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Received: 14 December 2022 / Accepted: 11 December 2023 / Published online: 16 January 2024
© The Author(s) 2024

Abstract
We extend our previous result on the behaviour of the quadratic part of a complex points of a
small C2-perturbation of a real 4-manifold embedded in a complex 3-manifold. We describe
the change of the structure of the quadratic normal form of a complex point. It is an immediate
consequence of a theorem clarifying how small perturbations can change the bundle of a pair
of one arbitrary and one symmetric 2× 2 matrix with respect to an action of a certain linear
group.
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1 Introduction

Let M be a smooth real 2n-submanifold in C
n+1. A point p ∈ M is called complex when

TpM is a complex subspace in TpC
n+1; its complex dimension is equal to n. Locally, near

a complex point p ∈ M we can see M as a graph (see e.g. [23]):

w = zT Az + Re(zT Bz) + o(|z|2), (z(p), w(p)) = (0, 0), A ∈ C
n×n, B ∈ C

n×n
S ,

(1.1)

in which (z, w) = (z1, z2, . . . , zn, w) are suitable local coordinates on C
n+1, and C

n×n ,
C
n×n
S are sets of all n × n matrices and n × n symmetric matrices, respectively. A complex

point p is quadratically flat, if the quadratic part of (1.1) is real valued.
When n = 1 complex points are well understood; see papers of Bishop [3], Kenig and

Webster [18], Moser andWebster [19], Huang and Yin [16], Huang and Krantz [17], Bedford
and Klingenberg [2] and Forstnerič [13]. They are quadratically flat and given locally by
w = zz + γ

2 (z2 + z2) + o(|z|2), 0 ≤ γ , or w = z2 + z2 + o(|z|2). For n = 2 a relatively
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simple description of complex points up to quadratic terms was obtained by Coffman [7]; it
includes two generic normal forms given by equations

w = τ z1z2 + z2z1 + a
2 z

2
1 + a

2 z
2
1 + b(z1z2 + z1z2) + d

2 z
2
2 + d

2 z
2
2 + o(|z|2), (1.2)

w = z1z1 + eiθ z2z2 + a′
2 (z21 + z21) + b′z1z2 + b′z1z2 + d ′

2 (z22 + z22) + o(|z|2), (1.3)

in which |a| = 1, b > 0, d ∈ C, τ ∈ (0, 1) and θ ∈ (0, π), a′, d ′ > 0, b′ ∈ C
∗

(apply (A, B) = (
[
0 1
τ 0

]
,

[
a b
b d

]
)
and (A, B) = (

[
1 0
0 eiθ

]
,

[
a′ b′
b′ d ′

]
)
to (1.1) for n = 2,

respectively). If n > 2 quadratically flat complex pointswere studied by Slapar and the author
[22]. We refer to the papers of Dolbeault, Tomassini and Zaitsev [9] and Fang and Huang
[12] for results on holomorphic flattenability of CR-nonminimal real analytic submanifolds
near complex points. Formal normal forms of CR-singularities were considered by Burcea
[6] and Gong and Stolovitch [15], among others.

In this paper we continue a research started in the paper [23], in which we explained when
the quadratic part of a complex point of a real 4-manifold embedded in a complex 3-manifold
can be transformed under small C2-perturbations to the quadratic part of another complex
point. For instance, [23, Corollary 3.8] implies that no sufficiently small C2-deformation of

w = z1z1 + 1
2 z

2
2 + 1

2 z
2
2 + o(|z|2) near (0, 0) (with (A, B) = ( [

1 0
0 0

]
,

[
0 0
0 1

] )
in (1.1) for

n = 2) can lead to w = 1
2 z1z2 + z1z2 + z21 + z21 + z1z2 + z1z2 + z22 + z22 + o(|z|2) (with

(A, B) = ( [
0 1
1
2 0

]
,

[
2 1
1 2

] )
in (1.1) for n = 2).

We now focus on the change of the type of a complex point, i.e. on the structure of (A, B)

in (1.1). In particular, we provide the following result describing possible arbitrarily small
C2-deformations to generic normal forms.

Theorem 1.1 Let M be a real 4-manifold in C
3 and let p ∈ M be a complex point given

locally by (1.1) with n = 2 and A ∈ C
2×2, B ∈ C

2×2
S . It follows that A �=

[
1 0
0 eiθ0

]
with

θ0 ∈ [0, π) (or A �=
[
0 1
τ0 0

]
with τ0 ∈ [0, 1)) if and only if there exists an arbitrarily small

C2-perturbation M ′ of M, and such that M ′ has a complex point p′, arbitrarily close to p,
and p′ is locally given by the equation of the form (1.2) (of the form (1.3)).

A more general situation is considered in Theorem 3.4 and Corollary 3.6. Due to tech-
nical reasons, these results are stated in Sec. 3. A substantial difference in comparison to
[23] is that our problem now reduces to a system of nonlinear equations with larger set
of parameters. It makes the analysis considerably more involved. However, the number of
cases to be considered now is smaller. We add that Theorem 3.4 is of independent interest
in matrix analysis since it clarifies how small perturbations can change the bundle of a pair
(A, B) ∈ C

2×2 ×C
2×2
S with respect to transformations (cP∗AP, PT BP) with nonsingular

matrix P and |c| = 1.
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2 Normal forms in dimension 2

Any holomorphic change of coordinates that preserves (1.1) for n = 2 transforms (1.1) into
the equation that can by a slight abuse of notation be written as

w = zT
(
cP∗AP

)
z + Re

(
zT (PT BP)z

)
+ o(|z|2), P ∈ GL2(C), c ∈ S1,

where S1 andGL2(C) are a unit circle and the group of invertible 2×2matrices, respectively.
Studying the quadratic part of a complex point thus means examining the action of S1 ×
GL2(C) on C

2×2 × C
2×2
S (see also [7] and [23, Sec. 3]):

� : (
(c, P), (A, B)

) �→ (cP∗AP, PT BP), P ∈ GL2(C), c ∈ S1. (2.1)

An orbit at (A, B) ∈ C
2×2 × C

2×2
S with respect to (2.1) is denoted by Orb�(A, B).

For some applications it is useful to have a stratification into bundles of matrices, i.e.
sets of all matrices having similar properties. This notion was first introduced by Arnold [1,
Section 30] for the action of similarity; two matrices are in the same bundle under similarity
precisely when their Jordan canonical forms have the same structure (with bijection between
the sets of distinct eigenvalues). For instance, matrices with all distinct eigenvalues form the
generic bundle.

Three bundles with respect to the action (2.1) can be formed according to the sign of

det

[
A B
B A

]
for (A, B) ∈ C

2×2 × C
2×2
S (see [7, Sec. 4]). Slapar [20] (see also [21]) proved

that the bundles with nonvanishing determinant are connected components of C2×2 × C
2×2
S

and showed that up to smooth isotopy complex points of a real 4-submanifold in C
3 are

locally given either by w = z1z1 + z2z2 or w = z1z1 + z22.
Our goal is to understand the change of normal forms of (2.1) under small perturbations,

thus we use the list [7, Sec. 7,Table 1] (see also [23, Lemma 2.2]) of normal forms for orbits
under (2.1), to form bundles so that they contain normal forms of similar structure. To be
more precise, each such set of normal forms is parameterized by smooth maps � → C

2×2,
λ �→ A(λ) and � → C

2×2
S , λ �→ B(λ), in which � ⊂ R

k is a parameter set, and we define
the bundle of (A0, B0) = (A(λ0), B(λ0)) for λ0 ∈ � with respect to the action � in (2.1)
as:

Bun�(A0, B0) :=
⋃

λ∈�

Orb�(A(λ), B(λ)). (2.2)

Elements of a bundle must behave similarly under small perturbations (Sect. 3).
To simplify the notation, a ⊕ d denotes the diagonal matrix with a, d on the diagonal,

while the 2 × 2 identity-matrix and the 2 × 2 zero-matrix are I2 and 02.

Lemma 2.1 Bundles of the action (2.1), represented by pairs (A, B) given in Table 1, are
immersed submanifolds in C2×2 × C

2×2
S with dimensions noted in the first column.

Note that we arranged orbits Orb�(1 ⊕ σ, d0 ⊕ d) for σ ∈ {1,−1}, d > 0, d0 ∈ {0, d}
into bundles Bun�(1 ⊕ σ, 0 ⊕ d) = ∪d>0Orb�(1 ⊕ σ, 0 ⊕ d) and Bun�(1 ⊕ σ, d I2) =
∪d>0Orb�(1⊕σ, d I2), σ ∈ {1,−1}. Next, Orb�

( [
0 1
0 0

]
,

[
ζ b
b 1

] )
for ζ ∈ C, b > 0 are split

into bundleswith representatives
( [

0 1
0 0

]
,

[
ζ ∗ b
b 1

] )
and

( [
0 1
0 0

]
,

[
0 b
b 1

] )
for ζ ∗ ∈ C

∗, b > 0.
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48 Page 4 of 43 T. Starčič

Table 1 Bundles of the action (2.1). Here 0 < τ < 1, 0 < θ < π , a, b, d > 0, ζ ∈ C, ϕ ∈ R, ζ∗ ∈ C
∗ are

the parameters

dim A B A B A B A B

14 1 ⊕ eiθ
[
a ζ∗
ζ∗ d

]
,

[
0 1
τ 0

] [
eiϕ b
b ζ

]
,

[
0 1
1 i

] [
0 1
0 0

]

−ζ∗ ∼ ζ∗ ϕ + π ∼ ϕ

12

[
0 b
b d

] [
0 b
b eiϕ

]
, a ⊕ ζ

[
ζ∗ b
b 1

]

[
a b
b 0

]
ϕ + π ∼ ϕ

a ⊕ d 1 ⊕ ζ

10

[
0 b
b 0

]
0 ⊕ 1

[
0 b
b 0

] [
0 b
b 1

]

a ⊕ 0

[
0 b
b 0

]
a ⊕ 1

0 ⊕ d

[
1 b
b 0

]

9 0 ⊕ d

8 02 02

[
0 b
b 0

]

1 ⊕ 0

0 ⊕ 1

7 02
6 02

11 I2 a ⊕ d, a < d 1 ⊕ −1 a ⊕ d, a < d

[
0 1
1 0

]
1 ⊕ deiθ 1 ⊕ 0

10

[
0 b
b 1

]
a ⊕ 1

9 d I2 d I2

0 ⊕ d

[
0 b
b 0

]

0 ⊕ d

8 1 ⊕ 0 0 ⊕ 1
[
0 1
1 0

]

6 02 I2 a ⊕ 0

5 02 02
4 1 ⊕ 0 02
0 02

Sketch of the proof of Lemma 2.1 Fix (A0, B0) ∈ C
2×2 × C

2×2
S from Table 1 and define

�� : S1 × GL2(C) × � → C
2×2 × C

2×2
S , (c, P, λ) �→ �

(
c, P, A(λ), B(λ)

)
, (2.3)

where ��(1, I2, λ0) = (A0, B0). For every g ∈ S1 × GL2(C) the maps �g : (A, B) �→
�(g, (A, B)) and Rg : h �→ hg are automorphisms of C2×2 × C

2×2
S and S1 × GL2(C),

respectively, and we have �g ◦ �� = �� ◦ (Rg × id�). Thus the rank of d�� does not
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On structures of normal forms of complex points... Page 5 of 43 48

depend on λ ∈ �, g ∈ S1 × GL2(C) and by the constant rank theorem (e.g. [5, Theorem
IV.5.8]) the bundle Bun�(A0, B0) ⊂ C

2×2 × C
2×2
S is an immersed manifold.

In a similar manner as tangent spaces of orbits in [23, Lemma 2.2] are computed, tangent
spaces of bundles are obtained. We choose paths (A(t), B(t)) in Bun�(A0, B0) and

γ : (−δ, δ) → S1 × GL2(C), γ (t) = (eiαt , I + t X), α ∈ R, X ∈ C
2×2, δ > 0,

and calculate:
d

dt

∣
∣
∣
t=0

eiαt
(
(I + t X)∗A(t)(I + t X)

) = iαA0 + d
dt

∣
∣
t=0A(t) + (X∗A0 + A0X),

d

dt

∣
∣
∣
t=0

(
(I + t X)T B(t)(I + t X)

) = d
dt

∣
∣
t=0B(t) + (XT B0 + B0X).

Writing X = ∑2
j,k=1(x jk + iy jk)E jk , where E jk is the elementary matrix with one in the

j-th row and k-th column and zeros otherwise, we deduce that

X∗A0 + A0X =
2∑

j,k=1

(x jk − iy jk)Ekj A0 +
2∑

j,k=1

(x jk + iy jk)A0E jk

=
2∑

j,k=1

x jk(Ekj A0 + A0E jk) +
2∑

j,k=1

y jki(−Ekj A0 + A0E jk),

d
dt

∣∣
t=0A(t) = β21E21 + β22E22, β22 =

{
βieiθ , A = 1 ⊕ eiθ , 0 < θ < π

0, otherwise
,

β21 =
⎧
⎨

⎩
β, A =

[
0 1
τ 0

]
, 0 < τ < 1

0, otherwise
, β ∈ R.

In a similar fashion we conclude that

XT B0 + B0X =
2∑

j,k=1

x jk(Ekj B0 + B0E jk) +
2∑

j,k=1

y jki(Ekj B0 + B0E jk),

d
dt

∣∣
t=0B(t) =

2∑

j,k=1

γ jk E jk, γ jk =
⎧
⎨

⎩

z jk, Bjk(t) = (B0) jk + z jk t, z jk ∈ C

i(B0) jkω jk, Bjk(t) = (B0) jkeiω jk t , ω jk ∈ R

0, otherwise
.

Note that if A jk(t) (or Bjk(t)) is constant, then β jk = 0 (γ jk = 0).
In view of the identification R8 × R

6 ≈ C
2×2 × C

2×2
S we denote ( j, k ∈ {1, 2}):

ũ jk ≈ (0, E jk), ṽ jk ≈ (0, i E jk), j ≤ k

u jk ≈ (Ekj A0 + A0E jk, Ekj B0 + B0E jk), v jk ≈ i(−Ekj A0 + A0E jk, Ekj B0 + B0E jk),

w1 ≈

⎧
⎪⎪⎨

⎪⎪⎩

(ieiθ E22, 0), A = 1 ⊕ eiθ , 0 < θ < π

(E21, 0), A =
[
0 1
τ 0

]
, 0 < τ < 1

0, otherwise

,

w2 ≈ (i A, 0),
w3 ≈ (0, i(B0)11E11),

w4 ≈ (0, i(B0)22E22).

