
Industrial Robot: An International Journal, vol. 43 no. 5, pp. 524-534

Learning of assembly constraints by
demonstration and active exploration

Aljaž Kramberger
Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia

Rok Piltaver
Department of Intelligent Systems, Jožef Stefan Institute, Ljubljana, Slovenia

Bojan Nemec
Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia

Matjaž Gams
Department of Intelligent Systems, Jožef Stefan Institute, Ljubljana, Slovenia

Aleš Ude
Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia

Abstract
Purpose – In this paper we propose a method for learning robotic assembly sequences, where precedence
constraints and object relative size and location constraints can be learned by demonstration and autonomous
robot exploration.
Design/methodology/approach – In order to successfully plan the operations involved in assembly tasks, the
planner needs to know the constraints of the desired task. In this paper we propose a methodology for learning
such constraints by demonstration and autonomous exploration. We investigated the learning of precedence
constraints and object relative size and location constraints, which are needed to construct a planner for
automated assembly. In the developed system, the learning of symbolic constraints is integrated with low–level
control algorithms, which is essential to enable active robot learning.
Findings – We demonstrated that the proposed reasoning algorithms can be used to learn previously unknown
assembly constraints that are needed to implement a planner for automated assembly. Cranfield benchmark,
which is a standardized benchmark for testing algorithms for robot assembly, was used to evaluate the proposed
approaches. We evaluated the learning performance both in simulation and on a real robot.
Practical implications (if applicable) – Our approach reduces the amount of programming that is needed to set
up new assembly cells and consequently the overall set up time when new products are introduced into the
workcell.
Originality/value – In this paper we propose a new approach for learning assembly constraints based on
programming by demonstration and active robot exploration to reduce the computational complexity of the
underlying search problems. We developed algorithms for success/failure detection of assembly operations based
on the comparison of expected signals (forces and torques, positions and orientations of the assembly parts) with
the actual signals sensed by a robot. In this manner all precedence and object size and location constraints can be
learned, thereby providing the necessary input for the optimal planning of the entire assembly process.

Keywords Assembly sequence planning, Adaptation of robot trajectories, Error detection, Learning of assembly
constraints

Paper type Research paper

1. Introduction

Programming of industrial robot assembly tasks involves specifying low-level control algorithms to
perform assembly operations (Nevins & Whitney, 1980) as well as the specification of an appropriate sequence
of assembly operations that lead to the final product assembly (Jimenez, 2013). Currently, the initial set-up of a
new automated assembly cell is a tedious process, but programming by demonstration (Argall et al., 2008) and
active robot learning have been suggested recently as effective means to speed up the programming of both low-
level control algorithms and high-level assembly sequences (Krüger et al., 2014). These recent research results
are an example of increased introduction of artificial intelligence methods into robotics (Bogue, 2014).

Typically, programming of low-level control and high-level planning algorithms have been considered as
separate problems. In our own work we showed how programming by demonstration (PbD) and active learning
can be used to efficiently teach peg-in-hole and other assembly operations (Abu-Dakka et al., 2014; 2015). Other
researchers showed the effectiveness of programming by demonstration and active learning for teaching
assembly plans in a virtual (Martinez et al., 2014) and real environment (Kuniyoshi et al., 1994; Ahmadzadeh et
al., 2015). Planning knowledge is often also provided by spoken dialogue (Breazeal et al., 2006; Lauria et al.,
2002) as well as interaction in the human–robot domain (Nicolescu et al. 2001, Agostini et al. 2011) for
providing expert knowledge to the robot system when it is required. In this paper we build on the results from
(Abu-Dakka et al., 2014; 2015) and propose new algorithms for learning assembly sequences and constraints
with a real robot. The main novelty of our approach compared to other methods proposed in the PbD literature
lies in the application of low-level sensorimotor knowledge (assembly operations acquired by PbD) to the
learning of higher-level concepts (assembly sequences and constraints) by active exploration.

According to (Jimenez, 2013), an assembly is an object composed of individual parts in given relative
placements, such that they do not overlap and each part is touching a subset of the assembly. The aim of
assembly sequencing, which is part of a broader problem of assembly planning, is to compute an ordering of
assembly operations that bring the individual parts together, given a description of their final positions in the
assembled product. Assembly sequencing is usually treated as a combinatorial problem, which deals with
symbols corresponding to subassemblies or parts. It includes three steps: the definition of precedence constraints,
the generation of all feasible sequences and the selection of the optimal sequence. Our approach aims at reducing
setup-times of robot cells for automated assembly. Long setup-times represent the main obstacle to wider
application of robotized solutions for assembly problems.

The determination of feasible assembly sequences is the result of applying a search and/or optimization
algorithm in the space of possible assemblies. Exhaustive search is the simplest strategy ensuring completeness,
but is impractical due to a high computational cost, except for very simple assemblies. Heuristic graph search
strategies (Zhao & Masood, 1999), simulated annealing, neural networks, genetic and others algorithms are
therefore used instead (Russel & Nordvig, 2010). Other approaches apply swarm optimization methods to solve
this problem (Wang et al., 2010). Assembly planning can be successfully accomplished if all necessary features
of all assembly entities are known. (Eng et al., 1999) proposed an approach where features are extracted from
CAD models. More advanced approaches like answer set programming (ASP) (Gelfond 2012) have been
developed in AI to deal with difficult, typically NP-hard problems. In our work we instead use programming by
demonstration to identify feasible sequences, thereby reducing the complexity of the search problem to rather
simple operations on precedence graphs.

In the following we analyse the following two key problems that need to be solved to generate correct
assembly sequences: 1) learning of precedence constraints from a symbolic representation of human
demonstrations of feasible assembly sequences and 2) learning by active exploration of relative sizes and
locations of parts and holes involved in the assembly. The proposed algorithms are described in Section 2. The
robot control and detection algorithms that are needed to realize active exploration for learning of relative size
and location constraints are explained in Section 3. The experimental results are discussed in Section 4, followed
by the conclusion in the final section.

