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1. Introduction

Let C be the field of the complex numbers, Sn be the permutation group acting on 
the set {1, . . . , n}, let Mn(C) denote the space of all n-by-n matrices with entries in C, 
and

An(C) = {A ∈ Mn(C) : AT = −A},

where AT is the transpose of A, be the subspace of alternate (skew-symmetric) matrices 
over C. The immanant associated with the irreducible character χ of Sn is the function 
dχ : Mn(C) → C given by

dχ(A) =
∑
σ∈Sn

χ(σ)
n∏

i=1
aiσ(i).

Notice that immanant generalizes the permanent, per(A) =
∑

σ∈Sn

∏n
i=1 aiσ(i), where 

χ = 1 is the principal character, and the determinant, det(A) =
∑

σ∈Sn
ε(σ) 

∏n
i=1 aiσ(i), 

where χ = ε is the alternating character of Sn.
Since computing an immanant dχ may not be always easy, one may hope to find a 

suitable linear map T that converts dχ into an immanant dχ′ . Given a subspace V ⊆
Mn(C), we say that a linear transformation T : V → V converts an immanant dχ into 
an immanant dχ′ on V if dχ′(T (X)) = dχ(X) for all X ∈ V . In the case where χ = χ′, 
one says that these maps preserve the immanant dχ.

The maps which convert/preserve immanants have been investigated in many papers. 
First, in 1994, Duffner [8] characterized linear maps which preserve the immanant dχ
on Mn(C), n ≥ 3, where χ /∈ {1, ε} and proved that linear preservers of immanants are 
always non-singular. The main result shows that, for n ≥ 4 and χ /∈ {1, ε}, the group 
of such linear preservers is generated by permutation of rows, permutation of columns, 
transposition, and a Hadamard multiplication with a matrix that has some additional 
properties. In 1997, Coelho and Duffner [1], showed that the same result is true for 
linear immanant preservers on Sn(C), the space of symmetric n-by-n matrices where 
again χ /∈ {1, ε}. The only difference is that permutation of rows and columns should be 
done in unison. Some years later, in [6], they extended this result to the alternate matrices 
and classified the linear maps which preserve the immanant dχ on An(C) (either n ≥ 6, 
or n = 4 and χ = (2, 2)), where χ /∈ {1, ε, (n − 1, n), (2, 1n−2)}. The result is exactly the 
same as for linear immanant preservers on Sn(C), except for immanants which vanish 
identically on An(C) (clearly any linear map will preserve such immanants).

Next, in 1998, Coelho and Duffner [3] proved that there is no linear map T : Mn(C) →
Mn(C), n ≥ 3 that converts an immanant dχ into an immanant dχ′ , where χ �= χ′. 
In 2003, they [4] extended this result to the symmetric matrices. They proved that 
there is no linear map T : Sn(C) → Sn(C), n ≥ 3 that converts an immanant dχ into 
an immanant dχ′ , where χ �= χ′. In 2021, Duffner et al. [10] extended this result to 
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the alternate matrices. They proved that there exists no map T : An(C) → An(C), 
n ≥ 6, satisfying dχ(A + αB) = dχ′(T (A) + αT (B)), α ∈ C, where χ and χ′ are not 
proportional on the subset Pn of all permutations of Sn with no cycles of odd length in 
the decomposition into the product of disjoint cycles (i.e., there is no 0 �= β ∈ C such 
that χ′|Pn

= β.χ|Pn
). Also, they characterized such maps T if χ and χ′ are proportional 

on Pn, but the induced immanants do not vanish identically on An(C), and proved 
that T is bijective and linear. Then in [11] they extended this result to the alternate 
matrices of order 4 and proved that there are no linear maps T : A4(C) → A4(C) that 
converts an immanant dχ into an immanant dχ′ for all matrices A ∈ A4(C), where 
χ, χ′ ∈ {1, ε, (2, 2)} are two distinct irreducible characters of S4.

In 2006, Coelho and Duffner [5] proved that if χ and χ′ are arbitrary irreducible com-
plex characters of Sn and T : Mn(C) → Mn(C), n ≥ 3, is a surjective map satisfying the 
condition dχ(A + αB) = dχ′(T (A) + αT (B)), for all A, B ∈ Mn(C) and all α ∈ C, then 
T is linear. Their main theorem combined with known results on linear preservers/con-
verters of immanants, allows us to characterize the pairs (χ, χ′) for which such maps 
exist and, in the cases they exist, to obtain the respective description.

In 2008, Kuzma [13], following the idea of [16], showed that if F is any field with 
at least n + 1 elements (n ≥ 3) and χ, χ′ are irreducible characters of Sn, then the 
immanant converter on matrix pencils T : Mn(F) → Mn(F), dχ(A + αB) = dχ′(T (A) +
αT (B)), A, B ∈ Mn(F) is automatically linear and bijective. His arguments rely on the 
property that for every pair of integers (i, j) ∈ {1, . . . , n} there exists a permutation 
σ ∈ Sn with σ(i) = j and 0 �= χ(σ) ∈ F . Note that this is automatically satisfied in 
fields of characteristic 0. However if the characteristic of the field is nonzero, it is not 
obvious that such a permutation σ exists. We postpone this question and also give the 
correction of the main result of [13] in Addendum (section 6). This was extended, in 
2014, by Coelho et al. [7] to matrix pencils consisting of symmetric matrices. Namely, 
following [5,13], they proved that the maps T : Sn(C) → Sn(C) satisfying the condition 
dχ(A + αB) = dχ′(T (A) + αT (B)), for any fixed irreducible characters χ, χ′ : Sn → C, 
any A, B ∈ Sn(C), and any α ∈ C, are automatically linear and bijective. In 2017, 
Duffner and Guterman [9] extended this result and studied converters between dχ and 
dε = det, where unlike [7] they considered matrix pencils spanned by singular symmetric 
matrices.

As already remarked, some immanants vanish identically on An(C). In [6, Corollary 
2.2], it was shown that for every even integer n, the immanant induced by a triangular 
character is such an example. In fact, the triangular character is the only character which 
vanishes on all the conjugacy classes whose cycle decomposition contains at least one 
transposition (see [2]).

The main goal in this paper is to find all the irreducible characters such that the 
induced immanant function dχ vanishes identically on An(C). Obviously, for A ∈ Mn(C)
we have dχ(AT ) = dχ(A), so for alternate matrices,

dχ(A) = dχ(AT ) = dχ(−A) = (−1)ndχ(A). (1.1)
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Hence, if n is odd, then dχ(A) = 0 for any A ∈ An(C). So, for finding the immanants 
which vanish identically, it is enough to consider the irreducible characters of Sn in the 
case when n is even. In this case, Duffner et al. [10, Proposition 2.11] proved the following 
result.

