. Hence we
should allow the human operator to non-uniformly speed up
(or slow down) the execution. In our proposed approach this
happens on-line during the task execution, when the human
co-worker is allowed also to modify the course of motion.

The human operator and the robot iteratively perform the
task several times. The learning of the course of motion as
well as the learning of the speed profile is based on the
adaptation of the desired trajectory and the estimation of
trajectory variances across task repetitions. As suggested in
[6], low variance of motion indicates that the corresponding
part of the task should be executed with high precision and
that no further variations from the course of motion should
be allowed. If little variance occurs in a few executions
of the cooperative task, the robot should ensure precise
trajectory tracking by increasing its stiffness in the directions
perpendicular to the direction of motion. This allows the
human co-worker to decrease his/her own precision as the
stiffer robot provides disturbance rejection. Still, the human

should be able to speed up the trajectory without affecting the
course of motion. To achieve such a behavior, the bimanual
robot system has to be compliant in the direction of motion.
We apply SS-DMPs to enable non-uniform speed variations
without affecting the course of motion. To the best of
our knowledge, none of the previously proposed adaptation
algorithms can simultaneously address these issues.

A. Trajectory adaptation

In the proposed approach we deal with the adaptation of
absolute robot motion, whereas the relative motion of the
two arms is left unchanged. Since the motion is performed
in collaboration with a human and the robot is initially
compliant in all directions, the commanded trajectory p,
in task repetition cycle ! is not the same as the actually
executed trajectory pg,,, due to the input of a human. Here
l is the index of the task repetition, referred to also as
learning cycle. The proposed adaptation algorithm updates
the desired trajectory (pq(),qq(2)), I =1,..., L, where
the initial SS-DMP is taken from human demonstration
Pa,1 = Pa; a1 = dq. and calculates its variance after
each task execution.

We update the the absolute trajectory and the associated
covariance matrix using the following formulas

Pa,i+1(7) = CAP(x) + Pa,(), (30)
z:ap,lJrl(w) = (1- C)Eap,l(x) + CAp(:C)Ap(m)T, 3D
Ap(x) = pa,m(l') - pa,l($)7

where p, () denotes the measured absolute position of the
robot, ¥, () is the current cycle covariance of p, ;(z), all
computed at phase x, and 0 < ¢ < 1 is the weighting factor
that defines the learning speed. If we set ( = 1, the updated
absolute trajectory pg_;+1 is equal to the measured trajectory
Pa,m- On the other hand, if we set ¢ = 0, the absolute trajec-
tory pg,i+1 does not change and the system stops learning.
After each learning cycle, the updated trajectory pg ;41 is
encoded into SS-DMP. It is used as command trajectory to
control the robot in the next cycle. Note that all trajectories
are phase dependent, sampled at x(t),t = t1,...,t7. The
coeffcients of covariance matrix ¥, ;41 are approximated
with a linear combination of radial basis functions (RBFs).

Eq. (30) cannot be used for orientation trajectories. Instead
we apply the following update rule

w(z)

Qa,i+1(2) = eXP( 2) * Qq,1(2), (32)

w(r) = 210g(qa,m(m)) *qa,l(x)~

As in this work we do not need the variance of orientation
trajectories, we skip describing its estimation here.

B. Stiffness adaptation

To improve the ease of adaptation we dynamically set
the desired stiffness of the robot. It is well known that the
precision and speed of human motion are related — to be
precise, humans reduce their speed [23]. While Calinon et
al. [6] proposed to decrease the stiffness in the parts of the



trajectory with higher variability and vice versa, we propose
to make the change of stiffness dependent not only on the
variance but also on the speed of motion. The idea here is to
make the robot compliant when the typically slow fine-tuning
of the trajectory is required.

Let R, denote the coordinate frame with z coordinate
specified in the desired direction of motion, i.e. Py, and
the other two coordinates orthogonal to it, as illustrated in
Fig. 2. This matrix can be obtained by forming the Frenet-
Serret frame [24] at each sampling time. The Frenet-Serret
frame consists of three orthogonal direction defined by the
path’s tangent (direction of motion), normal, and binormal.
We obtain the following expression for R,

R,=[n b t], (33)
. A
t= Pal oy PalZXPa g
Hpa,lH ||pa,l X pa,l|

Note that the absolute velocity p,,; and acceleration p,; are
provided by DMP integration at every phase x, which ensures
smoothness. ||Pg,i|| < & or ||Pa, X Pa,l| < €, where € > 0
is a predefined threshold, means that the motion is slow or
linear. Thus in such cases we suspend the updating of R,
until the motion becomes faster again. We also compute the
robot’s speed in absolute coordinates, i.e. v, = ||Pq,| and
define scalar vg, which specifies the threshold between the
low and high speed. The appropriate control gain K, at
each sampling time is computed as follows

ka,op

ol 0 0
Ypx + €
K,y(z) = R} 0 ka,op 0 |Re (9
Yyy t+€
0 0 ka.-
T = RyZup ()R, (35)
p=m (1+tanh (Ua;%)) + 72, (36)
3

where Y., and X, are the first and second diagonal
coefficient of X, respectively. € > 0 is an empirically chosen
constant which sets the upper bound for the controller gain.
kg, and k, , are the gain constants in the direction of motion
and orthogonal to it, respectively. y1, 2, v3 > 0 respectively
determine the range, lower bound and the speed of transition
between the lower and upper bound of the switching function
defined by tanh. The initial value for covariance matrix
Yap,1 18 set to soI, where s¢ is specified so that we obtain
the desired initial stiffness orthogonal to the direction of
motion. By pre-multiplying and post-multiplying gains with
R;f and R, we can set significantly different stiffnesses in
the direction of motion and orthogonal to it. The derivative
part of the gain is computed as below

Dap(x) = 2\/ Kap(x)

for a critically damped response.