The tangent space of Bun�(A0, B0) can be seen as a linear space spanned by vectors
{w1, w2} ∪ {u jk, v jk} j,k∈{1,2} and a subset of vectors {w3, w4} ∪ {̃u jk, ṽ jk} j,k∈{1,2}, j≤k . If
Bj j (t) = (B0) j j (λ0)eiω j j t for j ∈ {1, 2}, then w j+2 is in the span, while for Bjk(t) =
(B0) jk + z jk t , z jk �= 0 vectors ũ jk, ṽ jk are in the span. It is straightforward to compute the
dimensions; see [23, Lemma 2.2] for the details in the case of orbits. ��
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48 Page 6 of 43 T. Starčič

3 Change of the normal form under small perturbations

In this section we study how small deformations of a pair of one arbitrary and one symmetric
matrix can change its bundle under the action (2.1). For the sake of clarity the notion closure
graph for bundles for an action is introduced; compare it with the closure graph for orbits in
[23]. Given an action �, vertices of its closure graph are pairwise disjoint bundles of orbits
with respect to �, and there is a path from a vertex Ṽ to a vertex V precisely when Ṽ lies
in the closure of V . The path from Ṽ to V is denoted by Ṽ → V . To simplify the notation
we usually write Ṽ → V for Ṽ ∈ Ṽ , V ∈ V (instead of Ṽ → V). We also require that if
Ṽ ∈ Ṽ (hence Orb�(Ṽ )) is contained in the closure of V , then whole bundle Ṽ must lie in
the closure of V; it does not hold in general. Closure graphs are reflexive and transitive.

When Ṽ �→ V it is useful to know the distance from Ṽ to the bundle V � V . It suffices to
consider the distance from the normal form of Ṽ (see e.g. [23, Remark 3.2]). We use the max
norm ‖X‖ = max j,k∈{1,2} |x j,k |, X = [x j,k]2j,k=1 ∈ C

2×2 to measure the distance between
matrices.

To emphasize the difference between the closure graphs for orbits and bundles we take
look at the action of similarity onC2×2. Given λ,μ ∈ Cwith λ �= μwe have λ⊕λ �→ λ⊕μ

in the closure graph for orbits (eigenvalues depend continuously on the entries of the matrix),
but λ ⊕ λ → λ ⊕ μ in the closure graph for bundles (the bundle of λ ⊕ μ is dense in C2×2).
For a comprehensive theory on closure hierarchy of matrices under similarity we refer to
[10] and [11].

The action (2.1) is closely related to the following two actions:

�1 : (c, P, A)
) �→ cP∗AP, P ∈ GL2(C), c ∈ S1, A ∈ C

2×2 (3.1)

�2 : (P, B) �→ PT BP, P ∈ GL2(C), B ∈ C
2×2
S . (3.2)

Bundles under these actions are defined the same way as bundles for � in (2.2).
The closure graph for (3.2) with trivial bundles (hence orbits) is simple (see [23, Lemma

3.2]); we add a few necessary conditions on its paths and prove them in Sec. 4. For closure
graphs of all 2 × 2 or 3 × 3 matrices see [8].

Lemma 3.1 The closure graph for the action (3.2) is

02 → 1 ⊕ 0 → I2, (3.3)

in which 1 ⊕ 0 and I2 correspond to bundles of symmetric matrices of rank 1 and 2. Fur-

thermore, let B =
[
a b
b d

]
∈ C

2×2
S , B̃ =

[
ã b̃
b̃ d̃

]
∈ C

2×2
S , P =

[
x y
u v

]
∈ GL2(C) and

F =
[
ε1 ε2
ε2 ε4

]
∈ C

2×2
S be such that PT BP = B̃ + F. Then the following statements hold:

(1) If B̃, B are normal forms in (3.3) and such that B̃ �→ B, then ‖F‖ ≥ 1.

(2) If B̃ → B, then there exist ε′
2, ε

′′
2 ∈ C, |ε′

2|, |ε′′
2 | ≤

⎧
⎨

⎩

‖F‖(4‖B̃‖+2+
√

| det B̃|)√
| det B̃| , det B̃ �= 0

√
‖F‖(4‖B̃‖ + 3), det B̃ = 0

,

so that equations listed in the third column (and in the line corresponding to B) of Table 2
are valid.

By making a more detailed analysis than in [23, Lemma 3.4] (see also [14, Theorem 2.2])
we get the closure graph for bundles under the action (3.1) along with necessary conditions
related to its paths; the proof is given in Sect. 4.
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Table 2 Necessary conditions on B and P (given that PT BP = B̃ + F)

B

D1

[
0 b
b d

]
u(i(−1)l

√
det B̃ + b̃ + ε′

2) = v(̃a + ε4),

v(−i(−1)l
√
det B̃ + b̃ + ε′′

2 ) = u(d̃ + ε4)

D2

[
a b
b 0

]
y(i(−1)l

√
det B̃ + b̃ + ε′

2) = x(d̃ + ε4),

x(−i(−1)l
√
det B̃ + b̃ + ε′′

2 ) = y(̃a + ε1)

D3

[
0 b
b 0

]
2bvx = i(−1)l

√
det B̃ + b̃ + ε′

2,

2buy = (−i(−1)l
√
det B̃ + b̃ + ε′′

2

D4 0 ⊕ d u(̃b + ε2) = v(̃a + ε4),

v(̃b + ε2) = u(d̃ + ε4)

D5 a ⊕ 0 y(̃b + ε2) = x(d̃ + ε4),

x (̃b + ε2) = y(̃a + ε1)

Fig. 1 The closure graph for the action (3.1)

Lemma 3.2 The closure graph for bundles under the action (3.1) is drawn inFig.1. It contains

six vertices corresponding to bundles (orbits) with normal forms 02, 1⊕0, I2, 1⊕−1,

[
0 1
0 0

]
,

[
0 1
1 i

]
, and two vertices for bundles with normal forms 1⊕ eiθ for θ ∈ (0, π) and

[
0 1
τ 0

]
for

τ ∈ (0, 1).
Furthermore, let Ã, A be normal forms in Fig.1, and let E = cP∗AP − Ã for some

c ∈ S1, P =
[
x y
u v

]
∈ GL2(C), E ∈ C

2×2 with ‖E‖ < 1. Then the following statements

hold:

(1) If Ã �→ A, then there exists a constant μ > 0 which does not depend on c, P and such
that ‖E‖ ≥ μ.

123
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(2) If Ã → A, then there is a constant ν > 0 such that the moduli of expressions listed in
the fourth column (and in the line corresponding to Ã, A) of Table 3 are bounded by

ν
√‖E‖. (If Ã ∈ GL2(C) then also ‖E‖ ≤ | det Ã|

8‖ Ã‖+4
is assumed.)

Remark 3.3 For calculations of μ, ν in Lemma 3.2 see the proof of the lemma.

We are ready to state the main results of the paper. The proof is given in Sect. 5.

Theorem 3.4 Let bundles with normal forms of types from Lemma 2.1 be vertices in the
closure graph for the action � in (2.1). The graph contains precisely the paths described by
the following statements:

(1) There is a path from (02, 02) to any bundle. There exist paths from Bun�(1 ⊕ 0, 02) to
all bundles, except to Bun�(02, B) for B ∈ C

2×2
S . Furthermore, there are paths from

(1 ⊕ 0, ã ⊕ 0) with ã > 0 to all bundles, except to (02, B) for B ∈ C
2×2
S and (A, 02)

for A ∈ C
2×2.

(2) There exist paths from Bun�(02, 1 ⊕ 0) to all bundles, except to Bun�(A, 02) for A ∈
C
2×2.

(3) From every bundle, except Bun�(1 ⊕ eiθ , B) for 0 ≤ θ < π , B ∈ C
2×2
S , there exists a

path to the bundle Bun�

( [
0 1
τ 0

]
,

[
eiϕ b
b ζ

] )
with 0 ≤ ϕ < π , 0 < b, ζ ∈ C.

(4) From every bundle, except Bun�

( [
0 1
τ 0

]
, B

)
for 0 ≤ τ < 1, B ∈ C

2×2
S , there exists a

path to the bundle Bunψ

(
1 ⊕ eiθ ,

[
a ζ ∗
ζ ∗ d

] )
with 0 ≤ θ < π , ζ ∗ ∈ C

∗ and a, d > 0.

(5) All other paths that are not mentioned in (1), (2), (3), (4) are noted in Figs.2 and 3.
(Dimensions of bundles are indicated on the right.)

Remark 3.5 We prove ( Ã, B̃) → (A, B) by finding (A(s), B(s)) ∈ Bun(A, B), c(s) ∈ S1,
P(s) ∈ GL2(C) such that c(s)(P(s))∗A(s)P(s) → Ã and (P(s))T B(s)P(s) → B̃ as
s → 0. It often includes tedious calculations and intriguing estimates; but since these do
not seem to be of any special interest we omit them and thus shorten the proof significantly.
When ( Ã, B̃) �→ (A, B), then a lower bound for the distance from ( Ã, B̃) to Bun�(A, B)

will be provided as part of the proof of Theorem 3.4. Note that if dimBun�(A, B) ≤
dimOrb�( Ã, B̃), then it implies ( Ã, B̃) �→ (A, B) ([4, Propositions 2.8.13,2.8.14]), but
it gives no estimate on the distance from ( Ã, B̃) to Bun�(A, B).

The following result is an immediate consequence of Theorem 3.4 (see [23, Corollary
3.8] for an analogous result in the case of the closure graph for orbits).

Corollary 3.6 Let M be a compact real 4-manifold embedded C2-smoothly in a complex
3-manifold X and let p1, . . . , pk ∈ M be precisely (all) its complex points with the cor-
responding normal forms up to quadratic terms (A1, B1), . . . , (Ak, Bk) ∈ C

n×n × C
n×n
S .

Assume that M ′ is a deformation of M obtained by a smooth isotopy of M, and let p ∈ M ′
be a complex point with the corresponding quadratic normal form (A, B). If the iso-
topy is sufficiently C2-small then p is arbitrarily close to some p j0 , j0 ∈ {1, . . . , k}, and
(A j0 , Bj0) → (A, B) is a path in the closure graph for bundles for the action (2.1).

Remark 3.7 The lower bounds for the distances from normal forms to other bundles give the
estimate how small the isotopy in the corollary needs to be.
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Fig. 2 Paths not mentioned in Theorem 3.4 (1), (2), (3), (4); a, b, d > 0, ζ∗ ∈ C
∗, τ ∈ (0, 1), θ ∈ (0, π),

ϕ ∈ [0, π)

123



48 Page 12 of 43 T. Starčič

Fig. 3 Paths not mentioned in Theorem 3.4 (1), (2), (3), (4); a, b, d > 0, ζ ∈ C, τ ∈ (0, 1), θ ∈ (0, π)

4 Proof of Lemmas 3.1 and 3.2

In this section we prove Lemma 3.1 and Lemma 3.2. We start with a technical lemma which
is an adaptation of [23, Lemma 4.1] to the case of bundles.

Lemma 4.1 Suppose P ∈ GL2(C), Ã, A, E, B̃, B, F ∈ C
2×2, c ∈ S1.

(1) If cP∗AP = Ã + E, ‖E‖ ≤
{
min{ | det Ã|

8‖ Ã‖+4
, 1}, det Ã �= 0

1 det Ã = 0
, it then follows that

∣∣
√
det A

∣∣ | det P| = ∣∣
√
det Ã

∣∣ + r , |r | ≤
⎧
⎨

⎩

‖E‖(4‖ Ã‖+2)√
| det Ã| , det Ã �= 0

√
‖E‖(4‖ Ã‖ + 2), det Ã = 0

.

(4.1)

Moreover, if A, Ã ∈ GL2(C) and � := arg
( det Ã
det A

)
we have

c = (−1)ke
i�
2 + g, c−1 = (−1)ke− i�

2 + g, k ∈ Z, |g| ≤ ‖E‖(8‖ Ã‖+4)
| det Ã| .

(4.2)

(2) If PT BP = B̃ + F, ‖F‖ ≤ min{ | det B̃|
4‖B̃‖+2

, 1}, then

√
det B det P =

√
det B̃ + r , |r | ≤

⎧
⎨

⎩

‖F‖(4‖B̃‖+2)√
| det B̃| , det B̃ �= 0

√
‖F‖(4‖B̃‖ + 2), det B̃ = 0

.
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(3) Let further A, Ã ∈ GL2(C), ‖E‖ ≤ min{1, || Ã−1||−1,
| det Ã|
8‖ Ã‖+4

} and cP∗AP = Ã+ E,

PT BP = B̃ + F. It then implies that

| det Ã det B| = | det B̃ det A| + r ,

|r | ≤ max{‖E‖, ‖F‖} | det A|
| det Ã|

(
4max{‖ Ã‖, ‖B̃‖, | det Ã|, | det B̃|} + 2

)2
.

Moreover, if in addition B, B̃ are nonsingular and | det A| = | det Ã| = ‖ Ã‖ = 1,

‖E‖, ‖F‖ ≤ | det B̃|
4(4max{1,‖B̃‖,det B̃}+2)2

, � := arg
( det B̃
det B

)
, then we have

det P = (−1)l ei
�
2 + p, l ∈ Z, |p| ≤ ‖F‖ 8‖B̃‖+4√

3| det B̃| .