2. Planning actions and learning of the assembly constraints

In order to successfully plan the operations involved in an assembly task, the planner needs to know the
constraints of the given task. We assume that these constraints are not known in advance, hence they have to be
learned. In this section, we describe a procedure to learn the precedence and relative size constrains of a given
assembly task. The result can then be used to generate a set of assembly sequences (Ramos et al., 2011) and
explore it in order to find feasible and possibly optimal sequences. The first set of constraints to be learned are
the precedence constraints between the assembly operations where each assembly operation corresponds to
placing a part in its final position in the assembly. The learning algorithm uses a set of feasible assembly
sequences provided by demonstration. It generalizes from the maximally restrictive constraints corresponding to
each of the given feasible assembly sequences to a less restrictive set of constraints using logical operations. The
algorithm is described in Section 2.1 and guaranties that all assembly plans generated from the generalized
constraints produce feasible assembly sequences.

The second set of constrains to be learned define the relation between the assembly parts and their final
locations. This information is sometimes given explicitly by the relative placements of individual parts in the
goal assembly or can be detected by a vision system. However, vision system errors may prevent identifying
individual parts and precise coordinates of their final positions. In addition, a given part may be placed at several
locations, which results in a multitude of feasible assembly sequences that also consider location of the parts and
not only the order of placing them in the predefined locations. Therefore, we propose to learn the constraints
defining the feasible positions for each part using experiments performed by the robot. The algorithm that plans
the experiments and learns the constraints based on the results of the previous experiments is presented in
Section 2.2.

2.1. Generalizing precedence constraints from assembly sequences

The algorithm for generalizing assembly sequences from a given set of feasible sequences can be
illustrated with a task of replacing two batteries in a remote control (

Figure 1). Actions that need to be executed in order to complete the battery replacement task are: open the
battery door (O), remove battery 1 and 2 (R1, R2), and insert new batteries 1 and 2 (I1, I2).

Figure 1: The task of replacing batteries in a remote control requires the following actions: open the battery
door, remove each of the two batteries and replace them with new ones.

Note that exactly one action is required for each of the manipulated parts in the remote control assembly.
The precedence relation between the actions is defined by the following two constraints: the battery door has to
be opened first, a new battery can be inserted only after
the old battery that initially occupies the final position of
the new battery has been removed. The relation
describing the precedence constraints is termed the must-
precede relation. It can be represented with a set of
ordered pairs, a matrix (used in the algorithm), or a graph
(used as human readable output) shown in Fig. 2. Must-
precede relation is transitive, therefore its transitive
reduction can be used instead of the original relation to
simplify the representation and make it more readable.
For example, an edge from action O to action I1 in the
graph of the original relation means that action O must
be executed before action I1 can be executed. This
constraint is represented by the path from action O to
action I1 in the transitive reduction of the relation – shown with black arrows in Fig. 2. All ones in the matrix,
arrows in the graph, and pairs in the list that are not in the transitive reduction of the relation are shown in grey.

The algorithm for generalizing assembly sequences (Algorithm 1) executes one iteration for each given
feasible assembly sequence s with n actions. Each iteration first computes the maximal set of precedence
constraints Cs between the actions of the considered assembly sequence s (lines 3-8): if an action si precedes an
action sj in the assembly sequence s, then the pair is added to the relation Cs. Examples for two plans are shown
in Fig 3. After that, Cs is merged with the currently known approximation of the must-precede relation C in order
to generalize it (line 9). This is achieved by computing the intersection of the two relations according to the
following equation:

O R1 R2 I1 I2
O 0 1 1 1 1
R1 0 0 0 1 0
R2 0 0 0 0 1
I1 0 0 0 0 0
I2 0 0 0 0 0

{(O,	R1),	(O,	R2),	(O,	I1),	
(O,	I2),	(R1,	I1),	(R1 ,	I2)}

O
R2 I2

R1 I1

Figure 2: The must-precede relation that defines
the precedence relation between actions in battery
replacement task represented with a matrix, graph,
and list of ordered pairs.

 𝐶" 𝑖, 𝑗 ⇔ 𝐶 𝑖, 𝑗 ∧ 	𝐶) 𝑖, 𝑗 (1)

The result of merging the maximal constraints for the

two assembly sequences shown in Fig. 3 is shown in Fig. 4. The
graph of the merged relation includes exactly the edges that are
present in both graphs of the merged relations. For example,
action O precedes action R1 in both assembly sequences shown
in Fig. 3, therefore the merged relation also includes this
constraint. On the other hand, action R1 precedes action R2 only
in one of the two assembly sequences (Fig. 3b), therefore it is
not included in the merged relation. By observing a feasible
assembly sequence in which an action precedes another action,
the algorithm learns that the first action can precede the second
and therefore removes the related constraint from the set of
constraints thus the new set of constraints is more general, i.e.
enables planning of more assembly sequences.