Proposition 1.1. Let A ∈ An(C). Then dχ(A) =
∑

σ∈Pn
χ(σ) 

∏n
i=1 aiσ(i).

So, for finding the vanishing immanants, it is enough to find the irreducible characters 
which are identically zero for any permutation σ ∈ Pn.

Recall that irreducible characters of Sn are in bijective correspondence with partitions 
of integer n (see [14, Theorem 2.4.6]). Also, partitions are usually visualized by their 
Young diagrams. With this in mind, our first main result is contained in Theorems 5.3
and 5.6, where by using the recursive Murnaghan-Nakayama rule, we find all the Young 
diagrams with induced characters vanishing identically on Pn. The second main result is 
Corollary 5.8 which classifies the immanants vanishing identically on alternate matrices.

2. Preliminaries

A composition λ of an integer n ≥ 1 is a sequence (λ1, . . . , λt) where λi ∈ N and ∑t
i=1 λi = n. A partition λ of an integer n is a composition (λ1, . . . , λt) of n where 

λ1 ≥ · · · ≥ λt. If λr = · · · = λs for some r, s ∈ {1, . . . , t}, then (λ1, . . . , λr, . . . , λs, . . . , λt)
will be written as (λ1, . . . , λs−r+1

r , . . . , λt) for simplicity. A shape λ is a geometric object 
which consists of finitely many one by one square cells arranged in left-justified rows and 
top-justified columns where adjacent cells are edge-connected. Shapes are in bijective 
correspondence with compositions of integer n, i.e., the number of cells in a shape. This 
correspondence is given by

λ ↔ (λ1, . . . , λt),

where λi is the number of cells in a row i and t is the number of rows of λ. We also use 
the notation

|λ| =
t∑

i=1
λi = n.

If the number of cells in consecutive rows of a shape is decreasing, we call it a valid 
shape or a (Young) diagram. These are in bijective correspondence with partitions of in-
teger n. Notice that a Young diagram λ = (λ1, . . . , λt) is a shape such that λ1 ≥ · · · ≥ λt.

A rim-hook ζ of a Young diagram λ consists of a chain of consecutive edge-connected 
cells by taking all the cells always leftwards or downwards such that, after its removal, 
the obtained shape λ \ ζ is also a Young diagram. If all the cells of ζ are only in one 
row (respectively, one column), we call it a horizontal rim-hook (respectively, vertical 
rim-hook).

From now on, we simply say diagram instead of Young diagram.
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3. Destructibility of diagrams

Let λ be a diagram. A domino D in λ is a pair of vertically or horizontally connected 
cells of λ that intersect in a common edge, i.e., form a 2 × 1 or 1 × 2 rectangle. We call 
these two cells a vertical domino or a horizontal domino, respectively.

A domino rim-hook is a rim-hook of length 2. Notice that it coincides with a single 
vertical or horizontal domino, respectively.

The diagram λ is called destructible if there exists a recursive procedure Rλ which 
removes all the cells from λ such that at each step we remove a single domino rim-hook 
(where a rim-hook refers to a diagram from this particular step, and so it is different at 
each step). If there is no such recursive procedure, we call the diagram indestructible. For 
example, the diagram λ = (2n) is a destructible diagram, since it consists of n horizontal 
dominoes. Examples of indestructible diagrams will be provided in the sequel.

Two dominoes are disjoint if they do not share the same cell. It is easy to see that 
disjoint domino rim-hooks will never share the same edge, however they can still intersect 
in a common vertex. This happens for example in a diagram (3, 3, 2).

Lemma 3.1. Let λ be a diagram with two disjoint domino rim-hooks D and E. Then E
is a domino rim-hook of λ \D.

Proof. Write λ = (λ1, . . . , λt), where λ1 ≥ · · · ≥ λt. First, if dominoes D and E are 
both horizontal, let i < j be the corresponding rows which contain them. Since λ \ D

and λ \ E are both valid shapes, then λi − 2 ≥ λi+1 and λj − 2 ≥ λj+1. Therefore

(λ \D) \ E = (λ1, . . . , λi−1, λi − 2, λi+1, . . . , λj−1, λj − 2, λj+1, . . . , λt)

is a valid shape, and hence E is a domino rim-hook of λ \D.
Second, if one of D, E is vertical, in rows i − 1 and i, and another is horizontal, in 

row j > i, then, by a similar argument, λi−1 − 1 = λi − 1 ≥ λi+1 and λj − 2 ≥ λj+1. 
Therefore

(λ \D) \ E = (λ1, . . . , λi−2, λi−1 − 1, λi − 1, λi+1, . . . , λj−1, λj − 2, λj+1, . . . , λt)

is again a valid shape, and the same conclusion holds. Likewise, we argue if j < i −1 or if 
D, E are both vertical (and λi−1 −1 = λi−1 ≥ λi+1 and λj−1 −1 = λj −1 ≥ λj+1). �

The following lemma is crucial for our subsequent investigation.

Lemma 3.2. Let λ be a diagram with |λ| = 2n, and let D be one of its domino rim-hooks. 
Then λ is destructible if and only if λ \D is destructible.

Proof. Assume λ \D is destructible and let

Rλ\D = {λ \D → (λ \D)(1) → · · · → (λ \D)(n−2) → (λ \D)(n−1) = (0)}
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be a recursive procedure for λ \D. Then

Rλ = {λ → λ \D → (λ \D)(1) → · · · → (λ \D)(n−2) → (λ \D)(n−1) = (0)} (3.1)

is a recursive procedure for λ. Therefore λ is destructible.
Conversely, assume λ is destructible. We use induction on the number n of dominoes 

in λ. The case n = 1 is trivial. If n = 2, then λ can take one among the five different 
forms (4), (3, 1), (2, 2), (2, 1, 1) and (1, 1, 1, 1). By removing a single domino rim-hook 
from any one of these, we get either a diagram (2) or a diagram (1, 1), both of which are 
obviously destructible. This proves the base of induction.