Proof For ξ, h ∈ C, ζ ∈ C
∗ we have ξζ−1 = 1 + h

ζ
= |1 + h

ζ
|eiψ with | h

ζ
| ≤ 1

2 , hence

ψ ∈ (−π
2 , π

2 ) and | sinψ | = ∣
∣Im

( 1+ h
ζ

|1+ h
ζ
|
)∣∣ ≤ |Im h

ζ
|

|1+ h
ζ
| ≤ | h

ζ
|

1−| h
ζ
| ≤ 2|h|

|ζ | . Thus

ξ = ζ + h, |h| ≤ |ζ |
2 �= 0 implies arg(ξ) − arg(ζ ) = ψ ∈ (−π

2 , π
2

)
, | sinψ | ≤ 2

∣
∣
∣ hζ

∣
∣
∣ .

(4.3)
Estimating the absolute values of the entries of the matrices by the max norm of the

matrices, and by slightly simplifying, we obtain that for any X , D ∈ C
2×2:

∣∣| det(X + D)| − | det X |∣∣ ≤ ∣∣ det(X + D) − det X
∣∣ ≤ ‖D‖(4‖X‖ + 2‖D‖). (4.4)

Furthermore, we apply the determinant to cP∗AP = Ã + E , QT BQ = B̃ + F to get

c2| det P|2 det A = det( Ã + E), (det Q)2 det B = det(B̃ + F). (4.5)

Assuming ‖E‖, ‖F‖ ≤ 1 and using (4.4) for X = Ã, D = E and X = B̃, D = F gives

| det A| | det P|2 = | det Ã| + p, |p| ≤ ‖E‖(4‖ Ã‖ + 2),

det B(det Q)2 = det B̃ + q, |q| ≤ ‖E‖(4‖B̃‖ + 2), (4.6)

respectively. Equations (4.6) immediately imply statements (4.1) for det Ã = 0 and (2) for
det B̃ = 0. Next, we observe another simple fact. If |s| ≤ 1 then there exists s′ so that

√
1 + s = (−1)l(1 + s′), l ∈ Z, Re(s′) ≥ −1, |s′| ≤ |s|. (4.7)

We apply (4.7) to (4.6) with ‖E‖ ≤ | det Ã|
4‖ Ã‖+2

and ‖F‖ ≤ | det B̃|
4‖B̃‖+2

to obtain (4.1) for det Ã = 0

and (2) for det B̃ �= 0.
The right-hand side of (4.4) for X nonsingular and D with ‖D‖ ≤ 1 leads to

∣∣∣ det(X+D)
det(X)

− 1
∣∣∣ ≤ ‖D‖(4‖X‖+2)

| det X | . (4.8)

By assuming ‖E‖ ≤ | det Ã|
8‖ Ã‖+4

and applying (4.3) to (4.8) for X = Ã, D = E we obtain

ψ = arg
( det( Ã+E)

det Ã

) ∈ (−π
2 , π

2

)
, | sinψ | ≤ ‖E‖(8‖ Ã‖+4)

| det Ã| . (4.9)

From (4.5) we get

c2| det P|2 = det( Ã+E)
det A = det( Ã+E)

det Ã
det Ã
det A , (4.10)
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and it follows that c = (−1)kei(
�
2 + ψ

2 ) with k ∈ Z, � = arg
( det Ã
det A

)
. Using the identity

ei
ψ
2 = 1+ 2i(sin ψ

4 )ei
ψ
4 and the inequality 2| sin ψ

4 | ≤ |ψ
2 | ≤ | sinψ | for ψ ∈ (−π

2 , π
2 ), we

deduce (4.2).
We multiply (4.5) for P = Q by det B̃ and det Ã. By comparing the moduli of the

expressions, and assuming ‖E‖ ≤ || Ã−1||−1 (hence det( Ã + E) �= 0), we get

| det B|| det Ã| = | det A| | det Ã|| det(B̃+F)|
| det( Ã+E)| . (4.11)

Set dX ,D := | det(X + D)| − | det(X)| and apply (4.4) for X = Ã, D = E and X = B̃,
D = F :

∣
∣ | det Ã|| det(B̃+F)|

| det( Ã+E)| − | det B̃|∣∣ = ∣
∣ dB̃,F | det Ã|−dÃ,E | det B̃|

dÃ,E+| det( Ã)|
∣
∣ ≤ | det B̃|‖E‖

(
4‖ Ã‖+2

)
+| det Ã|‖F‖

(
4‖B̃‖+2

)

| det Ã|−‖E‖
(
4‖ Ã‖+2

) ,

provided that ‖E‖ ≤ min
{|| Ã−1||−1,

| det Ã|
8‖ Ã‖+4

}
. We combine it with (4.11):

∣
∣| det Ã det B| − | det B̃ det A|∣∣ = | det A|∣∣ | det Ã|| det(B̃+F)|

| det( Ã+E)| − | det B̃|∣∣
≤ | det A|

| det Ã| max{‖E‖, ‖F‖}4max
{| det Ã|, | det B̃|}(4max{‖ Ã‖, ‖B̃‖} + 2

)
. (4.12)

Further, let B, B̃ be nonsingular and | det A| = | det Ã| = ‖ Ã‖ = 1, ‖F‖ ≤ { | det B̃|
4‖B̃‖+2

, 1},
r := | det B| − | det B̃|. Applying (4.8) for X = B̃, D = F and (4.5) for Q = P yields

(det P)2 = det(B̃+F)

det B̃
det B̃
det B = ei�

(
1 − r

| det B̃|+r

)
(1 + ε′),

� = arg
( det B̃
det B

)
, |ε′| ≤ ‖F‖ 4‖B̃‖+2

| det B̃| .

Provided that ‖E‖, ‖F‖ ≤ | det B̃|
4(4max{1,‖B̃‖,det B̃}+2)2

we use (4.12) to assure |r | ≤ | det B̃|
4 (hence

|1 − r
| det B̃|+r

| ≤ 4
3 ). By applying (4.7) we complete the proof of (3). ��

We proceed with a simple proof of Lemma 3.1.

Proof of Lemma 3.1 The closure graph for 2 × 2 symmetric matrices is obtained by an easy
and straightforward calculation.

We write the matrix equation PT BP = F + B̃ for B =
[
0 b
b d

]
componentwise:

2bux + du2 = ã + ε1

bvx + buy + duv = b̃ + ε2

2byv + dv2 = d̃ + ε4. (4.13)

By adding and subtracting b det P = b(vx − uy) from the second equation yields

2bvx + duv = b det P + b̃ + ε2, 2buy + duv = b̃ + ε2 − b det P. (4.14)

We multiply the first (the second) equation of (4.14) by u (by v) and compare it with the first
(the last) equation of (4.13), multiplied by v (by u):

u(b det P + b̃ + ε2) = v(̃a + ε4), v(−b det P + b̃ + ε2) = u(d̃ + ε4). (4.15)
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For b = 0 we obtain (D4). Since det B = −b2 we deduce from Lemma 4.1 (2) that

b det P = i(−1)l
√
det B̃ + r , l ∈ Z, |r | ≤

⎧
⎨

⎩

‖F‖(4‖B̃‖+2)√
| det B̃| , det B̃ �= 0

√
‖F‖(4‖B̃‖ + 2), det B̃ = 0

. (4.16)

Together with (4.14) for d = 0 and (4.15) this gives (D3) and (D1).

Next, the equation PT AP = F + B̃ for B =
[
a b
b 0

]
yields

ax2 + 2bux = ã + ε1

axy + bvx + buy = b̃ + ε2

ay2 + 2byv = d̃ + ε4. (4.17)

We add and subtract b det P = b(vx − uy) from the second equation of (4.17):

2bvx + axy = b det P + b̃ + ε2, 2buy + axy = b̃ + ε2 − b det P.

By multiplying the first (the second) equation by y (by x) and comparing it with the last (the
first) equation of (4.17), multiplied by x (by y), gives

y(b det P + b̃ + ε2) = x(d̃ + ε4), x(−b det P + b̃ + ε2) = y(̃a + ε1). (4.18)

For b = 0 we get (D5), while using (4.16) and (4.18) we obtain (D2). ��

Proof of Lemma 3.2 For actions �, �1 (see (2.1) and (3.1)), it follows that (A′, B ′) ∈
Orb�(A, 0) if and only if B ′ = 0 and A′ ∈ Orb�1(A). Hence dim

(
Orb�1(A)

) =
dim

(
Orb�(A, 0)

)
, where dimensions of orbits of � are obtained from Lemma 2.1.

To prove Ã → A it suffices to find c(s) ∈ S1, P(s) ∈ GL2(C), A(s) ∈ Bun(A) so that

c(s)(P(s))∗A(s)P(s) − Ã → 0 as s → 0. (4.19)

Trivially 02 → 1⊕0,

[
0 1
0 0

]
→

[
0 1
τ 0

]
,

[
0 1
1 0

]
→

[
0 1
τ 0

]
for 0 < τ < 1 and 1⊕ei θ̃ → 1⊕eiθ

for θ̃ ∈ {0, π}, 0 < θ < π . It is not too difficult to show 1⊕ 0 → 1⊕ λ, 1⊕ 0 →
[
0 1
τ 0

]
for

0 ≤ τ ≤ 1, 1 ⊕ −1 →
[
0 1
1 i

]
and

[
0 1
1 i

]
→

[
0 1
τ 0

]
for 0 < τ < 1, we take P(s) = 1 ⊕ s,

P(s) = 1√
1+τ

[
1 0
1 s

]
, P(s) = 1√

2

[
s−1 s−1

s −s

]
and P(s) = 1

2
√
s

[
s −2i

−is 2

]
with τ(s) = 1−s

in (4.19), respectively; in all cases c(s) = 1. Finally, A(s) = 1 ⊕ eiθ(s) with cos( θ(s)
2 ) = s

2 ,

c(s) = 1, P(s) = √
s

[
i is−1

0 −is−1

]
proves

[
0 1
1 i

]
→ 1 ⊕ eiθ for 0 < θ < 1.

It is left to find necessary conditions for the existence of these paths, i.e. given Ã, E , we
must find out how c, P , A depend on E , Ã, if the following is satisfied:

cP∗AP = Ã + E, c ∈ S1, P ∈ GL2(C). (4.20)

On the other hand, if (4.20) fails for every sufficiently small E , it gives Ã �→ A. In such
cases the lower estimates for ‖E‖ will be provided. These easily follow for Ã �= 0, A = 0
and det Ã �= 0, det A = 0 (Lemma 4.1 (1)).
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Throughout the rest of the proof we denote

Ã =
[
α β

γ ω

]
, E =

[
ε1 ε2
ε3 ε4

]
, P =

[
x y
u v

]
. (4.21)

Case I. A =
[
0 1
1 i

]
(Bun�1(A) = Orb�1(A))

This case coincides with [23, Lemma 3.4. Case I]; see (C6), (C8).

Case II. A = 1 ⊕ λ, |λ| ∈ {1, 0}
The equation (4.20) multiplied by c−1, written componentwise and rearranged is:

|x |2 + λ|u|2 − c−1α = c−1ε1, x y + λuv − c−1β = c−1ε2,

yx + λvu − c−1γ = c−1ε3, |y|2 + λ|v|2 − c−1ω = c−1ε4. (4.22)

Subtracting the second complex-conjugated equation (and multiplied by λ) from the third
equation (and multiplied by λ) for β, γ ∈ R gives

2Im(λ)vu − c−1γ + c−1β = c−1ε3 − c−1ε2,

− 2Im(λ)yx − c−1λγ + c−1λβ = c−1λε3 − c−1λε2. (4.23)

(a) λ = eiθ , 0 ≤ θ ≤ π

From (4.23) for β = γ = 0, Im(λ) = sin θ we get
∣∣(sin θ)vu

∣∣ ≤ ‖E‖, ∣∣(sin θ)x y
∣∣ ≤ ‖E‖. (4.24)

We take the (real) imaginary parts of the (last) first equation of (4.22) for λ = eiθ :

(sin θ)|u|2 = Im(c−1α + c−1ε1), |x |2 + (cos θ)|u|2 = Re(c−1α + c−1ε1),

(sin θ)|v|2 = Im(c−1ω + c−1ε4), |y|2 + (cos θ)|v|2 = Re(c−1ω + c−1ε4).

(4.25)

If α = 0 we further have:

(sin θ)|u|2 ≤ ‖E‖, (sin θ)|x |2 ≤ ‖E‖(sin θ + | cos θ |),
∣∣(sin θ)|v|2 − Im(c−1ω)

∣∣ ≤ ‖E‖, ∣∣(sin θ)|y|2 − Re(c−1ω)
∣∣ ≤ ‖E‖(sin θ + | cos θ |).

(4.26)

(i) Ã =
[
0 1
τ̃ 0

]
, 0 ≤ τ̃ ≤ 1

If 1 ≤ τ̃ < 1, then by applying the triangle inequality to the first equation of (4.23)
for β = 1, γ = τ̃ , Im(λ) = sin θ and using the first estimates of (4.26) for ω = 0
we obtain 2‖E‖ ≥ 2(sin θ)|uv| ≥ 1 − τ̃ − 2‖E‖, which fails for ‖E‖ < 1−τ̃

4 .

(ii) Ã =
[
0 1
1 ω

]
, ω ∈ {0, i}

By applying the triangle inequality to the second equation of (4.22), and using (4.26)
with |c−1ω| ≤ 1 leads to the inequality:

(sin θ)(1 − ‖E‖) ≤ sin θ |x y + λuv| ≤ √‖E‖(1 + ‖E‖) + √
2‖E‖(1 + 2‖E‖).