Algorithm 1: generalize assembly sequences
Input: set of feasible assembly sequences S, each with n actions
1: C = ones(n, n);
2: for each s in S
3: Cs = zeros(n, n);
4: for i = 1 to (n – 1)
5: for j = (i + 1) to n
6: Cs(si, sj) = 1;
7: end for;
8: end for;
9: C = C && Cs;
10: end for;
11: return C;
Output: C – a matrix representing the must-precede relation
(precedence constraints)

If no feasible sequences are given to the algorithm, it will return a matrix filled with ones as the must-
precede relation; no feasible plans can be planed based on it. If one
assembly sequence is given to the algorithm, it will return the maximal set
of constraints that make the given plan feasible; exactly the given assembly
sequence can be planed based on it. The algorithm will generalize the set
of constraints further for each additional given assembly sequence until the
correct set of constraints is learned. The set of feasible assembly sequences
that can be planed based on the learned must-precede relation includes all
the given assembly sequences and possibly additional assembly sequences.
For example, the learned set of constraints shown in Fig. 4 enables
planning assembly sequences: O, R1, R2, I2 I1; O, R2, R1, I1 I2; and O, R2,
R1, I2 I1 in addition to the two assembly sequences (shown in Fig. 3) from
which the set of constraints was generalized. In this example, two
assembly sequences were generalized to the set of constraints that enables
planning five feasible assembly sequences.

2.2. Learning relative size of parts and holes using autonomous robot exploration

The second part of the algorithm deals with geometrical constraints between the parts and their final
locations. It learns which peg fits into which hole starting from no knowledge except for the list of pegs and
holes for which the relation is to be learned. The proposed algorithm learns from experiments executed by a real
robot, which tries to insert the available pegs into different holes. If the action is executed successfully, the
algorithm learns that the peg fits in the hole; otherwise it assumes that the peg is too big to fit into the hole. For
this learning algorithm to work, the robot should be able to recognize unsuccessful actions. In our system, this is

R2 I2 R1 I1O

R1 R2 I1 I2O

a)

b)

Figure 3: Examples of two maximal set of
constraints that make the assembly
sequences O, R2, I2, R1, I1 (a) and O, R1, R2,
I1, I2 (b) feasible. The edges that are not in
the transitive reduction of the relations are
shown in grey.

O
R2 I2

R1 I1

Figure 4: The must-precede
relation computed as the
intersection of maximal
precedence constraints for the
two assembly sequences shown in
Fig. 3. The edges that are not in
the transitive reduction of the
relations are shown in grey.

accomplished using force/torque data and poses extracted by vision (see Section 3). The proposed algorithm
obtains new knowledge from each experiment and plans the next experiment until the complete relation is
learned. The goal is to learn the complete relative size relation with as few experiments as possible.

part/hole R1 R2 S1 S2 BR
P1 1 1 1 1 1
P2 1 1 1 1 1
P3 0 0 1 1 1
P4 0 0 1 1 1
SH 0 0 0 0 1

Figure 5: The smaller-than relation between parts (P1, P2, P3, P4 - pegs, SH – shaft) and holes (R1, R2 - round
holes, S1, S2 – square holes, BR – big round hole in the back plate) of the Cranfield assembly (see Fig. 8).

The knowledge of the learning algorithm is represented by the transitive smaller-than relation between
the set of holes and the set of parts, which describes the constraints regarding the possible final locations of the
parts in the assembly. Fig. 5 shows the matrix representing the smaller-than relation for the Cranfield assembly
(see Fig. 8), e.g. part P1 fits in all the holes while part SH fits only in the BR hole. The bigger-than relation,
which is the inverse of smaller-than relation, could be used as well. Note that the robot can only detect if a part is
smaller than a hole or not; it cannot detect if they are of exactly the same size. Therefore, is-equally-big, is
greater-or-equal, and is smaller-or-equal are not appropriate representations of the knowledge.

The smaller-than relation is extended to a
relation on the union of the sets of parts and
holes as shown in Fig 6. This is done by first
setting the relation between parts and holes as in
the original relation and then calculating the
transitive closure of the relation. In this way the
relative sizes between individual parts and holes
are obtained. For example, Fig. 6 shows that
parts P1 and P2 are smaller than parts P3, P4 and
SH; or that hole S1 is bigger than hole R1 and
smaller than hole BR.

The robot cannot compare the sizes of two parts or two holes directly; therefore, the algorithm needs to
represent its knowledge with the extended relation, which enables determining the relative sizes based on
transitivity. In general, the rules given by Eqs. (2) and (3) that determine relative sizes of parts (and holes) apply
for any given part Pi, Pj and hole Hk, Hl. Eq. (2) can be interpreted as: if part Pi fits into a hole but part Pj does
not, then the part Pi is smaller than part Pj. Eq. (3) can be interpreted as: if a part fits into hole Hk but does not fit
into hole Hl, then the hole Hl is smaller than hole Hk.,

 𝑃+ < 𝐻. ∧ 𝐻. < 𝑃/ ⇒ 𝑃+ < 𝑃/ (2)

 𝐻1 < 𝑃+ ∧ 𝑃+ < 𝐻. ⇒ 𝐻1 < 𝐻. (3)

After the relative sizes of the parts and holes are determined, the transitivity property is used to infer
whether a part is smaller than a hole, without the robot actually performing the corresponding experiment. For
example, knowing that part P1 is smaller than part P3 and that part P3 fits in the hole S1 implies that part P1 also
fits in the hole S1 (Fig. 6). In general, the rules given by the Eq. (4) and (5) apply for any given part Pi, Pj, Pk
and hole Hl. Eq. (4) can be interpreted as: if a bigger part fits into a hole, then the smaller part fits into the same
hole, too. Eq. (5) can be interpreted as: if a smaller part does not fit into a hole then the bigger part does not fit
into the same hole neither.