Assume now that for any destructible diagram γ with |γ| ≤ 2n, the diagram γ \D, 
where D is any of its domino rim-hooks, is always destructible. Now, let

λ = (λ1, . . . , λt, 0, 0, . . . ), |λ| = 2n + 2

be destructible with n + 1 dominoes, let D be its domino rim-hook, and let

Rλ = {λ → λ(1) → · · · → λ(n) → λ(n+1) = (0)}

be a recursive procedure for λ. Therefore, λ(1) is also destructible. Notice that λ(1) =
λ \ E, where E is a domino rim-hook of λ. We have four cases:

1. Assume that at the first step domino D is completely removed. Then D = E, so 
λ \D = λ(1) is destructible.

2. Assume that at the first step none of the cells of domino D is removed. By 
Lemma 3.1, D is also a domino rim-hook of λ(1). Since λ(1) is destructible with 
|λ(1)| = 2n, by the induction, λ(1) \ D = (λ \ E) \ D = (λ \ D) \ E is also destruc-
tible. Therefore, there exists a recursive procedure

{(λ \D) → (λ \D)(1) = (λ \D) \ E → · · · → (0)}

for λ \D.
3. Assume that D is a horizontal domino rim-hook and at the first step, domino E

removed a single cell from D. Then E was vertical. Let D belong to a row i. Then 
λi ≥ λi+1 + 2, and hence E cannot belong to rows i and i + 1. Therefore, since λ \E is 
a valid shape,

λi−1 = λi ≥ λi+1 + 2. (3.2)

Let E′ be the vertically placed domino in the last cells of rows i −1 and i of λ(1) = λ\E. 
By (3.2),

λ(1) \ E′ = (λ \ E) \ E′ = (λ1, . . . , λi−1 − 2, λi − 2, λi+1, . . . , λt, 0, 0, . . . ) (3.3)
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is a valid shape, and hence E′ is a domino rim-hook of a destructible diagram λ(1) with 
n dominoes. Notice that (3.3) can also be written as (λ \D) \D′, where D′ is horizontal 
domino occupying the last two cells of row i − 1, and since (3.3) is a valid shape, D′ is 
a domino rim-hook of λ \D.

By the induction, λ(1) \ E′ = (λ \ E) \ E′ = (λ \ D) \ D′ is also destructible, and 
hence there exists a recursive procedure

{(λ \D) → (λ \D)(1) = (λ \D) \D′ → · · · → (0)}

for λ \D.
4. Assume that D is a vertical domino rim-hook and at the first step, domino E

removed a single cell from D. The proof is similar to case 3 and we omit it. �
To simplify, let us denote the diagram λ = (m, m − 1, . . . , i), m ≥ 2, by 	m

i . If i = 1, 
the diagram is called triangular, and we write it as 	m (instead of 	m

1 ), for simplicity.

Lemma 3.3. A diagram λ is triangular if and only if there is no domino rim-hook in λ.

Proof. A vertical domino rim-hook requires two consecutive rows of equal length, while a 
horizontal domino rim-hook requires that there exist two consecutive rows whose lengths 
differ by at least two, but neither is possible if λ = 	m.

Now, assume that λ is not triangular. Then there exist two consecutive rows i and 
i + 1 such that di = λi − λi+1 �= 1. If di ≥ 2, then there exists a horizontal domino 
rim-hook in row i. If di = 0, let k ≥ i + 1 be the last row with λi = λi+1 = · · · = λm. 
Then there exists a vertical domino rim-hook in rows m − 1 and m. �

Clearly if there is no recursive procedure, the diagram must be indestructible. Hence, 
by Lemma 3.3 we can state the following corollary:

Corollary 3.4. Every triangular diagram 	m, where m > 1, is indestructible.

We generalize the above corollary in the following lemma that classifies the indestruc-
tible diagrams.

Lemma 3.5. Let λ be a diagram with |λ| even. The followings are equivalent:

(i) λ is indestructible.
(ii) λ is triangular or else there exists a recursive procedure of domino rim-hook removal 

which transforms λ into a triangular diagram.
(iii) Every recursive procedure of domino rim-hook removal applied on λ will eventually 

end up in a triangular diagram.
(iv) There exists a triangular diagram 	m such that every recursive procedure of domino 

rim-hook removal will transform λ into 	m.
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Proof. (i) ⇒ (iii). Suppose that there exists a recursive procedure of domino rim-hook re-
moval applied on λ which does not end up in a triangular diagram. Then, by Lemma 3.3, 
at each step there exists a domino rim-hook until removing all the cells from λ. Therefore 
λ is destructible, contradicting (i).

(iii) ⇒ (ii) is obvious.
(ii) ⇒ (i). If λ is triangular, then by Corollary 3.4, λ is indestructible. Now, assume 

that there exists a recursive procedure of domino rim-hook removal which transforms λ
into a triangular diagram. Since, by Lemma 3.3, the transformed triangular diagram is 
indestructible, by recursively using Lemma 3.2, λ is also indestructible.

(iv) ⇒ (iii) is obvious.
(iii) ⇒ (iv). We recall that λ consists of cells indexed by left-justified rows and top-

justified columns where adjacent cells are edge-connected. We denote the cells of row 
i in the diagram λ by Ci1, Ci2, . . . , Ciλi

here Cij belongs to row i and column j and 
the top-most row and the left-most column have index 1. With this notation each verti-
cal/horizontal domino can be written as a set

Dv = {C(i−1)j , Cij}, respectively Dh = {Ci(j−1), Cij} (3.4)

for some i and j.
Let m, m′ > 1, where m < m′, be two distinct integers such that two recursive 

procedures of domino rim-hook removal Rλ and R′
λ applied on λ will eventually end up 

in triangular diagrams 	m and 	m′ , respectively. By reversing the procedure Rλ, the 
diagram λ can be obtained from 	m by adding domino rim-hooks. We then apply the 
procedure R′

λ to see that the diagram 	m′ can also be obtained from 	m by adding 
domino rim-hooks. Then 	m′ \	m must be covered with non-overlapping, i.e., disjoint 
dominoes. We will show that this is impossible. Notice that C1m′ , the last cell of first 
row in 	m′ \ 	m, is also the only cell in its last column, and therefore it can only be 
covered with a horizontal domino Dh

1 = {C1(m′−1), C1m′}. Then C2(m′−1), the last cell 
of second row, cannot be covered with a vertical domino Dv

1 = {C1(m′−1), C2(m′−1)}, 
because Dv

1 intersects Dh
1 in the cell C1(m′−1). Therefore C2(m′−1) is also covered with 

a horizontal domino Dh
2 = {C2(m′−2), C2(m′−1)}. This allows us to recursively proceed 

forwards and show that the last cell of each succeeding row can only be covered with a 
horizontal domino. This is a contradiction, because the last row in 	m′ \ 	m contains 
only one cell and it cannot be covered with a horizontal domino. �

Now, we give the prototypical example of indestructible diagrams, which generalizes 
triangular ones from Corollary 3.4.

Example 3.6. The diagram λ = (2n − m(m+1)
2 , 	m), where m ≥ 2, is indestructible. 

To see this we first rewrite λ = (m + k, 	m). By removing recursively domino rim-
hooks from the first row, we have two cases. If k is odd, then the obtained diagram 
(m + 1, 	m) = 	m+1 is triangular, hence, by Lemma 3.5, is indestructible. If k is even, 
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then the diagram (m, 	m) is obtained. Now, by recursively removing the vertical domino 
rim-hooks from two consecutive rows {i, i +1}, i ∈ {1, . . . , m − 1}, we eventually get the 
triangular diagram 	m−1. Then, by Lemma 3.5, λ is again indestructible.