If ‖E‖ ≤ 1
12 then we deduce sin θ ≤ 3

√‖E‖ and cos2 θ ≥ 1 − 9‖E‖. If θ is close
to 0 then the second and the last equation of (4.25) for α = 0, |c−1ω| ≤ 1 imply that
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|x |2, |u|2 ≤ ‖E‖√
1−9‖E‖ and |y|2, |v|2 ≤ 1+‖E‖√

1−9‖E‖ , respectively. For ‖E‖ so small that

1 > 2
√‖E‖(1+‖E‖)√

1−9‖E‖ +‖E‖, the second equation of (4.22) for β = 1 fails. Next, when

θ is close to π , we deduce that 1+cos θ
sin θ

= cot θ
2 is close to 0 and π − θ ∈ (0, π

2 ),
hence
∣
∣cos θ

2

∣
∣ = ∣

∣sin
(

π−θ
2

)∣∣ ≤ sin(π − θ) = sin θ,
∣
∣cos

(
θ+π
4

)∣∣ = ∣
∣sin

(
π−θ
4

)∣∣ ≤ sin θ,

1 + cos θ = cos θ
2 sin θ

sin θ
2

≤ sin θ√
1−sin2 θ

sin θ, 1 − sin θ
2 = cos2 θ

2

1+sin θ
2

≤ sin θ. (4.27)

We have c−1 = −i(−1)kei
θ
2 + g, |g| ≤ 12‖E‖ with ‖E‖ ≤ 1

12 (Lemma 4.1 (4.2)),
thus

∣
∣Re(c−1i)

∣
∣ = | cos θ

2 + i g| ≤ 3
√‖E‖+12‖E‖ (since sin θ ≤ 3

√‖E‖). Using
the second (fourth) equation of (4.25) and (4.26) for α = 0, ω ∈ {0, i} with (4.27)
further implies

∣
∣|x |2 − |u|2∣∣ − ‖E‖ ≤ ∣

∣|x |2 − |u|2 + (1 + cos θ)|u|2∣∣
= ∣∣|x |2 + (cos θ)|u|2∣∣ ≤ ‖E‖,

∣∣|y|2 − |v|2∣∣ − 3
√‖E‖(1+‖E‖)√

1−9‖E‖ ≤ ∣∣|y|2 − |v|2 + (1 + cos θ)|v|2∣∣ = ∣∣|y|2 + (cos θ)|v|2∣∣
≤ 3

√‖E‖ + 13‖E‖. (4.28)

Using the second equation of (4.22) and (4.26), (4.27) (for α = 0, ω ∈ {0, i}) we
get:

14‖E‖ ≥ |x y + eiθuv + i(−1)kei
θ
2 | =

= ∣∣(x y − uv − (−1)k) + 2
(
cos θ

2

)
ei

θ
2 uv + 2(−1)k

(
cos θ+π

4

)
ei

θ+π
4

∣∣

≥ ∣∣x y − uv − (−1)k
∣∣ − 2

√‖E‖(1 + ‖E‖) + 6
√‖E‖. (4.29)

For ω = i we have Im(c−1i) = sin θ
2 + Im(i g), |g| ≤ 12‖E‖, therefore (4.26)

yields

13‖E‖ ≥ ∣∣(sin θ)|v|2 − (−1)k − (−1)k
(
sin θ

2 − 1
) ∣∣ ≥ ∣∣(sin θ)|v|2 − (−1)k

∣∣ − 3
√‖E‖.

Together with (4.28) and (4.29) it proves (C2). Note that the third equation of (4.25)
for θ = π , ω = i fails for ‖E‖ < 1

13 .
(iii) Ã = α ⊕ 0, α ∈ {0, 1}

If θ ∈ {0, π}, then (4.22) for eiθ = σ yields (C10).
By (4.24) and the second equation of (4.22) we have

∣∣x y + (cos θ)uv
∣∣ ≤ 2‖E‖. (4.30)

If 0 < θ ≤ π , then (4.22), (4.24), (4.30) for ω = β = γ = 0, λ = eiθ give (C1).
(iv) Ã = 1 ⊕ ei θ̃ , 0 ≤ θ̃ ≤ π .

By Lemma 4.1 (4.2) we have c−1 = (−1)kei
θ−θ̃
2 + g, |g| ≤ 12‖E‖, assuming that

‖E‖ ≤ 1
12 . Thus the first and the last equation of (4.22) for α = 1, λ = ei θ̃ are of

the form:

|x |2 + eiθ |u|2 = (−1)kei
θ−θ̃
2 + (g + c−1ε1),

|y|2 + eiθ |v|2 = (−1)kei
θ̃+θ
2 + (gei θ̃ + c−1ε4). (4.31)
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We take the imaginary parts of (4.31) and apply the triangle inequality:
∣
∣|u|2 sin θ − (−1)k sin

(
θ−θ̃
2

)∣
∣ ≤ ∣

∣Im(g) + Im(ε1)
∣
∣ ≤ 13‖E‖,

∣
∣|v|2 sin θ − (−1)k sin

(
θ̃+θ
2

)∣
∣ ≤ ∣

∣Im(gei θ̃ + c−1ε4)
∣
∣ ≤ 13‖E‖. (4.32)

In particular we have

|u|2 sin θ ≥
∣
∣
∣sin

(
θ̃−θ
2

)∣
∣
∣ − 13‖E‖, |v|2 sin θ ≥ | sin

(
θ̃+θ
2

)
| − 13‖E‖.

By multiplying these inequalities and using the triangle inequality we deduce

(sin2 θ)|uv|2 ≥ ∣
∣ sin

(
θ̃−θ
2

)
sin

(
θ̃+θ
2

) ∣
∣

− 13‖E‖(∣∣ sin
(

θ̃−θ
2

) ∣
∣ + ∣

∣ sin
(

θ̃+θ
2

) ∣
∣) − 169‖E‖2.

By combining it with (4.24) and rearranging the terms we obtain

1
2 | cos θ̃ − cos θ | = ∣

∣ sin
(

θ̃−θ
2

)
sin

(
θ̃+θ
2

) ∣
∣ ≤ 170‖E‖2 + 26‖E‖ ≤ 196‖E‖.

(4.33)

If θ ∈ {0, π} with θ̃ �= θ then (4.33) fails for ‖E‖ <
1−| cos θ̃ |

392 .
We take the real parts in the first equation of (4.31), multiply them by sin θ , then
rearrange the terms and apply (4.32):

(sin θ)
∣∣|x |2 − (−1)k cos

(
θ̃−θ
2

) ∣∣

= ∣∣ − sin θ cos θ |u|2 + (sin θ)Re(g + c−1ε1)
∣∣,

(sin θ)
∣∣|x |2 − (−1)k

∣∣ − (sin θ)
∣∣ cos

(
θ̃−θ
2

)
− 1

∣∣ ≤ ∣∣ sin
(

θ−θ̃
2

) ∣∣ + 13‖E‖ + 13‖E‖.
(4.34)

Next, let 0 < θ̃, θ < π . Thus θ−θ̃
2 ∈ (−π

2 , π
2 ) and θ+θ̃

2 ∈ ( θ̃
2 , θ̃+π

2 ) ⊂ (0, π) with

sin( θ̃+θ
2 ) ≥ min{sin θ̃

2 , cos θ̃
2 }. We apply (4.33) and make a trivial estimate:

196‖E‖
min{sin θ̃ ,cos θ̃} ≥ ∣∣ sin

(
θ̃−θ
2

) ∣∣ ≥ ∣∣ sin
(

θ̃−θ
4

) ∣∣ = 1√
2

∣∣ cos
(

θ̃−θ
2

)
− 1

∣∣
1
2 . (4.35)

By combining (4.34) and (4.35) it is straightforward to get a constant C > 0 so that

(sin θ)
∣∣|x |2 − (−1)k

∣∣ ≤ 196‖E‖
min{sin θ̃ ,cos θ̃} + 2

( 196‖E‖
min{sin θ̃ ,cos θ̃}

)2 + 26‖E‖ ≤ C‖E‖.
(4.36)

We multiply the second equation of (4.31) by e−iθ . Then we take the imaginary
parts or only rearrange the terms; in both cases we also use (4.35):

(sin θ)|y|2 ≤ ∣∣ sin
(

θ̃−θ
2

) ∣∣ + 14‖E‖ ≤ C ′‖E‖, C ′ := 196
min{sin θ̃ ,cos θ̃} + 14,

∣∣|v|2 − (−1)k
∣∣ ≤ |ei θ̃−θ

2 − 1| + |y|2 + |gei θ̃ + c−1ε4|
≤ 2

( 196‖E‖
min{sin θ̃ ,cos θ̃}

)2 + 13‖E‖ + |y|2. (4.37)

From the first estimate in (4.32) we similarly obtain (sin θ)|u|2 ≤ C ′‖E‖. If sin θ ≤
max{√C,

√
C ′}√‖E‖, then (4.33) yields a contradiction for sufficiently small ‖E‖.

Otherwise |u|2 ≤ √
C ′‖E‖ and (4.36), (4.37) imply

∣∣|x |2 − (−1)k
∣∣ ≤ √

C‖E‖,
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|y|2 ≤ √
C ′‖E‖, respectively. The last estimate in (4.37) concludes the proof of

(C7).
Finally, suppose 0 < θ < π and θ̃ ∈ {0, π}; hence θ̃−θ

2 ∈ (−π
2 , π

2 ). We apply
(4.33) and use (4.32) for θ̃ = 0 or θ̃ = π to deduce

14
√‖E‖ ≥ ∣∣ sin

(
θ̃−θ
2

) ∣∣ ≥ ∣∣ sin
(

θ̃−θ
4

) ∣∣, |u|2 sin θ, |v|2 sin θ ≤ 13‖E‖ + 14
√‖E‖.
(4.38)

Assume now that
√‖E‖ ≤

√
2

28 . If θ̃ = 0, then | cos θ
2 | ≥

√
2
2 , therefore 1− cos θ =

(sin θ)| tan θ
2 | ≤ √

2 sin θ . Similarly, for θ̃ = π we have | sin θ
2 | ≥

√
2
2 and so

1 + cos θ = (sin θ)| cot θ
2 | ≤ √

2 sin θ . We take the real parts of the first equation

(4.31) for σ = ei θ̃ with θ̃ ∈ {0, π}, rearrange the terms, and apply the triangle
inequality:

13‖E‖ ≥ ∣
∣|x |2 + σ |u|2 − (−1)k + (−1)k

(
1 − cos

(
θ−θ̃
2

))
− |u|2(σ − cos θ)

∣
∣

≥ ∣
∣|x |2 + σ |u|2 − (−1)k

∣
∣ − 392‖E‖ − √

2(13‖E‖ + 14
√‖E‖). (4.39)

The same proof applies if we replace x, u, (−1)k by y, v, σ (−1)k , respectively. The
second equation (4.22) for β = 0, λ = eiθ and (4.24) finally yield

‖E‖ ≥ ∣∣x y + eiθuv
∣∣ = ∣∣x y + σuv − (σ − cos θ)uv + i(sin θ)uv

∣∣

≥ ∣∣x y + σuv
∣∣ − (1 + √

2)
(
13‖E‖ + 14

√‖E‖).
Thus (C11) follows.

(b) λ = 0 (hence det Ã = 0.)
If Ã = α ⊕ 0 for α ∈ {0, 1}, then (C12) follows from (4.22) for ω = λ = 0. Applying
(4.3) for ‖E‖ ≤ 1

2 to the first equation of (4.22) for α = 1, λ = 0 (multiplied by c),

yields c = eiψ = 1 + 2i(sin ψ
2 )ei

ψ
2 with | sin ψ

2 | ≤ 2‖E‖. If Ã =
[
0 1
0 0

]
, then (4.22)

for λ = α = ω = 0 yields |x |2, |y|2 ≤ ‖E‖, thus (4.22) fails for λ = γ = 0, ‖E‖ < 1
2 .

Case III. A =
[
0 1
τ 0

]
, 0 ≤ τ ≤ 1

From (4.20) multiplied by c−1 we obtain

xu + τux − c−1α = c−1ε1, xv + τuy − c−1β = c−1ε2,

τvx + yu − c−1γ = c−1ε3, yv + τvy − c−1ω = c−1ε4. (4.40)

Rearranging the terms of the first and the last equation immediately yields

(1 + τ)Re(xu) + i(1 − τ)Im(xu) = c−1α + c−1ε1,

(1 + τ)Re(yv) + i(1 − τ)Im(yv) = c−1ω + c−1ε4, (4.41)

while multiplying the third (second) complex-conjugated equation with τ , subtracting it from
the second (third) equation, and rearranging the terms, give

(1 − τ 2)xv =c−1(β + ε2) − τc−1(γ + ε3) = (c−1β − τc−1γ ) + (c−1ε2 − τc−1ε3)

(1 − τ 2)yu =c−1(γ + ε3) − τc−1(β + ε2) = (c−1γ − τc−1β) + (c−1ε3 − τc−1ε2).

(4.42)
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For the existence of paths to

[
0 1
1 0

]
(∗-congruent to 1 ⊕ −1) see Case II

Using (4.40) we obtain that

(1 + τ)|xu| ≥ |α + ε1| ≥ (1 − τ)|xu|, (1 + τ)|yv| ≥ |ω + ε4| ≥ (1 − τ)|yv|. (4.43)

By multiplying the left-hand and the right-hand sides of these inequalities we get

(1 + τ)2|xuyv| ≥ |αω| − (|α| + |ω|)‖E‖ − ‖E‖2, (4.44)

|αω| + (|α| + |ω|)‖E‖ + ‖E‖2 ≥ (1 − τ)2|xuyv|. (4.45)

(a) Ã =
[
0 1
γ ω

]
, either 0 ≤ γ ≤ 1, ω = 0 or γ = 1, ω = i

Equations (4.42) for β = 1, 0 ≤ γ ≤ 1 imply

(1 − τ 2)|xv| ≥ |τγ − 1| − (τ + 1)‖E‖, (1 − τ 2)|uy| ≥ |γ − τ | − (1 + τ)‖E‖.
By combining these inequalities and making some trivial estimates we deduce

(1 − τ 2)2|yuxv| ≥ |τγ − 1| |γ − τ | − (1 + τ)
(
τγ + 1 + γ + τ

)‖E‖ − (1 + τ)2‖E‖2.
Together with (4.45) for α = 0 and using ‖E‖ ≥ ‖E‖2 we get
(1 + τ)2(1 + |ω|)‖E‖ ≥ |τγ − 1| |γ − τ | − (1 + τ)2(γ + 1)‖E‖ − (1 + τ)2‖E‖,
(1 + τ)2

(
3 + |ω| + γ

)‖E‖ ≥ |τγ − 1| |γ − τ | ≥ |1 − γ | |γ − τ |. (4.46)

If 0 ≤ γ < 1 (if γ = 1) then the right-hand (the left-hand) side of (4.46) implies

|γ − τ | ≤
{

(1+τ)2

1−γ

(
4 + |ω|)‖E‖, 0 ≤ γ < 1

(1 + τ)
√

(4 + |ω|)‖E‖, γ = 1
. (4.47)

When either τ = 0, γ > 0 or τ = 1, γ < 1 (and ‖E‖ is small enough), then (4.47)

fails. If 0 ≤ γ < 1 and ‖E‖ ≤ (1−γ )2

2(1+τ)2(4+|ω|) (hence 1− τ ≥ |1−γ |− |γ − τ | ≥ 1−γ
2 ),

then (4.43) for α = 0 (for ω = 0) yields |xu| ≤ 2
1−γ

‖E‖ (and |yv| ≤ 2
1−γ

‖E‖). Next,
(4.42), (4.47) for β = 1, γ = 0, imply |yu| ≤ C‖E‖ and |xv − c−1| ≤ C‖E‖ for some
constant C > 0 (see (C9) for τ̃ = 0, 0 ≤ τ < 1).