(𝑃+ < 𝑃/) ∧ (𝑃/ < 𝐻1) ⇒ 𝑃+ < 𝐻1 (4)

 (𝐻1 < 𝑃/) ∧ (𝑃/ < 𝑃.) ⇒ 𝐻1 < 𝑃. (5)

When no more relations can be determined theoretically, the next experiment to be performed by the
robot is suggested using a heuristic function, which is based on Eq. (4) and (5) as explained below. Each
executed experiment provides information about the relative size of part Pj and hole Hl, therefore only

SH BR
P1 P3R1 S1

P2 P4R2 S2

Figure 6: The graph of transitive reduction of the smaller-
than relation on the union of the sets of parts (black) and
holes (grey) of the Cranfield assembly: each element is
smaller than all the elements that can be reached from it
following a directed path in the graph.

experiments with part-hole pairs for which the relative size is not yet known are performed. In addition, the size
of part Pi or Pk relative to the hole Hl is determined by the same experiment if the result of the experiment
matches the conditions in Eqs. (4) or (5), respectively. Experiments with part-part-hole triplets that can match
either of the two equations and for which only the relative sizes of parts are known are selected. Performing an
experiment with a part-hole pair (Pj, Hl) that fits the conditions of both Eqs. (4) and (5) is guaranteed to
determine at least one additional relative size of another part (Pi or Pk) and the hole Hl. Therefore experiments
with part-hole pair (Pj, Hl) that match the template shown in Figure 7 and described by Eqs. (4) and (5) are
preferred:

 Pi Pj Pk Hl
Pi 0 1 1 ?
Pj 0 0 1 ?
Pk 0 0 0 ?
Hl ? ? ? 0

Figure 7: Performing experiment with part-hole pair (Pj, Hl) matching the above template will determine the
unknown relative size of the two (bold question mark) and an additional relative size between part Pi or Pk and
the hole Hl (grey question marks) based on transitivity of the smaller-than relation.

The heuristic function counts how many different assignment of parts Pi and Pk match the template for
each possible (Pj, Hl) part-hole pair. The experiment with part-hole pair with the highest count is executed. In
case of a draw, the one with the highest count based on Eq, (2) and (3) is used. In case of another draw, the pair
for which the relative size of the part is known for the highest number of holes. In case of another draw, the pair
for which the relative size of the hole is known for the highest number of parts. Finally the part-hole pairs with
lower part and hole indices are selected.

Note that the algorithm assumes that the shapes of pegs and holes are such that if a peg fits into a hole
then it fits into all larger holes, and it does not fit into any smaller hole, all smaller parts fit into this and all
bigger holes and none of the bigger parts fit into this or
any smaller hole. This is for instance true for any set of
round pegs and holes as well as for the five parts that fit
into the holes in the back plate of the Cranfield assembly
(Collins et. al 1985) shown in Fig. 8. After the smaller-
than relation is learned, it is used to compute which parts
can be put in which hole in order to assemble the parts.
The holes are assigned to the parts using a greedy iterative
approach: the biggest unassigned part is assigned to a
non-assigned hole that is big enough for the part until all
parts have an assigned hole. If there is no hole that is big
enough for a given part at any step of the algorithm, the
assembly is recognized as non-solvable. Otherwise, the
algorithm can determine any feasible set of final locations
of the parts.

3. Revising action and assembly constraints by robot exploration
This section presents a framework to verify that a sequence of assembly operations generated by the

planner is executable on a real robot setup. This can be achieved by attempting to carry out the generated
assembly plan and monitoring the success of execution.

To perform the desired assembly plan, we have to teach the robot how to execute all relevant assembly
operations. Since in our real experiments we investigated the teaching of assembly plans consisting of different
peg-in-hole like actions, we limit our discussion here to such operations. Robust peg-in-hole execution is best
accomplished using force control (Nevins & Whitney, 1980), hence both positions and orientations as well as the
resulting forces and torques need to be considered when teaching the required operations (Rozo et al., 2013). In
Section 3.1 we explain how such assembly operations can be taught by human demonstration and adopted with
respect to the required forces and torques. Task description and failure detection are explained in Section 3.2.

3.1. Teaching assembly operations

Figure 8: Parts of the Cranfield assembly

This section gives a brief overview of the
basic procedure for learning task specific
trajectories by human demonstration. In this work
we applied kinesthetic guiding for demonstration
of the required movement trajectories, as it is one
of the most intuitive methods with a quick setup
time (Kormushev et al., 2011). The operator simply
grabs the robot’s end effector and guides it along
the desired trajectory (Fig. 9). Please note that
kinesthetic guiding might affect the captured forces
and torques, especially when joint torque sensors
are used to estimate forces and torques acting on
the robot tool, therefore it is often necessary to
perform two steps. In the first step, only the
position and orientation trajectory is recorded,
while the resulting forces and torques are obtained
in the next step, where we replay the demonstrated
trajectory and the resulting forces are not affected by the human demonstrator. The recorded force-torque
trajectories represent a reference for later adaptation. After the recording of the position and orientation
trajectories, they are encoded as Cartesian Space Dynamic Motion Primitives (DMPs) (Ijspeert et al., 2013; Ude
et al., 2014). Since forces and torques are used only as desired variables along the trajectory and not as robot
control variables, they do not need to be encoded by DMPs. Instead we use a linear combination of radial basis
functions (Abu-Dakka et al., 2015) to represent them.

When executing the demonstrated actions, the actual forces and torques can significantly differ from the
forces and torques captured during the demonstration. These deviations arise mainly due to non-repeatable grasp
configurations and errors in the estimated object poses. Therefore, the learned trajectories have to be adapted in
order to meet the required force/torque profile during the execution. In our work we apply the method originally
proposed by (Abu-Dakka et al., 2015), where the adaptation is accomplished in current execution cycle as well
as in subsequent execution cycles using ILC (Iterative Learning Control) framework (Bristow et al., 2006).

3.2. Failure detection

The execution of peg-in-hole encompass the following operations:

1. Initial hole search procedure (Abu-Dakka et al., 2014).
2. Execution of the learned trajectory with on-line adaptation to the desired force/torque profile using

admittance PI control law (Abu-Dakka et al., 2015).
3. Slow down of the trajectory execution on excessive force/torque deviations (Ude et al., 2014).
4. Execution of exception strategies.