Remark 3.7. By reversing the procedure described in Lemma 3.5, we obtain one possi-
bility to construct all indestructible diagrams. We just start with a triangular diagram 
and recursively add dominoes in such a way that at each step, the newly added domino 
becomes a domino rim-hook for the obtained diagram (see Fig. 1). Notice that by ap-
plying this procedure to a single vertical or horizontal domino as a starting point, one 
can also build all possible destructible diagrams.

Another possibility to obtain all (in)destructible diagrams will be given in the next 
section.

4. Two rules which preserve the (in)destructibility of diagrams

In this section, we state and prove two main rules about destruction of diagrams. If 
D is a horizontal (respectively, vertical) domino, then we define its transpose to be a 
vertical (respectively, horizontal) domino.

Corollary 4.1 (First rule). Suppose a diagram λ′ is obtained from diagram λ by removing 
a domino rim-hook D and placing it (or its transpose) to any other row, including the new 
one after the last row, or to any two consecutive rows with the same lengths, including two 
new ones after the last row, of λ. Then λ is destructible if and only if λ′ is destructible.

Proof. Denote the transferred domino by D′ ⊆ λ′. Notice that λ \D = λ′ \D′. Hence 
D′ is a domino rim-hook of λ′ and Lemma 3.2 finishes the proof. �
Example 4.2. Consider a horizontal domino rim-hook D in the first row of λ =
(7, 5, 3, 3, 2). Applying the first rule can change λ into one of the following diagrams

λ′ = (6, 6, 3, 3, 2), λ′ = (5, 5, 5, 3, 2), λ′ = (5, 5, 4, 4, 2),

λ′ = (5, 5, 3, 3, 2, 2), λ′ = (5, 5, 3, 3, 2, 1, 1).

For any diagram λ, its transpose, λT = (γ1, . . . , γs) is a diagram where γi is the length 
of the i’th column of λ, that is, λT is a diagram obtained from λ by interchanging the 
rows and columns of λ. It is easy to see that γi = |{j : λj ≥ i}|. Therefore the partition 
determined by λT is the conjugate partition of the one determined by λ. Now, we have 
the second rule:

Lemma 4.3 (Second rule). A diagram λ is destructible if and only if its transpose, λT , 
is destructible.
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Sketch of the proof. A horizontal (respectively, vertical) domino of λ is a vertical (re-
spectively, horizontal) domino of λT . Moreover, for any rim-hook D of λ, we have 
(λ \D)T = λT \DT and DT , the transpose of D, is a domino rim-hook of λT . �

Now, as we mentioned in the previous section, using the above two rules, other pos-
sibilities are given to obtain all (in)destructible diagrams.

Lemma 4.4. Let λ be a diagram with |λ| = 2n. Then λ is destructible if and only if the 
diagrams λ and (2n) can be transformed to each other by applying the above two rules. 
Moreover, λ is indestructible if and only if there exists an integer m > 1 such that the 
diagrams λ and (2n− m(m+1)

2 ,	m) can be transformed to each other by applying the 
above two rules.

Proof. Using Corollary 4.1 we can transfer recursively horizontal/vertical domino rim-
hooks that are in rows 2, 3, . . . and place them horizontally to the first row. If all the 
dominoes from other rows can be transferred to the first row, then the obtained diagram 
is (2n). But, if after some steps there is no way to transfer domino rim-hooks from other 
rows to the first row, then there is no way to remove domino rim-hooks from those rows. 
In this case, by Lemma 3.3 there exists an integer m such that the obtained diagram is 
of the form (2n − m(m+1)

2 , 	m).
If m = 1, the obtained diagram is (2n −1, 1), so that by using the second rule, we trans-

pose into (2n − 1, 1)T = (2, 12n−2). Then using Corollary 4.1, after n − 1 times removing 
the vertical domino rim-hooks from the first column and placing them horizontally to 
the first row, we again obtain the diagram (2n). Since this is clearly destructible and the 
two rules preserve destructibility, our initial diagram λ is also destructible.

If m > 1, then, by Example 3.6, the obtained diagram (2n − m(m+1)
2 , 	m) is inde-

structible. Since the first rule preserves indestructibility, our initial diagram λ is also 
indestructible.

By reversing the above procedure, we can transform the diagram (2n) to any destruc-
tible one, and can transform the diagrams (2n − m(m+1)

2 , 	m), for suitable m > 1, to 
any indestructible one. �
Corollary 4.5. Let λ and γ be two destructible diagram with |λ| = |γ|. Then diagrams λ
and γ can be obtained from each other by applying the above two rules.

We remark that the above corollary does not always hold in indestructible case. For 
example, it can be easily checked that two indestructible diagrams λ = (6, 3, 2, 1) =
(6, 	3) and γ = (9, 2, 1) = (9, 	2) with |λ| = |γ| = 12 cannot be changed from one to 
another. However, it may still hold in some cases. For example, the two indestructible 
diagrams λ = (6, 4, 3, 2, 1) = (6, 	4) and γ = (13, 2, 1) = (13, 	2) with |λ| = |γ| = 16
can be changed from one to another as follows (first we transpose, and then we transfer 
domino rim-hooks to the first row):
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(6,	4) ↔ (	5, 1) ↔ (7, 4, 3, 2) ↔ (9, 4, 3) ↔ (11, 4, 1) ↔ (13, 2, 1).

5. Characters induced by (in)destructible diagrams

In this section we prove that the characters induced by indestructible diagram vanish 
identically on P2n ⊆ S2n, and the characters induced by destructible diagram are always 
nonzero on P2n (recall that P2n denotes the set of permutations from S2n whose cycle 
type contains only cycles of even length).

Our main tool will be the recursive Murnaghan-Nakayama rule (see [14, Theorem 
4.10.2] and [15, Corollary 7.2], or [12, Problem 4.45]) which is a combinatorial way of 
computing the value of the irreducible characters χλ. The crucial objects that come into 
play are the rim-hooks. The length of a rim-hook ζ is the number of cells in ζ. The leg 
length of ζ is ll(ζ)=(the number of rows of ζ) - 1. Let us state Murnaghan-Nakayama 
rule for convenience.

Theorem 5.1. ([14, Theorem 4.10.2] and [15, Corollary 7.2]) If λ is a diagram with 
|λ| = n and ρ = ρ1 . . . ρk is a cycle decomposition of a permutation ρ ∈ Sn into disjoint 
cycles of decreasing lengths, then we have

χλ(ρ) =
∑
ζ

(−1)ll(ζ)χλ\ζ(ρ\ρ1),

where the sum runs over all rim-hooks ζ of λ with |ρ1| cells. If λ contains no rim-hooks 
of length |ρ1|, then χλ(ρ) = 0.