By Lemma 4.1 (4.2) for 1 ≥ τ > 0, Ã =
[
0 1
γ ω

]
with 1 ≥ γ > 0 and ‖E‖ ≤ γ

12 ≤ 1
12 ,

we have c−1 = (−1)k + g, k ∈ Z, |g| ≤ 12
γ

‖E‖, thus (4.42) for β = 1 (and γ ∈ R)
gives

(1 − τ 2)xv = (
(−1)k(1 − τγ ) − gτγ + g

) + (c−1ε2 − τc−1ε3)

(1 − τ 2)yu = (−1)k(γ − τ) + γ g − τg + (c−1ε3 − τc−1ε2).

We further obtain

(1 − τ 2)|yu| ≤ (γ − τ) + (τγ + 1) 12
γ

‖E‖ + (1 + τ)‖E‖,
(1 − τ 2)

∣∣xv − (−1)k
∣∣ ≤ τ(γ − τ) + 12(τγ+1)

γ
‖E‖ + (τ + 1)‖E‖. (4.48)

Using (4.47) for 0 < γ < 1 we deduce that the left-hand sides of (4.48) are bounded
by D‖E‖, where D := 4(4+|ω|)

1−γ
+ 12(γ+1)

γ
+ 2. Thus either 1 − τ 2 ≤ √

D
√‖E‖ and

|1 − γ | ≤ |τ − γ | + |1 − τ | ≤ (1+τ)2

1−γ
(2 + |ω|)‖E‖ +

√
D

√‖E‖
2
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fails for small ‖E‖, or we have |yu|, ∣∣xv − (−1)k
∣
∣ ≤ √

D
√‖E‖ (see (C9) for 0 <

τ0, τ < 1). The second equation of (4.40) with β = 1, c−1 = (−1)k + g, k ∈ Z,
|g| ≤ 12‖E‖ gives
∣
∣xv + uy − (−1)k

∣
∣ − (1 − τ)|uy| ≤ ∣

∣xv + τuy − (−1)k
∣
∣ ≤ 12‖E‖ + ‖E‖. (4.49)

From (4.40), (4.41), (4.47), (4.48), (4.49) for α = 0, ω ∈ {0, i}, γ = 1 we deduce (C4).
If ω = i , τ = 1 and ‖E‖ < 1

13 , then the second equality of (4.41) fails.
(b) Ã = α ⊕ ω

From (4.42) for β = γ = 0 it follows that

(1 − τ 2)|xv| ≤ (1 + τ)‖E‖, (1 − τ 2)|uy| ≤ (1 + τ)‖E‖, (1 − τ)2|xvuy| ≤ ‖E‖2.
(4.50)

Next, (4.50) yields either (1 − τ)|xu| ≤ ‖E‖ or (1 − τ)|yv| ≤ ‖E‖.
By Lemma 4.1 (4.2) for 0 < τ ≤ 1, Ã = 1 ⊕ ei θ̃ , we have c−1 = (−1)ke−i θ̃+π

2 + g,
k ∈ Z, |g| ≤ 12‖E‖. We take the imaginary parts of (4.41) with α = 1, ω = ei θ̃ ,
0 < τ < 1 to deduce | cos θ̃

2 | ≤ 14‖E‖, which fails for 0 ≤ θ̃ < π and small ‖E‖.
By combining (4.50) with (4.44) for |α| = |ω| = 1 and using ‖E‖ ≤ 1

4 , we get

1
4 (1 − τ)2 ≤ (1 − τ)2(1 − 2‖E‖ − ‖E‖2) ≤ (1 − τ 2)2|xvuy| ≤ (1 + τ)2‖E‖2.

Thus 1− τ ≤ 4‖E‖. (In particular, we obtain a contradiction for τ = 0, |α| = |ω| = 1.)
When θ̃ = π (i.e. Ã = 1 ⊕ −1, c−1 = (−1)k+1 + g, k ∈ Z, |g| ≤ 12‖E‖), we use
(4.40), (4.41) for β = 0, α = −ω = 1 to get (1 − τ)Im(xu), (1 − τ)Im(xu) ≤ 13‖E‖
and

|xv + uy| − 2‖E‖ ≤ |xv + uy| − (1 − τ)|uy| ≤ |xv + τuy| ≤ ‖E‖,
∣∣2Re(xu) − (−1)k+1

∣∣ = 2
1+τ

∣∣(1 + τ)Re(xu) − (−1)k+1 + (−1)k+1 1−τ
2

∣∣ ≤ 30‖E‖,
∣∣2Re(yv) − (−1)k

∣∣ = 2
1+τ

∣∣(1 + τ)Re(yv) − (−1)k + (−1)k 1−τ
2

∣∣ ≤ 30‖E‖. (4.51)

It gives (C5). The first line of (4.51) is valid also for α ∈ {0, 1}, β = ω = 0 (see
(4.50)). If α = 1, then (4.41) for τ = 1 yields 2cRe(xu) = 1 + ε1. By applying (4.3)
for ‖E‖ ≤ 1

2 we get c = (−1)keiψ , k ∈ Z, ψ ∈ (−π
2 , π

2 ), | sinψ | ≤ 2‖E‖. Moreover,∣∣c − (−1)k
∣∣ = 2| sin ψ

2 | ≤ 4‖E‖. To conclude, (4.41), (4.43), (4.50) provides (C3).
This completes the proof of the lemma. ��

5 Proof of Theorem 3.4

To prove the nonexistence of some paths in the closure graph for bundles under (2.1), the
proof of [23, Theorem 3.6] (the closure graph for orbits) applies mutatis mutandis; we shall
not rewrite the proof in these cases, instead we refer to [23] for the proof. However, we
reprove the existence of paths for bundles consisting of one orbit, since short and plausible
arguments can be given (see e.g. (5.2)).

Proof of Theorem 3.4 Given normal forms ( Ã, B̃), (A, B) from Lemma 2.1 the existence of
a path ( Ã, B̃) → (A, B) in the closure graph for bundles for the action (2.1) immediately
implies Ã → A, B̃ → B. When this is not fulfilled, then ( Ã, B̃) �→ (A, B) and we already
have a lower estimate on the distance from ( Ã, B̃) to the bundle of (A, B) (see Lemmas 3.1,
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3.2). Further, ( Ã, 02) → (A, 02) (or (02, B̃) → (02, B)) if and only if Ã → A (or B̃ → B),
and trivially (A, B) → (A, B) for any A, B.

From now on suppose Ã → A, B̃ → B �= 0 with ( Ã, B̃) /∈ Bun�(A, B) and let

cP∗AP = Ã + E, PT BP = B̃ + F, c ∈ S1, P ∈ GL2(C), E, F ∈ C
2×2.

(5.1)

Due to Lemmas 3.2 and 4.1 (1) the first equation of (5.1) yields restrictions on P , c, A imposed
by ‖E‖, Ã. The trick of the proof is to use these to analyse the second equation of (5.1).
We now work with equations with larger set of parameters than in [23, Theorem 3.6], and
it usually makes the analysis more involved. If it eventually leads to an inequality that fails
for any sufficiently small E and F , it will prove ( Ã, B̃) �→ (A, B); it is then straightforward
to estimate how small E , F should be, thus we omit this calculation. Otherwise, to prove
( Ã, B̃) → (A, B), we find c(s) ∈ S1, P(s) ∈ GL2(C), (A(s), B(s)) ∈ Bun(A, B) such
that

c(s)
(
P(s)

)∗
A(s)P(s) − Ã =: E(s)

s→0−→ 0,
(
P(s)

)T
B(s)P(s) − B̃ =: F(s)

s→0−→ 0.

(5.2)

When we can arrange the parameter s so that A(s) → Ã and B(s) → B̃, this is trivial.
Throughout the proof we denote δ = ν

√‖E‖ for ν > 0 (Lemma 3.2 (2)), ε = ‖F‖,

B =
[
a b
b d

]
, B̃ =

[
ã b̃
b̃ d̃

]
, F =

[
ε1 ε2
ε2 ε4

]
, P =

[
x y
u v

]
,

where sometimes polar coordinates for x, y, u, v in P might be preferred:

x = |x |eiφ, y = |y|eiϕ, u = |u|eiη, v = |v|eiκ , φ, ϕ, η, κ ∈ R. (5.3)

The second matrix equation of (5.1) can thus be written componentwise as:

ax2 + 2bux + du2 = ã + ε1,

axy + buy + bvx + duv = b̃ + ε2,

ay2 + 2bvy + dv2 = d̃ + ε4. (5.4)

For the sake of simplicity some estimates in the proof are crude, and it is always assumed
ε, δ ≤ 1

2 . Since we shall often apply Lemma 4.1, we take for granted that ( δ
ν
)2 =

‖E‖ ≤
{
min{ | det Ã|

8‖ Ã‖+4
, 1}, det Ã �= 0

1 det Ã = 0
, ε = ‖F‖ ≤

{
min{ | det B̃|

8‖B̃‖+4
, 1}, det B̃ �= 0

1 det B̃ = 0
. If

A, Ã are nonsingular we also assume ‖E‖ ≤ ‖ Ã−1‖−1, while for B, B̃ nonsingular with

1 = | det A| = | det Ã| = ‖ Ã‖ it is assumed ‖E‖, ‖F‖ ≤ | det B̃|
4(4max{1,‖B̃‖,| det B̃|}+2)2

.
We split our analysis into several cases (see Lemma 2.1 for normal forms). The notation

( Ã, B̃) ��� (A, B) is used when the existence of a path is yet to be considered.

Case I. (1 ⊕ ei θ̃ , B̃) ��� (1 ⊕ eiθ , B), 0 ≤ θ̃ ≤ π , 0 ≤ θ ≤ π

(a) 0 < θ̃, θ < π

From Lemma 3.2 (2) for (C7) we get

|y|2, |u|2 ≤ δ,
∣∣|v|2 − 1

∣∣,
∣∣|x |2 − 1

∣∣ ≤ δ. (5.5)
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(i) B =
[
a b
b 0

]
, b, a ≥ 0

Using (5.5) and Lemma 3.1 (D2) we get a contradiction for small ε, δ and
d̃ �= 0. Next, Lemma 4.1 (3) for d̃ = 0 gives b2 = |̃b|2 + δ5, |δ5| ≤
max{ε, δ2

ν2
}(4max{1, |̃b|2, |̃b|} + 2

)2. It fails for b = 0, b̃ �= 0 and ε, δ2

ν2
<

b̃2
(
4max{1, |̃b|2, |̃b|} + 2

)−2, while the case b = b̃ = 0 is trivial. For a = 0,
ã �= 0 then the first equation of (5.4) for a = d = 0 and (5.5) yields an inequality
that fails for ε, δ small enough:

|̃a| = |ε1 − 2bux | ≤ ε + 2(̃b + δ5)
√

δ(1 + δ).

(ii) B =
[
0 b
b d

]
, b ≥ 0, d �= 0

Due to a symmetry we deal with this case similarly as with Case I (a) (i).
(iii) B = a ⊕ d , a, d > 0

From (5.4) for b = 0 we obtain

ax2 + du2 = ã + ε1,

axy + duv = b̃ + ε2,

ay2 + dv2 = d̃ + ε4. (5.6)

By multiplying the first and the last equation of (5.6) by δ6 = y
x and δ5 = u

v
,

respectively, and by slightly simplifying them, we get

axy + duvδ5δ6 = δ6(̃a + ε1), axyδ5δ6 + duv = δ5(d̃ + ε4).

Adding these two equations and using the second equation of (5.6) we deduce

(̃b + ε2)(1 + δ5δ6) = δ5(d̃ + ε4) + δ6(̃a + ε1),

which fails for b̃ �= 0 and sufficiently small ε, δ (by (5.5) we have |δ5|, |δ6| ≤ δ
1−δ

).

(b) θ̃ ∈ {0, π}
Set σ = ei θ̃ ∈ {1,−1}. Lemma 3.2 (C11) yields

|x |2 + σ |u|2 = (−1)k + δ1, x y + σuv = δ2, |y|2 + σ |v|2 = σ(−1)k + δ4,

(5.7)

where |δ1|, |δ2|, |δ4| ≤ δ. Next, for v �= 0,
(|x | − |u|)2 ≤ ∣∣|x |2 − |u|2∣∣ =: 1 + δ′

1 we
deduce

|x y + σuv| ≥ ∣∣|x y| − |xv| + |xv| − |uv|∣∣ ≥ |v|∣∣x | − |u|∣∣ − |x |∣∣|y| − |v|∣∣

≥
∣∣x |2−|u|2

∣∣
1
|v| (|x |+|u|) − |x |

∣∣y|2−|v|2
∣∣

|y|+|v| ≥ 1−|δ′
1|

2 |u|
|v| +

√
1+|δ′1 |
|v|

−
(

|u|
|v| +

√
1+|δ′

1||v|
)∣∣|y|2 − |v|2∣∣.