To be able to successfully revise the plans and assembly constraints, it is important to detect whether the action
execution was successful or not.

We implemented an execution monitor mimicking a reasoning engine (Martínez et al., 2014) to properly
plan the above mentioned execution steps and evaluate the outcome signals that are generated by each method.
In the first step, the exact position of the hole has to be determined. As vision-based solutions are usually
insufficiently accurate, we apply a stochastic search algorithm (Abu-Dakka et al., 2014). In the second step, the
actual PIH trajectory is executed, where the necessary adaptation to the desired force/torque profile is provided
by admittance PI control law. On excessive deviation of the measured forces and torques, the desired position
trajectory is slowed-down using DMP phase stopping mechanism (Ude et al., 2014). This gives the time to the
integral part of the admittance control algorithm to adapt to the new situation.

In this work we newly implemented a detection algorithm to identify large discrepancies between the
expected and actual forces and torques, which is the basis to determine the success or failure of the executed
task:

 𝑭56) − 𝑭86) ≥ 𝐹);<= (6)

Figure 9: Teaching the example movement library with
kinesthetic guiding.

 𝑴56) − 𝑴86) ≥ 𝑀);<= (7)

Here 𝑭56) and 𝑴56) represent the measured forces and torques during the task execution, 𝑭86) and 𝑴86) are the
desired forces and torques recorded during the human demonstration and 𝐹);<= and 𝑀);<= are the selected
thresholds. If the force/torque discrepancies are too large for the adaptation algorithm to work, the execution
monitor stops the execution and signals to the planer that the execution was not successful. For success detection
we cannot rely on force/torque evaluation only. Another possible criterion is if the PIH trajectory has been fully
executed, i.e. we compare the expected robot position after the execution of the assembly operation, here
denoted by 𝒑A<B1, with the actual robot position at the end of motion, here denoted by 𝒑6C8.

In some cases, during the PIH execution the peg can get stuck in the hole, which results in increased
forces violating conditions (6) and (7), although the peg fits the hole (Fei and Zhao, 2005). In such cases the
execution is interrupted and the robot applies an exception strategy. Our exception strategy is inspired by how
humans solve the peg jamming problem. When observing human performance, we noticed that humans normally
start rotating and shaking the object, which in most cases releases the peg and enables the continuation of the
insertion task. Therefore, we applied a sinusoidal force pattern with amplitude of 10N and frequency of 2Hz to
the robot gripper around each of three principal axes in the tool coordinate system. After that, we tried to
continue the previously interrupted operation while observing the resulting forces and torques. In the majority of
cases, this exception strategy successfully resolved the peg jamming problem.

The proposed failure detection procedure may in some cases produce false negatives, i.e. if the robot fails
to insert the peg, but the peg actually fits into the hole. In order to overcome this problem, we repeat the
execution procedure steps 1-4 (explained above) if the insertion was not successful. Experimental results
provided in the next section (see Fig. 18) demonstrate, that we obtain 100% success in failure detection already
with two repetitions. If the insertion was not successful after two repetitions, we conclude that the object does
not fit into the hole. Fig. 10 gives an overview of the proposed learning system.

4. Experimental evaluation
In order to evaluate the performance of the developed algorithms, we used a classical assembly called

Cranfield benchmark (Collins et al., 1985) shown in Fig. 8. The Cranfield benchmark distinguishes itself by its
compactness and portability, ability to test a variety of assembly operations and can be assembled by a majority
of the current robotic systems. In the following we discuss the performance of the proposed algorithms when
applied to the Cranfield assembly.

4.1. Results on learning precedence constraints

The learning of precedence constraints was evaluated on the Cranfield assembly, in which the parts
shown in Fig. 8 have to be assembled into a single object. The precedence constraints (Fig. 11) of the Cranfield
assembly can be defined analytically and allow 5320 feasible assembly sequences. The back plate (BP) must be

Kinesthetic
guiding	

Trajectory	library

Trajectory	
execution	with	
force-torque	
adaptation

Execution	
Monitor

Precedence	
constraint
learning

Force-Torque	
eval.	signal

Position	eval.	
signal

Execute	trajectory

Success	rate

Robot	execution

Relative	size
and	location
constraint	
learning

Assembly	planer

Figure 10: Overview of the complete system, which comprehends trajectory learning, trajectory library,
robot execution subsystem and assembly planner.

put in place before pegs (P1, P2, P3, P4) or shaft (SH) can be put in place. Square pegs P3 and P4 must be put in
place before separator SP and shaft SH must be placed before pendulum PD. Front plate FP is put in place last.
Pendulum head PH must be screwed onto the pendulum before pendulum is put in its place.

The evaluation method is as follows: a set of m feasible,
randomly generated assembly plans are given as input, the
proposed algorithm processes them and outputs the must-
precede relation, then the number of assembly sequences that
can be generated based on the learned must-precede relation is
computed. The random generator of feasible sequences uses the
precedence graph shown in Fig. 11. The procedure is repeated
1000 times for each number m and the result is used as a sample
to estimate the probability that the algorithm generalizes the m
given sequences to M assembly sequences, where M is
discretized with step 200. The probability is estimated because
computing the exact probability that the algorithm generalizes
from m to M is infeasible. For example, the algorithm would
have to be used (5320·5319·5318)/(2·3) > 25·109 times for m = 3,
while the number increases exponentially for larger m. In
addition, our experiments showed that the estimated probability
does not fluctuate much after a couple of hundred random sets of input assembly sequences are analyzed, which
indicates that it converged near the true value of the probability.

The probability of generalizing 7 random feasible assembly sequences to more than half of all possible

assembly sequences is higher than 50 %. If ten random assembly sequences are given as an input, the algorithm
generalizes to ~75 % of all feasible assembly sequences on average. If 20 or 30 assembly sequences are used as
the input, the algorithm generalizes to all possible assembly sequences with 72 % or 94 % probability,
respectively.