We will also rely on the following result.

Lemma 5.2. [15, Lemma 7.3] Let λ be a diagram, and let ζ = λ \ γ be a rim-hook of λ
with |ζ| = pk, where p and k are integers. Then there exists a recursive procedure

{λ = λ(0) → λ(1) → · · · → λ(k) = γ}

such that for any i ∈ {1, . . . , k}, λ(i−1)\λ(i) is a rim-hook of λ(i−1) with |λ(i−1)\λ(i)| = p.

It follows easily from Lemma 5.2 that a diagram is destructible if and only if there 
exists a recursive procedure which removes all its cells in such a way that at each step 
we remove a rim-hook of any even length from the diagram obtained at the current step.

Theorem 5.3. The character induced by indestructible diagram λ with |λ| = 2n vanishes 
identically on P2n.

Proof. Let ρ = ρ1 . . . ρk be a cycle decomposition of permutation ρ ∈ P2n into disjoint 
cycles whose orders are even and decreasing. By Murnaghan-Nakayama rule χλ(ρ) =
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∑
ζ1

(−1)ll(ζ1)χλ\ζ1(ρ\ρ1), where the sum runs over all rim-hooks ζ1 of λ with |ρ1| cells. 
We will decompose this sum into two parts

χλ(ρ) =
∑′

ζ1

(−1)ll(ζ1)χλ\ζ1(ρ\ρ1) +
∑′′

ζ1

(−1)ll(ζ1)χλ\ζ1(ρ\ρ1),

where in 
∑′ we sum up over all the rim-hooks ζ1 ⊆ λ of length |ρ1| such that the 

diagram λ \ ζ1 contains at least one rim-hook of length |ρ2|, while in 
∑′′ we sum up 

over all the rim-hooks of length |ρ1| without this property. Every summand χλ\ζ1(ρ\ρ1)
in 

∑′′ vanishes, which is seen by computing it again by Murnaghan-Nakayama rule. 
Therefore 

∑′′ vanishes and hence χλ(ρ) =
∑′

ζ1
(−1)ll(ζ1)χλ\ζ1(ρ\ρ1).

Now, we can recursively continue the process on each summand χλ\ζ1(ρ\ρ1) from 
∑′. 

After r steps we get

χλ(ρ) =
∑

ζ1,...,ζr

(−1)ll(ζ1)+···+ll(ζr)χλ\
⋃r

i=1 ζi(ρr+1 . . . ρk).

where we sum up over all rim-hooks ζ1, . . . , ζr in which ζi is a rim-hook of λ \
⋃i−1

j=1 ζj

with |ζi| = |ρi|, i ∈ {1, . . . , r}. If at some step r < k, 
∑′ contains no summand, then 

χλ(ρ) = 0. Otherwise, assume at each recursive step 
∑′ contains at least one summand. 

This means that there is at least one way to recursively remove all the cells from λ by 
removing first a rim-hook ζ1 ⊆ λ with |ζ1| = |ρ1|, then removing a rim-hook ζ2 ⊆ λ

with |ζ2| = |ρ2|, etc. Since |ρ1| is even, then by Lemma 5.2 the first step can be done 

on 
|ρ1|
2 sub-steps, where at each sub-step we recursively remove a domino rim-hook and 

always get a valid shape. Since |ρ2| is even, similar conclusion holds for the second step, 
etc. This means that λ is destructible, a contradiction to the original hypothesis. �

Let us now focus on irreducible characters of S2n that correspond to destructible dia-
grams (see Theorem 5.6 below). Recall from Remark 3.7 that every destructible diagram 
can be recursively built up by adding vertical/horizontal dominoes to its current border. 
It follows that every destructible diagram can be covered (perhaps in more than one 
way) with horizontal and vertical dominoes. For example, the diagram (2, 2) has two dif-
ferent tilings DvDv and DhDh, where Dv and Dh are vertical and horizontal dominoes, 
respectively.

To be more precise, a (domino) tiling T of a diagram λ is a placement of dominoes that 
covers all the cells of the diagram perfectly (i.e., no overlaps, no diagonal placements, no 
protrusions off the diagram, see Fig. 2). We mention in passing that, alternatively, one 
can define a tiling to be a partition of the cells of λ into a disjoint union of pairs of cells 
which share common edge (cf. (3.4)).

Lemma 5.4. Every tiling of a destructible diagram contains a domino rim-hook.
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Proof. Let λ = (λ1, . . . , λt) be a destructible diagram and T be one of its tilings. As in 
the proof of Lemma 3.5, we denote the cells of row i in λ by Ci1, Ci2, . . . , Ciλi

, so each 
vertical/horizontal domino can be written as (3.4).

Since λ is destructible, by Lemma 3.5, it cannot be triangular. So, the difference 
between two consecutive rows is not always 1, here for simplicity, we consider λ appended 
with a virtual (empty) last row containing no cells.

Assume first there exists a row k such that the difference between two consecutive 
rows is

dk = λk − λk+1 ≥ 2. (5.1)

Without loss of generality, we may assume that k is the smallest one. In this case, the 
two cells D = {Ck(λk−1), Ckλk

} form a horizontal domino rim-hook. If D is a part of the 
tiling T we are done. Otherwise, we must have k ≥ 2 and the cell Ckλk

must be covered 
with a vertical domino

Dv = {C(k−1)λk
, Ckλk

} ∈ T.

Now, if λk−1 = λk, since by (5.1) we have λk ≥ λk+1 + 2, then Dv is a domino 
rim-hook, and again we are done. The only possibility left to consider is that

dk−1 = λk−1 − λk = 1.

In this case C(k−1)λk−1 , the last cell of row k − 1, cannot be covered with a horizontal 
domino Dh, because Dh intersects the vertical domino Dv in the cell C(k−1)(λk−1−1) =
C(k−1)λk

. So C(k−1)λk−1 is covered with a vertical domino

Dv
1 = {C(k−2)λk−1 , C(k−1)λk−1} ∈ T.

Recall that k was the first row satisfying (5.1), and consequently di = λi − λi+1 ∈ {0, 1}
for every i < k − 1. Therefore we can recursively proceed backwards to show that the 
last cell of each preceding row can only be covered with a vertical domino until either 
we hit a row with di = 0, or else di = 1 for 1 ≤ i ≤ k − 2 and we reach a first row. In 
the former case we stopped at row i + 1 and cover a cell C(i+1)(λi+1−1) with a vertical 
domino, and hence its edge-adjacent cell C(i+1)λi+1 can only be covered with a vertical 
domino Dv = {Ciλi+1 , C(i+1)λi+1} = {Ciλi

, C(i+1)λi
}. Since λi = λi+1 = λi+2 + 1, then 

Dv is actually a domino rim-hook, and we are done once again. In the latter case, the 
cell C1λ1 (the last cell of the first row) would also have to be covered with a vertical 
domino, a contradiction. Therefore, the latter case is impossible.