(5.8)

(i) B =
[
a b
b d

]
, a, d, b ≥ 0, a + d �= 0

Let first B = a ⊕ d . Using the notation (5.3) the following calculation is trivial:

ax2 + du2 = ae2iφ
(|x |2 + σ |u|2) − u2(σae2i(φ−η) − d), σ ∈ {−1, 1},

ay2 + dv2 = ae2iϕ
(|y|2 + σ |v|2) − v2(σae2i(ϕ−κ) − d),
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ay2 + dv2 = dσe2iκ
(|y|2 + σ |v|2) − y2(σde2i(κ−ϕ) − a). (5.9)

Furthermore, one easily writes:

axy + duv = ae2iφ(x y + σuv) − uv(σae2i(φ−η) − d), σ ∈ {−1, 1},
axy + duv = ae2iϕ(x y + σuv) − uv(σae2i(ϕ−κ) − d),

axy + duv = dσe2iκ(x y + σuv) − xy(dσe2i(κ−ϕ) − a). (5.10)

Rearranging the terms in (5.9), (5.10) and using (5.6), (5.7) yields for σ ∈ {−1, 1}:
u2(σae2i(φ−η) − d) = ae2iφ((−1)k + δ1) − ã − ε1,

uv(σae2i(φ−η) − d) = ae2iφδ2 − b̃ − ε2,

v2(σae2i(ϕ−κ) − d) = ae2iϕ(σ (−1)k + δ4) − d̃ − ε4,

uv(σae2i(ϕ−κ) − d) = ae2iϕδ2 − b̃ − ε2,

y2(σde2i(κ−ϕ) − a) = dσe2iκ(σ (−1)k + δ4) − d̃ − ε4,

xy(dσe2i(κ−ϕ) − a) = dσδ2 − b̃ − ε2.

By dividing the equations in each line we get

u
v

= ae2iφ((−1)k+δ1)−ã−ε1
ae2iφδ2−b̃−ε2

= ae2iϕδ2−b̃−ε2
ae2iϕ(σ (−1)k+δ4)−d̃−ε4

, x
y = dσδ2−b̃−ε2

dσe2iκ (σ (−1)k+δ4)−d̃−ε4
.

(5.11)

If B̃ =
[
0 b̃
b̃ 0

]
for b̃ > 0 (hence σ = −1, d ≥ a > 0), then Lemma 4.1 (3)

implies a2 ≤ ad = b̃2 + ε′, |ε′| ≤ max{ε, δ2

ν2
}(4max{1, |̃b|, |̃b|2} + 2

)2. From the

first equation of (5.11) for d̃ = ã = 0, σ = 1 we now obtain a contradiction for
small ε, δ. Similarly, it follows from Lemma 4.1 (3) for B̃ = ã ⊕ d̃ and B = aI2
that a2 = ãd̃ + ε′, |ε′| ≤ max{ε, δ2

ν2
}(4max{1, |d̃|, |d̃ã|} + 2)2. If d̃ > ã > 0,

then the first equation of (5.11) (with σ ∈ {−1, 1}, b̃ = 0) fails as well. Next,
when ã = 0 we have a2 = ε′. Hence (5.11) for σ ∈ {−1, 1}, ã = b̃ = 0 yields

| u
v
|, | xy | ≤ ε+√

ε′δ
d̃−ε−√

ε′(1+δ)
. Further, the third equation of (5.9) with (5.6), (5.7) for

a = d = √
ε′, b̃ = 0 gives 1

|v|2 ≤ 2ε′
d̃−ε−ε′(1+δ)

. We apply this and (5.7) to (5.8) to

deduce a contradiction for small ε, δ and d̃ �= 0.

Take P(s) = 1√
d̃+σ ã

[
−i

√
d̃

√
ã

i
√
ã σ

√
d̃

]

, B(s) =
[

0
√
ãd̃ + s√

ãd̃ + s d̃ − σ ã + s

]

, c(s) =

1, eiθ → σ in (5.2) to see
(
1 ⊕ σ, ã ⊕ d̃

) → (
1 ⊕ eiθ ,

[
0 b
b d

] )
, and P(s) =

1√
d̃+σ ã

[
i
√
ã σ

√
d̃

−i
√
d̃

√
ã

]

, B(s) =
[
d̃ − σ ã + s

√
ãd̃ + s√

ãd̃ + s 0

]

, c(s) = σ , eiθ → σ to

show
(
1 ⊕ σ, ã ⊕ d̃

) → (
1 ⊕ eiθ ,

[
a b
b 0

] )
, 0 < θ < π .

(ii) B =
[
0 b
b 0

]
, b > 0

From (5.4) for a = d = 0 we obtain

2bux = ã + ε1,
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buy + bvx = b̃ + ε2,

2bvy = d̃ + ε4. (5.12)

It suffices to take 0 ≤ ã ≤ d̃, d̃ > 0, b̃ = 0. By Lemma 4.1 (3) and (4.7) we have

b =
√
ãd̃+δ5 > 0, |δ5| ≤ max{ε, δ2

ν2
}(4max{1, d̃, ãd̃}+2)2. Thus (5.12) and (5.7)

give:

|v|2, |y|2 ≤ d̃+ε

2(
√
ãd̃+δ5)

+ 1 + δ, |u|2, |x |2 ≤ ã+ε

2(
√
ãd̃+δ5)

+ 1 + δ. (5.13)

Using Lemma 3.1 (D1), (D2) for det B̃ = ãd̃ we get

u(d̃ + ε4) = v
( − i(−1)l

√
ãd̃ + ε′′

2

)

x(d̃ + ε4) = y
(
i(−1)l

√
ãd̃ + ε′

2

) , |ε′
2|, |ε′′

2 | ≤
{

ε(4max{d̃ ,̃a}+2+d̃ã)

d̃ã
, ãd̃ �= 0

√
ε(4max{d̃ ,̃a}+3)

1
2 , ãd̃ = 0

.

(5.14)
By further applying the first and the third equality of (5.7) we deduce

(−1)k + δ1 = |x |2 + σ |u|2 = |(−1)l
√
ãd̃+ε′

2|2
|d̃+ε4|2 |y|2 + σ

|−(−1)l
√
ãd̃+ε′′

2 |2
|d̃+ε4|2 |v|2

= |−(−1)l
√
ãd̃+ε′

2|2
|d̃+ε4|2

(
σ(−1)k + δ4

) + δ′|v|2 (5.15)

with |δ′| ≤ C max{ε, δ}, where C > 0 is a constant that can be computed easily.
By combining (5.15) and (5.13) we obtain a contradiction for 0 < ã < d̃ and

sufficiently small ε, δ. Next, let ã = 0, d̃ > 0. From (5.14) it follows | u
v
| ≤ |ε′

2|
|d̃|−ε

,

| xy | ≤ |ε′′
2 |

|d̃|−ε
(y = 0 or v = 0 would contradict (5.12) for |d̃| > ε). By applying this

with (5.7) and (5.15) (hence |v| is large) to (5.8), we obtain a contradiction for small
ε, δ.

We take P(s) = 1√
2

[
1 i
1 −i

]
, B(s) = (d̃ + s)

[
0 1
1 0

]
and c(s) = 1, eiθ → 1 in (5.2)

to prove
(
I2, d̃ I2

) → (
1 ⊕ eiθ ,

[
0 b
b 0

] )
, b > 0, 0 ≤ d̃, 0 < θ < π . Using (5.7) for

σ = −1 leads to

δ ≥ |x y − uv| ≥ ∣∣|x |2| yx |− |u|2| v
u |∣∣ ≥ ∣∣|x |2 −|u|2∣∣−|x |2(1−| yx |)−|u|2(1−| v

u |).
(5.16)

From (5.14) we get that | yx |, | v
u | are close to 1, and (5.13) implies that |u|2, |x |2 are

bounded. Thus the last two terms on the right-hand side of (5.16) are small, while the
first one is close to 1 (see (5.7) for σ = −1). For small ε, δ we get a contradiction.

Case II.
([0 1

τ̃ 0

]
,

[
ã b̃
b̃ d̃

])
���

([0 1
τ 0

]
,

[
a b
b d

])
, b̃, b ≥ 0, (̃τ , τ ) ∈ ([0, 1) × (0, 1)

) ∪
{(0, 0)}

By Lemma 3.2 (2) for (C9) we have

|xu|, |yu|, |vy| ≤ δ,
∣∣|vx | − 1

∣∣ ≤ δ. (5.17)

It yields δ6 = y
x = yv

xv with |δ6| ≤ δ
1−δ

≤ 2δ, δ5 = u
v

= ux
xv with |δ5| ≤ δ

1−δ
≤ 2δ and

δ7 = uy
vx with |δ7| ≤ 2δ (note δ ≤ 1

2 ).

123



48 Page 26 of 43 T. Starčič

(a) B =
[
0 b
b d

]
, b ≥ 0, |d| ∈ {0, 1}, |b| + |d| �= 0

By multiplying the last two equations of (4.13) by δ5 = u
v
and using δ7 = uy

vx we get

du2 + (1 + δ7)bux = (̃b + ε2)δ5, 2δ7bvx + dvu = (d̃ + ε4)δ5. (5.18)

Subtracting the first and the second equation of (5.18) from the first and the second
equation of (4.13) (in the form duv + b(1 + δ7)vx = b̃ + ε2), we deduce

(1 − δ7)bux = ã + ε1 − (̃b + ε2)δ5, (1 − δ7)bvx = b̃ + ε2 − (d̃ + ε4)δ5. (5.19)

It is clear that the first (the second) equality in (5.19) fails for ã �= 0 (for b̃ �= 0) and
b = 0, provided that ε, δ are sufficiently small. Next, from the second equation of (5.19)
and using vx = eiϑ − δ0 with |δ0| ≤ δ, ϑ ∈ R (see (5.17)) we obtain

b = b̃+ε2−(d̃+ε4)δ5
(1−δ7)(eiϑ−δ0)

= e−iϑ b̃ + e−iϑ b̃(δ7+eiϑ δ0−δ0δ7)+ε2−(d̃+ε4)δ5
(1−δ7)(eiϑ−δ0)

(5.20)

From (5.20) and |ux | ≤ δ (and |yv| ≤ δ) we get that the first equation of (5.19) fails for
ã �= 0 (the last equation of (4.13) fails for d̃ �= 0, d = 0), and ε, δ small enough.

Finally, it is easy to check that P(s) =
[
s−1 0
s2 s

]
, B(s) =

[
0 b(s)

b(s) d

]
with b(s) → b̃,

A(s) =
[

0 1
τ̃ + s 0

]
, c(s) = 1 in (5.2) proves

( [
0 1
τ̃ 0

]
,

[
0 b̃
b̃ 0

] ) → ( [
0 1
τ 0

]
,

[
0 b
b d

] )
,

b ≥ b̃ ≥ 0.

(b) B =
[
1 b
b 0

]
, b ≥ 0, τ = 0

We argue similarly as in Case II (a). We have equations (4.17); by multiplying the first
two equations by δ6 = y

x and using δ7 = uy
vx we obtain

ay2 + (1 + δ7)bvy = (̃b + ε2)δ6, 2δ7bvx + axy = (̃a + ε1)δ6. (5.21)

Subtracting the first and the second equation of (5.21) from the last and the second
equation of (4.13) (written as axy + b(1 + δ7)vx = b̃ + ε2), respectively, we get

(1 − δ7)bvy = d̃ + ε4 − (̃b + ε2)δ5, (1 − δ7)bvx = b̃ + ε2 − (̃a + ε1)δ6. (5.22)

The first (the second) equality in (5.22) fails for d̃ �= 0 (for b̃ �= 0) and b = 0, provided
that ε, δ are sufficiently small. We obtain a similar expression for b as in (5.20). It yields
a contradiction for b = 0, b̃ �= 0 and δ, ε small enough, while by combining it with
|yv| ≤ δ (and |ux | ≤ δ) we contradict the first equation of (5.22) for d̃ �= 0 (or (4.17) for

ã �= 0, a = 0), provided that ε, δ are small. Take P(s) =
[
s s2

0 s−1

]
, B(s) =

[
1 b(s)

b(s) 0

]
,

b(s) → b̃, c(s) = 1 in (5.2) to prove
( [

0 1
0 0

]
,

[
0 b̃
b̃ 0

] ) → ( [
0 1
0 0

]
,

[
1 b
b 0

] )
, b ≥ b̃.

(c) B = 1 ⊕ d , d ∈ C (0 < τ < 1) or B = a ⊕ 1, a > 0 (τ = 0)
Since | yx | ≤ δ

1−δ
and | u

v
| ≤ δ

1−δ
the same proof as in Case I (a) (iii) applies.

From (5.2) for P(s) =
[
s s2

0 s−1

]
, B(s) = 1⊕ s2d̃ and P(s) = √

ã ⊕ 1√
ã
, B(s) = 1⊕ ãd̃

with τ → τ̃ , c(s) = 1, in (5.2) we obtain
( [

0 1
τ̃ 0

]
, ã ⊕ d̃

) → ( [
0 1
τ 0

]
, 1 ⊕ d

)
(with

0 < τ < 1) for ã = 0 and ã > 0, respectively. Finally, P(s) =
[
s−1 1
s2 s

]
, B(s) =
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(d̃s2 + s3) ⊕ 1 with c(s) = 1 gives
(
[
0 1
0 0

]
, d̃ ⊕ 0

) → (
[
0 1
0 0

]
, a ⊕ 1

)
, a > 0,

d̃ ∈ {0, 1}.
(d) B =

[
eiϕ b
b ζ

]
, ζ ∈ C, ϕ ∈ [0, π), τ ∈ (0, 1) or B =

[
ζ ∗ b
b 1

]
, ζ ∗ ∈ C

∗, τ = 0; b > 0

Let B =
[
eiϕ b
b ζ

]
, ζ ∈ C, 0 ≤ ϕ < π . If B̃ is either

[
0 b̃
b̃ d̃

]
or

[̃
ζ b̃
b̃ 1

]
with ζ̃ �= 0 we take

P(s) =
[
s s2

1 s−1

]
, B(s) =

[
eiϕ b̃ + s
b̃ + s d̃s2

]
or P(s) = |̃ζ |ei kπ2 ⊕ 1

|̃ζ |e
i kπ2 , c(s) = (−1)k ,

B(s) =
[

eiϕ b̃ + s
b̃ + s (−1)k |̃ζ |2

]
with arg ζ̃ = arg(ϕ + kπ) in (5.2) to get a path. Next,

B(s) =
[
ãs2 + s3 b̃ + s
b̃ + s 1

]
, c(s) = 1, P(s) =

[
s−1 1
s2 s

]
shows

(
[
0 1
0 0

]
,

[
ã b̃
b̃ 0

]
) →

(
[
0 1
0 0

]
,

[
a b
b 1

]
)
, b̃ ≥ 0, ã ∈ {0, 1}.