More detailed results are shown in Fig. 12 and 13. In both figures, M/100 is given on the horizontal axis with the
step of 200 – this represents the number of assembly sequences that can be constructed based on the learned
must-precede relation. The last column corresponds to generalizing to all the feasible assembly sequences. The
vertical axis corresponds to the probability of generalizing to the given number of assembly sequences. Shading
of the bars corresponds to the number of assembly sequences m used as input to the algorithm: 5 or 7 in Fig. 12
and inputs 15, 20 and 30 in Fig. 13.

0

1

2

3

4

5

6

7

8

9

10

pr
ob

ab
ili

ty
 %

assembly sequences generated from learned constraints x 100

5 7

Figure 12: Probability of generalizing to a given number of assembly sequences from 5
or 7 random feasible Cranfield assembly sequences

FPBP

PD

SP

P1

P2

P3

P4

SH
PH

Figure 11: Transitive reduction of the
must-precede relation for the Cranfield
assembly: if there is a path from part A to
part B, part A must be put in place before
part B can be put in its place.

	
The above results are valid for random sets of feasible plans, which are likely to contain redundant

information. Note that non-redundant sets of plans would enable faster learning: generalizing to more plans or
from fewer input plans. As part of our future work, we intend to evaluate and improve an interactive learning
algorithm that guides the user towards providing the most informative learning plans.

Note that all the sequences that can be generated from the learned must-precede relation are feasible. The
following is a sketch of the proof. Since the input assembly sequences are feasible they respect all the
precedence constraints C and the maximal set of constraints Cs generated from each given assembly sequence s
are therefore a superset of the true precedence constraints C. It follows that intersection of such a maximal set of
constraints Cs over all given feasible assembly sequences is also a superset of the true set of precedence
constraints C, therefore all plans that respect the constraints given by the intersection also respect all the true
constraints and are therefore feasible.

 ∀𝑠: 𝐶 ⊆ 𝐶) ⇔ 𝐶 ⊆ 	∩) 𝐶) (10)

The generalization algorithm has quadratic time complexity in the number of parts (actions) and linear time
complexity in the number of given learning plans. This makes it applicable to real-life problems that may be
considerably more complex than the Cranfield benchmark.

4.2. Learning the relative
object size and location
using a real robot

Evaluation of the size- and object
location learning algorithm was
performed with five parts (two square
pegs and three round pegs at two
different sizes) that need to be put into
five holes of the back plate (Cranfield
benchmark, see Fig. 8).

Kuka LWR-4 robot arm with gravity
compensation, controlled through the
FRI interface (Schreiber et al., 2010),
was used in these experiments (see Fig.

0

20

40

60

80

100
pr

ob
ab

ili
ty

 %

assembly sequences generated from learned constraints x 100

15 20 30

Figure 13: Probability of generalizing to a given number of assembly sequences from 15, 20 or 30 random
feasible Cranfield assembly sequences.

Figure 14: Setup of the work place: the front plate (FP) in the
back of the figure represents the object container and the back
plate (BP) in the front of the figure represents the assembly
base.

9). Kuka LWR-4 is a 7 DOF robot, equipped with a two-finger gripper RH-707 capable of grasping every
objects in the Cranfield assembly. Kuka LWR-4 has a torque sensor mounted in every joint, therefore no external
force-torque sensor were needed in our experiments. Torque data measured in joints are transformed to Cartesian
forces and torques in real-time using the dynamic model of the robot. The test environment to perform the robot-
based size and location learning was set as shown in Fig. 14. All of the acquired objects were placed in the work
area of the robot so that they can be easily accessible by the robot arm when needed. The smaller objects, e.g.
square pegs, round pegs and shaft, were placed on the front plate that acts as a part container. In this experiment,
the locations of containers were determined by vision (Buch et al. 2013). After every execution, the objects had
to be placed back to the correct starting place. Manipulation tasks were performed in joint space with high
stiffness to achieve appropriate position accuracy. Even this set-up could not prevent uncertainties due to
grasping and position discrepancies that are the outcome of vision errors and objects moving in the hand while
being manipulated. For this reason, the proposed search and force-torque strategies adaptation were applied to
insert the pegs, followed by success/failure detection.

Figure 17: Forces arising during the successful round peg insertion (red) and unsuccessful square peg insertion
(green) compared to the desired forces (blue), all plotted with respect to the DMP phase. Note that in case of
square peg insertion, the execution monitor interrupted the action before the trajectory was completed, as it
determined that the object cannot fit the hole.

0 -0.27 -0.54 -0.82 -1.09 -1.37 -1.64 -1.91

F
x
[N

]

-5

0

5

10

Desired forces Object fits in the hole Object does not fit in the hole

0 -0.27 -0.54 -0.82 -1.09 -1.37 -1.64 -1.91

F
y
[N

]

-10

0

10

Phase
0 -0.27 -0.54 -0.82 -1.09 -1.37 -1.64 -1.91

F
z
[N

]

-50

0

50

100

Figure 16: Unsuccessful insertion of square peg into
the small round hole.

Figure 15: Successful insertion of the round peg in the
small round hole.

Figure 18: Success ratio of the proposed evaluation algorithm for determening relative size of objects and
holes, where H1 is the small round, H3 big round and H4 square hole of the back plate.