Assume the last di ≤ 1 for every i, and there exists k′ < t with

dk′ = λk′ − λk′+1 = 0.
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We may suppose that k′ is the largest one with this property. Notice that now λt = 1
and di = 1 for every i > k′; that is, from row k′ +1 on the diagram is of triangular form. 
If k′ = t − 1, then λt−1 = λt = 1; that is, each of the last two rows contains a single cell 
which form a vertical domino rim-hook Dv. Clearly, the only cell of the last row cannot 
be covered with a horizontal domino, and therefore Dv ∈ T . So, again we are done.

Finally, let k′ < t − 1. Since λk′ = λk′+1 > λk′+2, then the last two cells of rows k′
and k′ + 1 form a vertical domino rim-hook. If it is a part of the tiling T , we are done. 
Otherwise, the last cell of row k′ + 1 must be covered with a horizontal domino

Dh = {C(k′+1)(λk′+1−1), C(k′+1)λk′+1
} ∈ T.

Therefore, C, the last cell of row k′+2, cannot be covered with a vertical domino, because 
it intersects Dh in the cell C(k′+1)(λk′+1−1). So, also C is covered with a horizontal domino

Dh
1 = {C(k′+2)(λk′+2−1), C} ∈ T.

This allows us to recursively proceed forwards and show that the last cell of each succeed-
ing row can only be covered with a horizontal domino. This is a contradiction, because 
the last row contains only one cell and it cannot be covered with a horizontal domino. �

The parity is a mapping π : Z → {−1, 1} defined by π(k) = (−1)k. We also introduce 
the parity of a diagram λ = (λ1, . . . , λt) by

π(λ) =
t−1∏
i=1

π(λi)t−i.

Lemma 5.5. Let λ = (λ1, . . . , λt) be a destructible diagram covered with dominoes. Then

π(λ) = π(v),

where v is the number of vertically placed dominoes.

Proof. For i ∈ {1, . . . , t − 1}, let zi be the number of vertically placed dominoes which 
intersect both rows i and i +1. Let also mi be the number of vertically placed dominoes 
that intersect row i with one of its two cells, i ∈ {1, . . . , t}. Clearly,

m1 = z1; (5.2)

and moreover,

m2 = z1 + z2, m3 = z2 + z3, . . . , mt−1 = zt−2 + zt−1, and mt = zt−1. (5.3)

Next notice that λi −mi equals the number of horizontally placed dominoes in row i, so 
it must always be an even integer. Therefore, 1 = π(λi −mi) = π(λi)/π(mi), and so
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π(λi) = π(mi). (5.4)

From (5.4) and (5.2) we have π(λ1) = π(m1) = π(z1). Moreover, from (5.4) and (5.3)
we have π(λ2) = π(m2) = π(z1 + z2) = π(z1)π(z2) = π(λ1)π(z2). Therefore, π(z2) =
π(λ1)π(λ2). Also, we have π(λ3) = π(m3) = π(z2 +z3) = π(z2)π(z3) = π(λ1)π(λ2)π(z3). 
Then π(z3) = π(λ1)π(λ2)π(λ3). Proceeding recursively for any i ∈ {1, . . . , t −1} we have 
π(zi) = π(λ1)π(λ2) . . . π(λi). Hence,

π(v) = π(z1 + · · · + zt−1)

= π(z1)π(z2) . . . π(zt−1)

= π(λ1) × π(λ1)π(λ2) × · · · × π(λ1)π(λ2) . . . π(λt−1)

= π(λ1)t−1 × π(λ2)t−2 × · · · × π(λt−1)

=
t−1∏
i=1

π(λi)t−i = π(λ). �

Given a tiling T of a destructible diagram λ, the number of different ways to recur-
sively remove all the dominoes from λ, where at each step we remove a single domino 
rim-hook by following the tiling T , will be denoted by |T | (see Fig. 3).

Theorem 5.6. Let λ be a destructible diagram of |λ| = 2n, and let T be the set of all 
possible tilings of λ. If the cycle type of a permutation ρ ∈ S2n is (2, . . . , 2) with n
components, then

χλ(ρ) = π(λ)
∑
T∈T

|T | �= 0.

Proof. Let ρ = ρ1 . . . ρn be a decomposition of ρ into disjoint cycles, each of order two. 
By Murnaghan-Nakayama rule, χλ(ρ) =

∑
D1

(−1)ll(D1)χλ\D1(ρ \ ρ1), where the sum 
runs over all domino rim-hooks D1 of λ. By Lemma 3.2, the diagram λ \ D1 is still 
destructible, so it again contains at least one domino rim-hook.

This allows us to recursively continue the Murnaghan-Nakayama rule on each sum-
mand χλ\D1(ρ \ ρ1). After r steps we get

χλ(ρ) =
∑

D1,...,Dr

(−1)ll(D1)+···+ll(Dr)χλ\
⋃r

i=1 Di(ρr+1 . . . ρn),

where the summation is over all dominoes D1, . . . , Dr such that for each i ∈ {1, . . . , r}, 
domino Di is a domino rim-hook of λ \

⋃i−1
j=1 Dj . Since λ is destructible, we will remove 

all the cells from λ after n steps and get

χλ(ρ) =
∑

(−1)ll(D1)+···+ll(Dn). (5.5)

D1,...,Dn
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Now, we will rearrange this sum. Each summand corresponds to a tiling T of 
λ determined by vertical/horizontal dominoes D1, . . . , Dn. Moreover, the exponent 
ll(D1) + · · · + ll(Dn) coincides with the number of vertically placed dominoes in tiling 
T . So by Lemma 5.5 the value of this summand, (−1)ll(D1)+···+ll(Dn), is equal to π(λ), 
the parity of λ.

Notice that more than one summand may correspond to the same tiling T . This 
happens when during the recursive Murnaghan-Nakayama procedure we encounter a 
step where we have more than one possibility to remove domino rim-hook by following 
the given tiling. It follows that in (5.5) there are exactly |T | summands corresponding 
to the tiling T .

Conversely, given any tiling T of λ, it contains, by Lemma 5.4, at least one domino 
rim-hook. This allows us to recursively remove all the dominoes from T in such a way 
that at each step one of the current domino rim-hooks is removed. If we ignore the sign, 
this corresponds exactly to one of the summands of (5.5) obtained after finishing the 
recursive Murnaghan-Nakayama procedure. This shows that the equation (5.5) equals 
to π(λ) 

∑
|T |, where we sum up over all the tilings T of λ, as claimed. �

Recall that P2n is the subset of all permutations in the symmetric group S2n with no 
cycles of odd length in the decomposition into the product of disjoint cycles. Now, we 
have the following corollary:

Corollary 5.7. The following are equivalent for the irreducible character χ of S2n:

(i) χ is induced by an indestructible diagram.
(ii) χ(ρ) = 0 for a permutation ρ = (1, 2)(3, 4) . . . (2n − 1, 2n).
(iii) χ vanishes identically on the subset P2n ⊆ S2n.