By choosing a constantly low value for &, ., in K,,, the
robot is always compliant in the direction of motion, while
the stiffness orthogonal to this direction is set according to
the learned variance and speed of motion.

(37)

Ty

Fig. 2. Operational space 7, is defined by path orientation.

C. Speed adaptation

The full specification of SS-DMPs requires us to set also
the speed scaling factor v in each sampling interval. Lets

Algorithm 1: Human-robot cooperation algorithm

1 Record {pq(k),qu(k), pr(k),ar(k), tx }1_, using
kinesthetic guiding and calculate SS-DMP parameters
from the demonstrated data (pq,1,9q,1, Pr, dr)

2 Initialize gains ko, kq,. and set initial covariance
matrices ¥, 1 = sol. Approximate coefficients of
Yap,1 With a linear combination of RBFs.

3setl=1

4 while cooperating do

5 set initial phase x = 1

6 while z < z,,,;, do

7 integrate SS-DMP to obtain p, (), g, (),
pr(x),q,-(x) as well as their velocities and
accelerations

8 calculate path rotation R, (x) using (33) and
speed v, ()

9 calculate K,,(z) and D, (x) using (34) and
(37), respectively

10 execute control law (23) — (27) with p, ;(z),
Qi (2), Pr(z), qr(x) as desired trajectories

11 sample new trajectories pg i+1(2), dq,14+1(%),
covariance matrices X, 41(x), and speed
scaling factor v; 1, all at phase z, using
(30) - (32), (38)

12 calculate SS-DMP parameters of P 141, a,i+1
including v;4;

13 approximate coefficients of X, ;1 with linear
combinations of RBFs

14 setl=1+1




Fig. 3.

Cooperating humanoid robot and human.

define the tracking error e., = [001]R,eqp, €4p = Pa,i —
Pa,m, Which is the z component of the tracking error in
path operational space. This error then determines the speed
scaling factor, calculated as

vip1(x) = exp(Aezp) (), (38)

where A > 0 is an appropriately set constant. With this
equation we speed up or slow down the trajectory. Note
that negative e, means that the actual robot position is
anticipating the desired trajectory. In this case we have to
speed up the desired trajectory, and vice versa, with positive
e.p we slow down the desired trajectory. After sampling we
compute the coefficients v; that specify v(x) defined as in
(10). In this way we achieve faster convergence towards the
desired trajectory in the direction of motion.
The learning algorithm is summarized in Algorithm 1.

V. EXPERIMENTAL EVALUATION

The proposed human-robot cooperation scheme was exper-
imentally verified using a humanoid robot composed of two
7 degree of freedom Kuka LWR-4 robot arms equipped with
Barret hands and controlled with Fast Research Interface

Fig. 4.

3-D plot of trajectories
of absolute coordinates before the

Fig. 5. 3-D plot of trajectories of
absolute coordinates after the verti-
vertical rod displacement. The thick  cal rod displacement.
line shows the final learned trajec-
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Fig. 6. Evolution of speed v, and the learned gains RpKapRg before
the vertical rod displacement.

(FRI). The task of the robot was to learn how to cooperate
with the human while transporting a rigid plate from the
initial point to the final point and avoiding an obstacle. The
final point had to be precisely learned, as it was necessary
to insert a hole in the panel on the vertical rod, as shown in
Fig. 3.

The initial gains K,, and K,, were set to 800I N/m
and 100I N/m, respectively. Thus, the system was initially
stiff in relative coordinates and very compliant in absolute
coordinates. Compliance of the relative coordinates was not
adapted. The speed threshold vy, where the system starts
adjusting the stiffness, was empirically set to 0.1 m/s.

After the initial task demonstration, we performed 8 co-
operative repetitions of the task. The learning factor { was
set to 0.4. Fig. 4 shows the 3-D plot of the trajectories p, ;.
The execution speed v, and the learned gains RpKapRg
during subsequent executions are shown in Fig. 6. After 8
repetitions we displaced the vertical rod for -10 cm in the
global y direction. Thus, the final part of the task had to be
modified. By lowering the speed in that part of the trajectory
through interaction, the system immediately decreased the
stiffness and allowed guiding the robot to the new position.
In a few repetitions the system learned the new task and re-
set the high stiffness gains. This enabled the human operator
to accomplish the task by allowing the robot to guide him.

Fig. 5 shows the 3-D plot of trajectories p,; after
the displacement. Execution speed v, and controller gains
R,K,,R, are displayed in Fig. 7.

VI. CONCLUSIONS

In this work we proposed a new human-robot cooperation
scheme, where a humanoid robot and a human collaborate
in manipulating an object. The developed algorithm is based
on the previously proposed SS-DMPs [13] and extended
cooperative task approach for bimanual robots. There are
several novelties in the proposed approach:

o Speed-scaled DMPs in Cartesian space have been intro-
duced.
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Fig. 7. Evolution of speed v, and the learned gains RPKQPRE after the

vertical rod displacement.

« Both spatial movement and the speed of cooperative
motion can be adapted.

« Stiffness of the cooperative task is adjusted taking into
account the variance of motion across several executions
of the task and the current speed of motion. This enables
the human to override the learned high stiffness when
necessary.

o Task compliance is defined with respect to the trajectory
operational space, which allows for varying the dynamic
properties of the system along the direction of motion.
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