Object Hole No.	of	executions
No.	of	successful	

executions	in	the	1.	
trial	

No.	of	successful	
executions	in	the	2.	

trial	

Success	ratio	after	
second	execution	

(%)

H1 40 40 40 100

H3 40 35 40 100

H4 40 39 40 100

H1 40 40 40 100

H3 40 36 40 100

H4 40 39 40 100

H3 40 39 40 100

H4 40 39 40 100

Shaft H3 40 40 40 100

Round	peg

Tight	round	peg

Square	peg

The forces arising during the insertion step can be seen in Fig. 17. The blue dotted line corresponds to
the desired force profile of the learned insertion. The red solid line represents the insertion force during
successful execution (Fig. 15). If the object was too large to fit into the specified hole, the measured forces and
torques would violate the conditions set in (6) and (7). Moreover, the robot end position does not coincide with
the goal position (not shown in the graph), signalling to the learning system that the execution has failed. An
example execution failure is shown in Fig. 16. The proposed concept was evaluated on five parts of the Cranfield
benchmark.

In addition, several insertion operations with square, round, tight round peg, and shaft were performed to
evaluate the robustness of the execution method. Only PiH operations with the peg actually fitting into the hole
were carried out in this experiment. In total 360 PIH operations were performed, with randomly perturbed initial
position. Therefore, the robot had to start by searching for the hole, then perform the insertion operation, and
finally evaluate if the object was successfully placed into the whole. Fig. 18 shows the success ratio of insertion
experiments with different objects. Furthermore, we also evaluated the method on inserting a tight peg (results
presented in Fig. 18) where the tolerances between the hole and peg were 0.1 mm, compared to the regular peg,
where the tolerance was 1.3 mm. The obtained results from the tight peg insertion are comparable with results
from the normal peg insertion, consequently showing the robustness of the proposed method.

A naive approach requires 25 experiments (try to put each of the five parts in each of the five holes) to
learn the smaller-than relation. Systematic order of experiments (experiments with parts and holes with lower
indices first) combined with reasoning based on the transitivity requires at least 17 experiments (with probability
6.66%), 20.53 experiments on average, and at most all of the 25 experiments (with probability 4.11%). The
results were obtained by running the algorithm on each possible permutation of the parts and holes. Random
order of experiments (put a random part in a random hole, choosing only from part-hole pairs with currently
unknown relative sizes) combined with reasoning based on transitivity requires at least 15 experiments (with
probability 0.09%), 20.65 experiments on average, and at most all of the 25 experiments (with probability
0.77%). Finally, the suggested algorithm requires at least 16 experiments (with probability 0.11%), 19.57
experiments on average, and at most 24 experiments (with probability 0.44). The detailed comparison of the
suggested size-learning algorithm with the random order of experiments is shown in Fig. 19.

The above results are valid if the algorithm starts with no prior knowledge about relative sizes of parts
and holes. Furthermore, the algorithm requires fewer actions to learn the relation if it start with some knowledge,
which can be trivially extracted from a set of feasible, partial or even infeasible assembly sequences. The Video
available at http://www.ijs.si/~aude/AssemblyPlanning.mp4 demonstrates one example of the developed
learning process. The objects and locations were chosen by the developed reasoning algorithm. In this case the
number of executions to learn the complete relation was 20. After all constrains were learned, the system can
construct a planner to compute complete assembly plans.

Figure 19: Comparison of the suggested size-learning algorithm with a random search.

5. Conclusion
In this paper we propose an integrated environment for learning assembly sequences and constraints. The

main purpose of our work is to shorten set-up times when preparing new automated assembly tasks.

We proposed two novel algorithms that facilitate the planning of assembly tasks. The first algorithm
learns the precedence constraints by generalizing a given set of assembly sequences to a set of precedence
constraints, which is used to generate previously unseen assembly sequences and guarantees that all the
generated assembly sequences are feasible. The initial set of feasible assembly sequences is usually acquired by
human demonstration. The second algorithm learns which parts of the assembly can be put into which hole in
another assembly part. Often the goal locations of the parts are given in advance, however when this information
is not given, the relative part size learning can be used to learn which part fits into which hole. In this case it is
necessary to integrate the real robot into the learning process. A bidirectional communication channel is
established for communication between the robot system and the planner. First the planer algorithm sends the
command to the robot specifying the desired part and its final location. In the second step, the robot picks the
desired part from the container and tries to execute the specified action. If the hole is too small, the proposed
error detection algorithm computes that the difference between the actual and the recorded forces and torques as
well as the difference between the actual position of the object and the goal position is very large, indicating that
the execution has failed. The execution monitor then sends the success/failure signal to the planer, which updates
its knowledge base. The algorithm then chooses the next experiment with the goal to minimize the number of
needed experiments in order to learn the relative sizes of parts and placements. The described learning procedure
belongs to the learning-by-exploration methods since the robotic system needs to experiment on its own to
become able to create the desired solutions, i.e. assemblies. The proposed algorithms have a high time
complexity in terms of the number of holes and pegs, which enables the learning of constraints for assemblies of
realistic proportions on real robot hardware. Secondly, they are rather general, applicable to all assemblies of
similar functionality. Thirdly, they need only a small amount of domain knowledge and can therefore be applied
to similar assemblies.

Acknowledgment
The research leading to these results has received funding from the EU FoF project no. 680431, ReconCell.

References
Abu-Dakka, F. J., Nemec, B., Jørgensen, J. A., Savarimuthu, T. R., Krüger, N., and Ude, A. (2015) Adaptation
of manipulation skills in physical contact with the environment to reference force profiles. Autonomous Robots,
39(2):199-217.

0

5

10

15

20

25

30

35

15 16 17 18 19 20 21 22 23 24 25

Pr
ob

ab
ili

ty
 [%

]

Number of needed experiments to learn smaller-than relation

Random experiment order Suggested algoritm

Abu-Dakka, F. J., Nemec, B., Kramberger A., Glent Buch A., Krüger N., and Ude A. (2014) Solving peg-in-hole
tasks by human demonstration and exception strategies. Industrial Robot: An International Journal, 41(6):575-
584.