Proof.
(i) ⇒ (iii) has been proven in Theorem 5.3.
(iii) ⇒ (ii) is obvious.
(ii) ⇒ (i) follows from Theorem 5.6. �

Notice that even if a character is induced by a destructible diagram, it may still 
have zeros inside P2n. For a concrete example, χ(2,2)(4) = 0. We conclude the paper by 
classifying the immanants which vanish identically on alternate matrices An(C).

Corollary 5.8. Let dχ : Mn(C) → C be an immanant induced by an irreducible character 
χ of Sn. Then the following are equivalent.

(i) dχ vanishes identically on a subspace An(C) of alternate matrices.
(ii) Either n is odd, or n is even and dχ(J ⊕ · · · ⊕ J) = 0 where J =

(
0 1
−1 0

)
.

(iii) Either n is odd, or n is even and χ is induced by an indestructible diagram.
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Proof. (iii) ⇒ (i). Let A be an alternate matrix in Mn(C). If n is odd, it follows from 
(1.1) that dχ(A) = 0. Now, let n be even and χ be induced by an indestructible diagram. 
Then, by Theorem 5.3, χ vanishes identically on every permutation ρ ∈ Pn. Therefore, 
by Proposition 1.1, dχ vanishes identically on every alternate matrix.
(i) ⇒ (ii). It is trivial since J ⊕ · · · ⊕ J is an alternate matrix.
(ii) ⇒ (iii). Let n be even and let

A = (aij) = J ⊕ · · · ⊕ J =

⎡
⎢⎢⎢⎢⎢⎢⎣

(
0 1
−1 0

)
0 . . . 0

0
(

0 1
−1 0

)
. . . 0

...
...

. . .
...

0 0 . . .
(

0 1
−1 0

)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Notice that if (i, j) /∈ {(2k − 1, 2k), (2k, 2k − 1); 1 ≤ k ≤ n
2 }, then aij = 0. So, in 

computing the immanant of A, every summand corresponding to a permutation σ with 
σ(2k−1) �= 2k or σ(2k) �= 2k−1 for some k ∈ {1, . . . , n2 } is multiplied by 

∏n
i=1 aiσ(i) = 0. 

Therefore

dχ(A) = χ((1, 2)(3, 4) . . . (n− 1, n))
n
2∏

i=1
a(2i−1)(2i) a(2i)(2i−1)

= χ((1, 2)(3, 4) . . . (n− 1, n)) · (−1)n
2 .

Since dχ(A) = 0, then χ((1, 2)(3, 4) . . . (n − 1, n)) = 0. Therefore, by Corollary 5.7, χ is 
induced by an indestructible diagram. �

Let us finish with a remark that Corollary 5.7 is not true in other fields. For example in 
fields of characteristic 2, character induced by a destructible diagram λ = (4, 4) vanishes 
identically on P8. We do not know what happens in fields of other characteristic.

6. Addendum

In [13], the following result was stated.

Theorem 6.1. [13, Theorem 1] Let n ≥ 3 be an integer, let F be a field with |F | ≥ n + 1, 
and let χ, χ′ be two irreducible complex characters of the symmetric group Sn. Suppose 
Φ: Mn(F) → Mn(F) is any map with the property

dχ(A + λB) = dχ′(Φ(A) + λΦ(B)); (A,B ∈ Mn(F); λ ∈ F). (6.1)

Then Φ is linear and bijective.
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However, the arguments which prove this result work only under the additional as-
sumption that for every pair of integers (i, j) ∈ {1, . . . , n} there exists a permutation 
σ ∈ Sn with σ(i) = j and with 0 �= χ(σ) ∈ F (this fact is needed in the proof of [13, 
Lemma 4], see also Example 6.5 below).

With this additional assumption on the character χ, all the arguments in [13] are then 
valid, and hence prove the following (which corrects Theorem 6.1).

Theorem 6.2. Let n ≥ 3 be an integer, let F be a field with |F | ≥ n + 1, and let χ, χ′

be two irreducible complex characters of the symmetric group Sn such that for every 
pair of integers (i, j) ∈ {1, . . . , n} there exists a permutation σ ∈ Sn with σ(i) = j and 
0 �= χ(σ) ∈ F . Suppose Φ: Mn(F) → Mn(F) is any map with the property

dχ(A + λB) = dχ′(Φ(A) + λΦ(B)); (A,B ∈ Mn(F); λ ∈ F).

Then Φ is linear and bijective.

In fact, as we show next, this additional assumption is automatically satisfied if 
char(F) �= 2. To make the proof easier, we introduce an additional terminology.

A rim-hook is complete if it is of maximal possible length. Such a rim-hook consists 
of a chain of consecutive edge-connected cells which start at the last cell of the first row 
in a diagram and continue all the time leftwards or downwards ending up at the last 
cell of the first column. Since the chain starts at the last cell of the first row and ends 
up at the last cell of the first column, we have moved s − 1 times leftwards and r − 1
times downwards, where r is the number of rows and s is the number of columns in 
our diagram. By adding also the starting cell of the chain, we see that the length of a 
complete rim-hook is (s −1) +(r−1) +1 = s +r−1. Notice that the length of a complete 
rim-hook is 1 if and only if |λ| = 1.

Lemma 6.3. Let n ≥ 3. If χ is an irreducible complex character of Sn, then for every 
(a, b) ∈ {1, . . . , n} there exists a permutation σ ∈ Sn such that σ(a) = b and χ(σ) ∈
{−2, −1, 1, 2}.

Proof. Let λ be a diagram with |λ| = n ≥ 3 such that χ = χλ, and let

Rλ = {λ = λ(0) → λ(1) → · · · → λ(j) = (k, 1t)}

be the recursive procedure starting with a diagram λ whereby at step i, a complete 
rim-hook is removed from the obtained diagram λ(i−1), i ∈ {1, . . . , j}, until we reach a 
diagram λ(j) which is its own rim-hook; that is

λ(j) = (k, 1t)

for some 0 ≤ k, t ≤ n.
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At each step i, the length of the complete rim-hook of λ(i) equals �i = si + ri − 1, 
where si and ri denote the number of columns and rows of λ(i), respectively. Since for 
any i, si+1 < si and ri+1 < ri, then �i+1 < �i.