Case III. (1 ⊕ −1, B̃) ���
(
[
0 1
τ 0

]
, B

)
, 0 < τ ≤ 1

Lemma 3.2 (2) with (C5) for α = −ω = 1, β = 0 gives (|δ1|, |δ2|, |δ4| ≤ δ):

2Re(xu) = (−1)k + δ1, 2Re(yv) = −(−1)k + δ2, xv + uy = δ4, 1 − τ, k ∈ Z,

(5.23)
Observe that u, v �= 0, otherwise (5.23) fails. We compute

xv + uy = e−2iφ(xv − yu) + 2 cos(φ − η)e−i(φ+η)uy = e−2iφ det P + Re(xu)
y
x ,

(5.24)

xv + uy = −e−2iη det P + 2 cos(φ − η)e−i(φ+η)vx = −e−2iη det P + Re(xu) v
u .

(5.25)

Therefore, by combining (5.24) and (5.25) with (5.23) we obtain

y
x = δ4−e−2iφ det P

(−1)k+δ1
, v

u = δ4+e−2iη det P
(−1)k+δ1

. (5.26)

(a) B = a ⊕ d , a ≥ 0

Equations (5.6) and (5.26) yield

b̃ + ε2 = axy + duv = 1
(−1)k+δ1

(
ax2(δ4 − e−2iφ det P) + du2(δ4 + e−2iη det P)

)

= 1
(−1)k+δ1

(
δ4(ax

2 + du2) + det P(−ax2e−2iφ + du2e−2iη)
)

= 1
(−1)k+δ1

(
δ4(̃a + ε1) + det P(−a|x |2 + d|u|2)), (5.27)

and further for a, ã ∈ R:

d̃ + ε4 = ay2 + dv2 = 1
((−1)k+δ1)2

(
ax2(δ4 − e−2iφ det P)2 + du2(δ4 + e−2iη det P)2

)

= 1
((−1)k+δ1)2

(
δ24(ax

2 + du2) + 2δ4 det P(−a|x |2 + d|u|2) + (det P)2(ax2 + du2)
)

= 1
((−1)k+δ1)2

(
δ24 (̃a + ε1) + 2δ4

(
(̃b + ε2)((−1)k + δ1) − δ4 (̃a + ε1)

)
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+ (det P)2 (̃a + ε1 + 2iIm(d)u2)
)
. (5.28)

The equation (5.27) gives (a ∈ R):

Im(d)|u|2 = Im
(

1
det P

(
(̃b + ε2)((−1)k + δ1) − δ4(̃a + ε1)

))
. (5.29)

Lemma 4.1 (1) yields | det P| ≥ 1− 6δ2

ν2√
1−δ

(note 1 − τ ≤ δ by (5.23). It follows for b̃ = 0

that |Im(d)u2| ≤ ν2
ε(1+δ)

3
2 +δ(̃a+ε)

√
1+δ

ν2−6δ2
. It contradicts (5.28) for ã < d̃, b̃ = 0 and

ε, δ small enough. Next, c(s) = 1, P(s) =
√

b̃
2

[
1 1

b̃−1 −b̃−1

]
, B(s) = 1 ⊕ b̃2eis (or

B(s) = 1⊕ −b̃2e−is) yields a path from (1⊕ −1, b̃ I2), b̃ > 0 (from
(
1⊕ −1,

[
0 b̃
b̃ 0

]
)
,

b̃ > 0) to
(
[
0 1
τ 0

]
, 1⊕d

)
, Im(d) > 0. For P(s) = 1

2

[
2s s−1

2s −s−1

]
we get (1⊕−1, 02) →

(
[
0 1
1 0

]
, 1 ⊕ 0

)
.

(b) B =
[
a b
b d

]
, b > 0

Let B̃ =
[
0 b̃
b̃ 0

]
, b̃ > 0. For a = 0 we have b2 = b̃2 − (1 − τ )̃b2 + ε′ with 1 − τ ≤ δ,

|ε′| ≤ max{ε, δ2

ν2
}(4max{̃b, b̃2, 1} + 2)2 (Lemma 4.1 (3)). If d = eiϕ with ϕ < π , the

proof in [22, Theorem 3.6, Case VII. (b) (i)] applies, while for d = 0 the first equation
of (5.12) for ã = 0 and (5.23) yield b(1 − δ) ≤ 2b|ux | ≤ ε, which fails for small ε, δ.
Suppose B̃ = ã ⊕ d̃ for 0 ≤ ã ≤ d̃ . If d = eiϕ the proof in [22, Theorem 3.6, Case VII.

(b) (ii)] for ã �= d̃ applies almost mutatis mutandis, we only replace | det Ã|
| det A| = | det B̃|

| det B| =
| ãd̃
b2

| = 1with b2 = ãd̃−(1−τ )̃ad̃+ε′, 1−τ ≤ δ, |ε′| ≤ max{ε, δ2

ν2
}(4max{d̃, ãd̃, 1}+

2)2 (Lemma 4.1 (3)). If d = 0, the first equation of (5.12) for ã = 0 and (5.23) give
(̃ad̃ − δãd̃ − |ε′|)(1 − δ)2 ≤ 4b2|ux |2 ≤ |̃a + ε|2, which fails for small ε, δ. Note,

c(s) = 1, P(s) =
[ 1
2s − i

2s
s is

]
, B(s) =

[
0 d̃ + s

d̃ + s 1

]
in (5.2) implies (1⊕ −1, d̃ I2) →

( [
0 1
1 0

]
,

[
0 b
b 1

] )
for d̃ ≥ 0. By conjugating with 1

2

[
1 −2

−1 −2

]
and r ⊕ 1

r for r > 0, we

get a path

(1 ⊕ −1, ã ⊕ d̃) ≈
([

0 1
1 0

]
, 1
4

[
ã + d̃ 2(d̃ − ã)

2(d̃ − ã) 4(̃a + d̃)

])
→

([
0 1
τ 0

]
,

[
r2eiϕ b
b r−2ζ

])

≈
([

0 1
τ 0

]
,

[
eiϕ b
b ζ

])
.

Case IV.
( [

0 1
1 i

]
, B̃

)
���

( [
0 1
1 i

]
, B

)

Lemma 3.2 (2) with (C8) for, β = 1, ω = i , α = k = 0 (since ||v|2 − (−1)k | < δ) gives
∣∣xv + uy − 1

∣∣ ≤ δ, |u|2 ≤ δ,
∣∣|v|2 − 1

∣∣ ≤ δ, |Re(xu)|, |Re(yv)| ≤ δ. (5.30)

(a) B = a ⊕ d , a ≥ 0, d ∈ C

It is not difficult to check that B(s) = s ⊕ b̃2
s , c(s) = 1, P(s) = e−i π

4

[
1 i b̃s−1

s2ei
π
4 1

]
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in (5.2) proves
(
[
0 1
1 i

]
,

[
0 b̃
b̃ 0

]
) → (

[
0 1
1 i

]
, a ⊕ d

)
, d ∈ C, a > 0, b̃ ≥ 0.

Next, let B = 0 ⊕ d , d > 0, B̃ = ã ⊕ d̃ , ã > 0. Using (5.6) for a = 0 and |u|2 ≤ δ we
get

ã + ε ≤ |du2| ≤ dδ, d(1 − δ) ≤ |dv2| ≤ ε + |d̃|.
Hence |d̃|+ε

1−δ
δ ≥ ã + ε, which fails for sufficiently small ε, δ.

(b) B =
[
0 b
b 0

]
, b > 0, (hence B̃ = ã ⊕ d̃ by Lemma 2.1)

The proof in [22, Theorem 3.6, Case V. (b)] applies mutatis mutandis. Note,

B(s) = d̃s
2

[
0 1
1 0

]
, P(s) = e−i π

4

[
ei

π
4 s s−1

s i

]
in (5.2) implies

(
[
0 1
1 i

]
, 0 ⊕ d̃

) →
(
[
0 1
1 i

]
,

[
0 b
b 0

]
)
, d̃ > 0.

Case V.
(
[
0 1
1 0

]
, B̃

)
���

(
[
0 1
1 i

]
, B

)

Lemma 3.2 (2) with (C8) for α = ω = 0, β = 0 yields

|u|2, |v|2 ≤ δ,
∣∣2Re(yv)

∣∣ ≤ δ,
∣∣2Re(xu)

∣∣ ≤ δ,
∣∣xv + uy − (−1)k

∣∣ ≤ δ, k ∈ Z.

(5.31)

(a) B = a ⊕ d , a ≥ 0

Taking c(s) = 1, P(s) =
[
1 s−1

s 0

]
, B(s) = 0 ⊕ 1

s in (5.2) proves
( [

0 1
1 0

]
, ã ⊕ 0

) →
( [

0 1
1 i

]
, 0 ⊕ d

)
, ã ∈ {0, 1}, d > 0. Next, c(s) = 1, P(s) = ei

1
2 ϑ̃

[
1 s−1

s 0

]
, B(s) =

(|d̃| + s)s2 ⊕ 1
s2
e−i θ̃ yields

( [
0 1
1 0

]
, 1 ⊕ d̃

) → ( [
0 1
1 i

]
, a ⊕ d

)
, d̃ = |d̃|ei ϑ̃ , a > 0,

d ∈ C.

Proceed with b̃ =
[
0 b̃
b̃ 1

]
, b̃ > 0; we conjugate the first pair with 1

2

[
2 −2
1 1

]
:

([
0 1
1 0

]
,

[
0 b̃
b̃ 1

])
≈

(
1 ⊕ −1, 1

4

[
4b̃ + 1 1

1 −4b̃ + 1

])
���

([
0 1
1 i

]
, a ⊕ d

)
, d ∈ C, a > 0.

(5.32)

Using ideas from Case III (a) we find c(s) = −1, P(s) = ei
π
4√
2

[ i
s2
eiα(s) i

s2
e−iα(s)

se−iα(s) seiα(s)

]

with sin(2α(s)) = s, B(s) = b̃s3 ⊕ ( b̃
s3

− i
2 s2

) (see (5.2)), which proves the existence
of (5.32).

(b) B =
[
0 b
b 0

]
, b > 0

If B̃ =
[
0 b̃
b̃ 1

]
, b̃ > 0, the proof in [22, Theorem 3.6, Case VI. (b) (i)] applies mutatis

mutandis, we only use b2 = b̃2 + ε′, |ε′| ≤ max{ε, δ2

ν2
}(4max{̃b, b̃2, 1} + 2)2 (see

Lemma 4.1 (3)) instead of 1 = | det Ã|
| det A| = | det B̃|

| det B| = b̃2

b2
. For B̃ = 1 ⊕ d̃ , d̃ �= 0 we apply
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[22, Theorem 3.6, Case VI. (b) (ii)], we only replace | det Ã|
| det A| = | det B̃|

| det B| = | d̃
b2

| = 1 with

b2 = |d̃| + ε′, |ε′| ≤ max{ε, δ2

ν2
}(4max{|d̃|, 1} + 2)2 (Lemma 4.1 (3)).

Case VI. (1 ⊕ −1, B̃) ���
(
[
0 1
1 i

]
, B

)

Lemma 3.2 (2) with (C8) for −ω = α = 1, β = 0 yields (|δ1|, |δ2|, |δ4| < δ,
k ∈ Z):

2Re(xu) = (−1)k + δ1, 2Re(yv) = −(−1)k + δ2, |u|2, |v|2 ≤ δ, xv + uy = δ4.

(5.33)

(a) B =
[
0 b
b 0

]
, b > 0

The proof in [22, Theorem 3.6, Case V. (b) (i)] applies mutatis mutandis for B̃ =
[
0 b̃
b̃ 0

]
,

b̃ > 0; recall b2 = b̃2 + ε′, |ε′| ≤ max{ε, δ2

ν2
}(2max{1, b̃, b̃2} + 1)2 (Lemma 4.1 (3)).

Let B̃ = ã ⊕ d̃, d̃ ≥ ã ≥ 0. If d̃ > ã > 0 the proof in [22, Theorem 3.6, Case V. (b)

(ii)] applies for b2 = ãd̃ + ε′, |ε′| ≤ max{ε, δ2

ν2
}(4max{1, d̃, ãd̃} + 2)2 (Lemma 4.1

(3)). For c(s) = −1, P(s) = 1√
2

[
is−1 s−1

−is s

]
, B(s) = (d̃ + s)

[
0 1
1 0

]
in (5.2) we get

(1⊕−1, d̃ I2) → ( [
0 1
1 i

]
,

[
0 b
b 0

] )
, d̃ ≥ 0. If ã = 0, d̃ > 0 then Lemma 3.1 (D1) yields

d̃ − ε ≤ | v
u |√ε(4d̃ + 2)

1
2 , and Lemma 4.1 (1) gives | det P| ≤ 1 + 6δ2

ν2
. By applying

this and (5.33) to (5.25) implies (1 − δ)(d̃ − ε) ≤ √
ε(4d̃ + 2)

1
2 (δ + 1 + 6δ2

ν2
), which

fails for small ε, δ.
(b) B = a ⊕ d , a ≥ 0, d ∈ C

If b̃ = 0, 0 ≤ ã < d̃ the same proof as in Case III (a) applies (see (5.23) and (5.33)).

Case VII.
( [

0 1
1 0

]
, B̃

)
��� (1 ⊕ −1, B)

Lemma 3.2 (2) with (C2) for ω = 0, θ = π gives

|x |2 − |u|2 = δ1, x y − uv − (−1)k = δ2, |y|2 − |v|2 = δ4, |δ1|, |δ2|, |δ4| ≤ δ, k ∈ Z.