Agostini, A., Torras, C., and Wörgötter, F. (2011) Integrating Task Planning and Interactive Learning for Robots
to Work in Human Environments. In International Joint Conference on Artificial Intelligence, pages 2386-2391.

Ahmadzadeh, S. R., Paikan, A., Mastrogiovanni, F., Natale, L., Kormushev, P., and Caldwell, D. G. (2015)
Learning Symbolic Representations of Actions from Human Demonstrations. In: IEEE International Conference
on Robotics and Automation (ICRA), Seattle, WA, pp. 3801-3808.

Argall, B. D., Chernova, S., Veloso, M. and Browning, B., (2009), A survey of robot learning from
demonstration. Robotics and Autonomous Systems, Vol. 57 No. 5, pp. 469-483.

Bogue, R. (2014) The role of artificial intelligence in robotics. Industrial Robot: An International Journal,
41(2):119-123.

Breazeal, C., Berlin, M., Brooks, A., Gray, J., Thomaz, A. L. (2006) Using perspective taking to learn from
ambiguous demonstrations. Robotics and Autonomous Systems, 54(5):385-393.

Bristow, D.A., Tharayil, M. and Alleyne, A. G. (2006) A survey of iterative learning control. IEEE Control
Systems Magazine, 26(3):96-114.

Buch, A.G., Kraft, D., Kamarainen, J.-K., Petersen, H.G. and Kruger, N. (2013) Pose estimation using local
structure-specific shape and appearance context. IEEE International Conference on Robotics and Automation
(ICRA), Karlsruhe, Germany, pp. 1050-4729.Collins, K., Palmer, A. J., and Rathmill, K. (1985) The
development of a European benchmark for the comparison of assembly robot programming systems. In: Robot
technology and applications, Berlin, Heidelberg: Springer, pp. 187-199.

Eng, T-H, Ling, Z-K, Olson W., and McLean C. (1999) Feature-based assembly modeling and sequence
generation. Computers & Industrial Engineering, 36(1):17-33.

Fei, Y. and Zhao, X. (2005) Jamming analyses for dual peg-in-hole insertions in three dimensions. Robotica,
23:83-91.

Gelfond, M. and Kahl, Y. (2012) Knowledge Representation, Reasoning, and the Design of Intelligent Agents,
The Answer-set programming approach. New York, NY: Cambridge University Press.

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., and Schaal, S. (2013) Dynamical movement primitives:
learning attractor models for motor behaviours. Neural computation, 25(2):328-373.

Jiménez, P. (2013) Survey on assembly sequencing: a combinatorial and geometrical perspective. Journal of
Intelligent Manufacturing, 24(2):235-250.

Kormushev, P., Nenchev, D. N., Calinon, S., and Caldwell, D. G. (2011) Upper-body kinesthetic teaching of a
free-standing humanoid robot. IEEE International Conference on Robotics and Automation (ICRA), pp. 3970-
3975.

Kuniyoshi, Y., Inaba, M., Inoue, H. (1994) Learning by watching: Extracting reusable task knowledge from
visual observation of human performance. IEEE Transactions on Robotics and Automation, 10(6):799-822.

Krüger, N., Ude, A., Petersen, H. G., Nemec, B., Ellekilde, L.-P., Savarimuthu, T. R., Rytz, J. A., Fischer, K.,
Buch, A. G., Kraft, D., Mustafa, W., Aksoy, E. E., Papon, J., Kramberger, A., and Wörgötter, F. (2014)
Technologies for the Fast Set-Up of Automated Assembly Processes. Künstliche Intelligenz, 28(4):305-313.

Lauria, S., Bugmann, G., Kyriacou, T., and Klein, E. (2002) Mobile robot programming using natural language,
Robotics and Autonomous Systems 38(3-4):171-181.

Martínez, D., Alenya, G., Jimenez, P., Torras, C., Rossmann, J., Wantia, N., Aksoy E., Haller S., and Piater, J.
(2014) Active learning of manipulation sequences. In: IEEE International Conference on Robotics and
Automation (ICRA), Hong Kong, pp. 5671-5678.

Nevins, J. L. and Whitney, D. E. (1980) Assembly research, Automatica, 16(6):595-613.

Nicolescu, M. and Matarić, M.J. (2001) Learning and interacting in human-robot domains, IEEE Transactions on
Systems, Man, and Cybernetics, Part A: Systems and Humans 31(5):419-430.

Rozo, L., Jimenez, P., and Torras, C. (2013) A robot learning from demonstration framework to perform force-
based manipulation tasks. Inteligent Service Robotics, 6:33-51.

Russell, S. J. and Norvig, P. (2010) Artificial Intelligence, A Modern Approach, Third Edition. Upper Saddle
River, New Jersey: Prentice Hall.

Ramos, C., Rocha, J., and Vale, Z. (2001) A complete complexity study of one-processor assembly and
manufacturing planning tasks. In: 4th IEEE International Symposium on Assembly and Task Planning, pp 369-
374.

Schreiber, G., Stemmer, A. and Bischoff, R. (2010) The fast research interface for the Kuka lightweight robot.
In: ICRA 2010 Workshop on Innovative Robot Control Architectures for Demanding (Research) Applications,
Anchorage, Alaska, pp. 15–21.

Ude, A., Nemec, B., Petrič T., and Morimoto, J. (2014) Orientation in Cartesian space dynamic movement
primitives. In: IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, pp. 2997-3004.

Wang, Y. and Liu, J. H. (2010) Chaotic particle swarm optimization for assembly sequence planning, Robotics
and Computer-Integrated Manufacturing, 26(2):212-222.

Zhao, J., and Masood, S. (1999) An Intelligent Computer-Aided Assembly Process Planning System, The
International Journal of Advanced Manufacturing Technology, 15(5):332-337.