Let us now define the conjugacy classes of the desired permutations as follows:
Case (i): j = 0 and λ(j) = λ = (2, 1). From Murnaghan-Nakayama rule, one easily 

observes that

χ(2,1)(id) = 2 and χ(2,1)(σ) = χ(2,1)(σ−1) = −1,

where σ = (1, 2, 3) is a long cycle. Notice that one among the permutations id, σ, σ−1

maps a into b.
In the remaining cases we will find a single conjugacy class of permutations to do 

the job, i.e., to map a into b regardless whether a = b or not. In fact, it suffices to give 
its cycle type so that cycle lengths are not increasing and the first one has length at 
least two, while the last one has length one (this ensures that permutations will have 
non-fixed points, which will take care for a �= b, and will also have fixed points, which 
will take care for a = b). If j > 0, we will start by cycle lengths �1, . . . , �j . Since at 
each step i ∈ {1, . . . , j}, there exists only one complete rim-hook (i.e., of length �i), 
then by Murnaghan-Nakayama rule (Theorem 5.1) any such permutation σ will satisfy 
χλ(σ) = ±χλ(σ \ {σ1, . . . , σj}), where |σi| = �i, i ∈ {1, . . . , j}.

Case (ii): j ≥ 0, and λ(j) = (1) is a single cell. Since |λ| ≥ 3, then j > 0. The desired 
permutation σ is of cycle type (�1, . . . , �j , 1). Therefore χλ(σ) = ±1.

Case (iii): j ≥ 0, and k �= t +1 with k ≥ 2 and t ≥ 1; i.e., (k, 1t) is a non-symmetric rim-
hook with at least two columns and at least two rows. The desired permutation σ is of cy-
cle type (�1, . . . , �j , M, 1m+1), where M = max{k−1, t} and m = min{k−1, t}. Therefore, 
by Murnaghan-Nakayama rule, χλ(σ) = ±χ(k,1t)(σj+1σj+2 . . . σm+j+2) = ±χα(1m+1) =
±1, where |σj+1| = M , |σj+2| = · · · = |σm+j+2| = 1, and α ∈ {(1m+1), (m + 1)}.

Case (iv): j > 0, and k �= t + 1 with either k = 1 or t = 0; i.e., λ(j) is either 
a single column (1t+1) or a single row (k). The desired permutation is of cycle type 
(�1, . . . , �j−1, 1M+1), where M = max{k − 1, t}. Therefore, by Murnaghan-Nakayama 
rule, χλ(σ) = ±χβ(σj+1 . . . σM+j+1) = ±1, where |σj+1| = · · · = |σM+j+1| = 1 and 
β ∈ {(1M+1), (M + 1)}.

Case (v): j = 0, and k �= t + 1 with either k = 1 or t = 0; i.e., λ = λ(j) is either 
a single column (1t+1) or a single row (k). The desired permutation σ is of cycle type 
(2, 1n−2), and by Murnaghan-Nakayama rule, χλ(σ) = ±1.

Case (vi): j ≥ 0, and k = t + 1 > 2; i.e., λ(j) = (k, 1k−1) is a symmetric rim-hook. 
The desired permutation σ is of cycle type (�1, . . . , �j , k−1, k−1, 1). Now, there are two 
rim-hooks of lengths k − 1 in λ(j): the horizontal one Rh and the vertical one Rv. If at 
step j + 1, we remove Rv (respectively, Rh), then the obtained diagram is a single row 
λ(j+1) = (k) (respectively, a single column λ(j+1) = (1k)). So, at step j + 2, we remove 
from (k) (respectively, (1k)) the horizontal (respectively, vertical) rim-hook of length 



20 H. Cheraghpour, B. Kuzma / Linear Algebra and its Applications 692 (2024) 1–23
k− 1. In both cases λ(j+2) = (1) is obtained. Therefore, by Murnaghan-Nakayama rule, 
χλ(σ) = ±χ(k,1k−1)(σj+1σj+2σj+3), where |σj+1| = |σj+2| = k − 1 and |σj+3| = 1. Then

χ(k,1k−1)(σj+1σj+2σj+3) = (−1)(k−1)−1χ(k)(σj+2σj+3) + χ(1k)(σj+2σj+3)

= (−1)k−2χ(1)(σj+3) + (−1)(k−1)−1χ(1)(σj+3)

= 2(−1)k−2χ(1)(σj+3) = 2(−1)k−2.

Therefore χλ(σ) = ±2. �
Corollary 6.4. Let n ≥ 3 be an integer, let F be a field with |F | ≥ n +1, and let χ, χ′ be two 
irreducible complex characters of the symmetric group Sn. Suppose Φ: Mn(F) → Mn(F)
is any map with the property

dχ(A + λB) = dχ′(Φ(A) + λΦ(B)); (A,B ∈ Mn(F); λ ∈ F).

If char(F) �= 2, then Φ is linear and bijective.

Proof. Assume char(F) �= 2. It follows from Lemma 6.3 that for every (a, b) ∈ {1, . . . , n}
there exists a permutation σ ∈ Sn such that σ(a) = b and 0 �= χ(σ) ∈ F . The rest follows 
from [13] (see also Theorem 6.2). �

Let us finish by showing that in the fields of characteristic 2, the results are different.

Example 6.5. Assume n = 5 and let the irreducible character χ(3,1,1) : S5 → Z correspond 
to a partition 5 = 3 + 1 + 1. By Murnaghan-Nakayama rule, one can show that

χ(3,1,1) :
(

(1) (1,2) (1,2)(3,4) (1,2,3) (1,2,3)(4,5) (1,2,3,4) (1,2,3,4,5)
6 0 −2 0 0 0 1

)
.

Consequently, if F is a field of characteristic 2, then no permutation σ with χ(3,1,1)(σ) �= 0
(mod 2) satisfies σ(1) = 1. Moreover, the conclusions of Theorem 6.1 are not valid for 
χ = χ′ = χ(3,1,1) if F is a field of characteristic 2. Namely, dχ(A +αE11) = dχ(A) implies 
that the non-linear map Φ: M5(F) → M5(F), defined by Φ: X �→ X + E11, satisfies 
(6.1).
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Appendix A

Fig. 1. An example of an indestructible diagram (cf. Lemma 3.5).

Fig. 2. All six different tilings of diagram (4, 4, 3, 1). Notice that the number of vertical dominoes is always odd 
(cf. Lemma 5.5). Notice also that each tiling contains at least one (shaded) domino rim-hook (cf. Lemma 5.4).
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Fig. 3. There are |T | = 7 possibilities to recursively remove rim-hook dominoes by following a fixed tiling T
of diagram (4, 4, 3, 1) (cf. Theorem 5.6 and the text immediately before it). The domino rim-hooks of each 
obtained diagram are shaded.
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