(5.34)

(a) B = a ⊕ d , 0 ≤ a ≤ d , d > 0

(i) B̃ =
[
0 b̃
b̃ 1

]
, b̃ > 0

First, c(s) = −1, P(s) =
[−i

2 s is−1

s
2 s−1

]
, B(s) = b̃ ⊕ (̃b + s2) in (5.2) gives

( [
0 1
1 0

]
,

[
0 b̃
b̃ 1

] ) → (1 ⊕ −1, a ⊕ d), a < d . For a = d we apply the proof

of [22, Theorem 3.6, Case VIII (a) (ii)], but replace

[
0 d
d 1

]
with

[
0 b̃
b̃ 1

]
; and use

d2 = |̃b|2 + ε′, |ε′| ≤ max{ε, δ2

ν2
}(4max{|̃b|, |̃b|2, 1} + 2

)2 (Lemma 4.1 (3)) at the
end of the proof.
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(ii) B̃ = 1 ⊕ d̃, d̃ ∈ C

We prove
(
[
0 1
1 0

]
, 1⊕ 0

) → (1⊕ −1, 0 ⊕ d) with P(s) =
[
s−1 1

2 s
s−1 − 1

2 s

]
, c(s) = 1,

B(s) = 0 ⊕ s2.
Proceed with B = a ⊕ d , 0 < a ≤ d . We have equations (5.6) for ã = 1, Imd̃ > 0,
b̃ = 0. By combining them with (5.9), (5.10) for σ = −1 and with (5.34) we get

ε1 + 1 − ae2iφδ1 = u2(ae2i(φ−η) + d),

a
(
(−1)k + δ2

) − e−2iφε2 = −e−2iφ(
uv(ae2i(φ−η) + d)

)
,

a
(
(−1)k + δ2

) − e−2iϕε2 = −e−2iϕ(
uv(ae2i(ϕ−κ) + d)

)
,

ε4 + d̃ − ae2iϕδ4 = v2(ae2i(ϕ−κ) + d),

d
(
(−1)k + δ2

) + e−2iκε2 = e−2iκ(
xy(de2i(κ−ϕ) + a)

)
, (5.35)

We have ad = |d̃| + δ′, |δ′| ≤ max{ε, δ2

ν2
}(4max{1, |d̃|} + 2

)2 (Lemma 4.1), hence

a ≤
√

|d̃|+1, provided that max{ε, δ2

ν2
} ≤ 1

(4max{1,|d̃|}+2)2
. Next, we divide the first

and the second (the third and the fourth) two equations of (5.35) to get

u
v

= ε1+1−ae2iφδ1

a
(
(−1)k+δ2

)
−e−2iφε2

(−e−2iφ) = a
(
(−1)k+δ2

)
−e−2iϕε2

ε4+d̃−ae2iϕδ4
(−e2iϕ).

The second equality yields that there is a (computable) constant D > 0 so that

a2 = d̃e−2i(φ+ϕ) + δ5, d2 = (|d̃|+δ′)2
d̃e2i(φ−ϕ)+δ5

, |δ5| ≤ Dmax{ε, δ}, (5.36)

Furthermore, we divide the third and the fifth equation of (5.35) to conclude:

xy
uv

= (d((−1)k+δ2)+e−2iκ ε2)

(a((−1)k+δ2)e2iϕε2)
= 1 + δ6, |δ6| ≤ C max{ε, δ}, (5.37)

while the first four equations of (5.35) yield

1
d̃

+ δ0 =
(
1+ε1−ae2iφδ1

)(
a(−1)k+aδ2−e−2iφε2

)
(
d̃+ε1−ae2iϕδ4

)(
a(−1)k+aδ2−e−2iϕε2

)

= ei(2η−2κ−2φ+2ϕ) |u|2
|v|2 , |δ0| ≤ K max{ε, δ},

where constants C, K > 0 can be computed. By applying (4.7) for d̃ = |d̃|ei ϑ̃ we

get 2η − 2κ − 2φ + 2ϕ + ϑ̃ = ψ with |ei ψ
2 − 1| = | sin ψ

4 | ≤ | sinψ | ≤ δ0. Using
(5.37) we get

∣∣ x y
uv

− 1
∣∣ = ∣∣ |xy|

|uv|e
i(φ−ϕ−κ+η) − 1

∣∣ = ∣∣|1 + δ6|ei
(
− ϑ̃

2 + ψ
2

)

− 1
∣∣

= ∣∣ei
ψ
2

(
e−i ϑ̃

2 + 1
)

−
(
ei

ψ
2 − 1

)
+ (|1 − δ6| − 1)e

i
(
− ϑ̃

2 + ψ
2

)∣∣

≥ |e−i ϑ̃
2 + 1| − |δ0| − |δ6| ≥ cos ϑ̃

4 ,

provided that ε, δ are such that 1
4 |e−i ϑ̃

2 +1| = 1
2 cos

ϑ̃
4 ≥ |δ0|, |δ6|with 0 < ϑ̃ < π .

Thus:

2 ≥ 1 + δ ≥ |x y − uv| = |uv|∣∣ x yuv
− 1

∣∣ ≥ 1
2 |uv| cos ϑ̃

4 , |u|2 = |u|
|v| |uv| ≤ 4 |d̃|−1+|δ0|

cos ϑ̃
4

.
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We simplify the first and the third equation of (5.35) and rearrange the terms:

2au2 cos(φ − η)ei(φ−η) = 1 + ε1 − ae2iφδ1 − (d − a)u2,

− 2auv cos(ϕ − κ)e−i(ϕ+κ) = a(−1)k + aδ2 − e−2iϕε2 + (d − a)uve−2iϕ.

(5.38)

By applying (4.3) with d̃ = |d̃|ei ϑ̃ to (5.36) and (5.38) we deduce (L > 0 is a
constant):

ψ0 = θ̃ − 2(φ + ϕ), | sinψ | ≤ 2|δ5|
|d̃| ,

ψ1 = (φ + η) − πl1, | sinψ1| ≤ L max{ε, δ}, l1 ∈ Z,

ψ2 = (η − ϕ) − π(k + l2), | sinψ2| ≤ L max{ε, δ}, l2 ∈ Z.

Thus
∣
∣ sin(ψ0+2ψ1−2ψ2)

∣
∣ = | sin ϑ̃ | ≤ 2|δ5|

|d̃| +4 L max{ε, δ} and it fails for small
ε, δ.

(b) B =
[
0 b
b 0

]
, b > 0

If B̃ =
[
0 b̃
b̃ 1

]
for b̃ > 0 we can apply the proof of [22, Theorem 3.6, Case VIII (b) (i)],

recall b2 = b̃2 + ε′, |ε′| ≤ max{ε, δ2

ν2
}(4max{|̃b|, |̃b|2, 1} + 2)2 (Lemma 4.1 (3)).

Let B̃ = 1 ⊕ d̃, d̃ ∈ C. To get
( [

0 1
1 0

]
, 1 ⊕ 0

) → (
1 ⊕ −1,

[
0 b
b 0

] )
, we take P(s) =

1
2

[
2s−1 s
2s−1 −s

]
, c(s) = 1, B(s) = s2

2

[
0 1
1 0

]
in (5.2). If d̃ = |d̃|ei ϑ̃ , 0 < ϑ̃ < π Lemma3.1

(D3) implies

bvx = 1
2

(
ε′
2 + (−1)l i

√
|d̃|ei ϑ̃

2

)
, buy = 1

2

(
ε′′
2 − (−1)l i

√
|d̃|ei ϑ̃

2

)
,

where |ε′
2|, |ε′′

2 | ≤ ε(4max{1,|d̃|}+2+|d̃|)
|d̃| . By applying (4.3) to these two equations and to

the first equality of (5.12) we get ψ1, ψ2, ψ3 ∈ (−π
2 , π

2 ) such that:

ψ1 = φ + κ − π
2 − ϑ̃

2 − lπ + 2πl3, | sinψ1| ≤ 2|ε′
2|√
|d̃| ,

ψ2 = ϕ + η − π
2 − ϑ̃

2 − (l + 1)π + 2πl4, | sinψ2| ≤ 2|ε′′
2 |√
|d̃| ,

ψ3 = φ + η + 2πl1, | sinψ3| ≤ ε.

Therefore

(−1)k + δ2

= x y − uv = |xy|ei(ϕ−φ) − |uv|ei(κ−η) = e−i(φ+η)
(|xy|ei(ϕ+η) − |uv|ei(κ+φ)

)

= ei(−ψ3+2πl1)
(|xy|ei(ψ2−2πl4+ π

2 + ϑ̃
2 +(l+1)π) − |uv|ei( π

2 + ϑ̃
2 +lπ−2πl3+ψ1)

)

= ei(ψ2−ψ3+ ϑ̃
2 +(l+1)π+ π

2 )
(|xy| + |uv|ei(ψ1−ψ2)

)
.
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Since ψ1, ψ2, ψ3 ∈ (−π
2 , π

2 ) are close to 0, the argument of the second factor is close
to 0, too. Using (4.3) again we obtain a contradiction for ε, δ small enough:

ψ = kπ − (
ψ2 − ψ3 + ϑ̃

2 + (l + 1)π + π
2

) − (ψ1 − ψ2), | sinψ | ≤ 2δ,

0 �= | cos ϑ̃
2 | = ∣

∣ sin
(

ϑ̃
2 + π

2

) ∣
∣ ≤ ∣

∣ sin(ψ3 + ψ1)
∣
∣ ≤ 2ε′

2 + 2δ.

Case VIII.
(
[
0 1
1 0

]
, B̃

)
���

(
[
0 1
1 0

]
, B

)

(a) B = 1 ⊕ d , Imd > 0, B̃ =
[
0 b̃
b̃ 1

]
, b̃ > 0

We can apply the proof of [22, Theorem 3.6, Case IX (b)], and use |d| = |̃b|2 + ε′,
|ε′| ≤ max{ε, δ2

ν2
}(4max{|̃b|, |̃b|2, 1} + 2)2 (Lemma 4.1 (3)).

(b) B =
[
0 b
b 1

]
, b > 0

For P(s) =
[
0 1
1 0

]
, B =

[
0 s
s 1

]
, c(s) = 1 in (5.2) we get

(
[
0 1
1 0

]
, 1 ⊕ 0

) →
( [

0 1
1 0

]
,

[
0 b
b 1

] )
, b > 0. For B̃ = 1 ⊕ d̃, d̃ �= 0 we use the proof of [22, The-

orem 3.6, Case IX (c)], but replace | det B̃|
| det B| = ãd̃

b2
with b2 = |d̃| + ε′, |ε′| ≤

max{ε, δ2

ν2
}(4max{|̃b|, |̃b|2, 1} + 2)2 (Lemma 4.1 (3)).

Case IX.
( [

0 1
1 ω

]
, B̃

)
��� (1 ⊕ eiθ , B), 0 < θ < π , ω ∈ {0, i}

From Lemma 3.2 (C2) we get
∣∣|u|2 − |x |2∣∣ ≤ δ,

∣∣|v|2 − |y|2∣∣ ≤ δ,
∣∣x y − uv − (−1)k

∣∣ ≤ δ, k ∈ Z, sin θ ≤ δ;
if ω = i, then (sin θ)|v|2 = 1 + δ2, (sin θ)|u|2 = δ3, |δ2|, |δ3| ≤ δ. (5.39)

For ω = i we further deduce
∣∣(sin θ)|y|2 − 1

∣∣ ≤ δ + δ2, (sin θ)|x |2 ≤ δ + δ2. (5.40)

(a) B =
[
0 b
b d

]
, b ≥ 0, d > 0

Lemma 3.1 (D1) for B̃ = ã⊕d̃ , ã �= 0 and (5.39) forω = i (hence (1+δ2)|u|2 = δ3|v|2)
yield a contradiction for small ε, δ. Next, c(s) = 1, P(s) = i

√
d̃ + s

[ s
d̃+s

s−1

0 −s−1

]
,

cos( θ
2 ) =

{
s2

2(d̃+s)
, ω = i

s3, ω = 0
, B(s) =

[
0 b̃
b̃ 2b̃ − s2

]
in (5.2) proves

( [
0 1
1 ω

]
,

[
0 b̃
b̃ d̃

] ) →
(
1 ⊕ eiθ ,

[
0 b
b d

] )
, b̃ > 0, either ω = 0, d̃ = 1 or ω = i , d̃ = 0. Taking

c(s) = 1, P(s) =
√
d̃ + s

[ s
d̃+s

s−1

0 −s−1

]
, cos( θ

2 ) = s2

2(d̃+s)
, B(s) = 0 ⊕ s2 shows

( [
0 1
1 i

]
, 0 ⊕ d̃

) → (1 ⊕ eiθ , 0 ⊕ d). Finally, c(s) = −iei
ϑ̃
2 , cos( θ(s)

2 ) = s3, P(s) =
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1
s e

−i π
4

[
eiα(s) ie−iα(s)

√
d̃ + s

−e−iα(s) −ieiα(s)
√
d̃ + s

]

, sin(2α(s)) = s2

2|
√

d̃+s|
, B(s) = ∣

∣
√
d̃ + s

∣
∣
[
0 1
1 2

]

in (5.2) proves
(
[
0 1
1 0

]
, 1 ⊕ d̃

) → (
1 ⊕ eiθ ,

[
0 b
b d

]
)
, b > 0, Im(d̃) > 0.

(b) B =
[
0 b
b 0

]
, b > 0

Let B̃ =
[
0 b̃
b̃ 0

]
, b̃ > 0 and ω = i . It follows from Lemma 4.1 (3) that b2 = b̃2 + ε′,

|ε′| ≤ max{ε, δ2

ν2
}(4max{1, |̃b|, |̃b|2} + 2

)2, so the third equation of (5.12) for d̃ = 0

yields (yv)2 = ε24
4(̃b2+ε′) . By combining it with (5.39) and (5.40) we deduce

(
1 − δ(1 + δ)

)
(1 − δ) ≤ (sin θ)2|yv|2 = δ2ε2

4|̃b2+ε′| ,

which fails for ε, δ small enough.Next, c(s) = 1, cos( θ(s)
2 ) = s2, P(s) = i√

2

[
s s−1

s −s−1

]
,

B(s) = (d̃ + s)s2
[
0 1
1 0

]
in (5.2) gives

(
[
0 1
1 i

]
, 0 ⊕ d̃

) → (
1 ⊕ eiθ ,

[
0 b
b 0

]
)
, d̃ ≥ 0.

We apply the same proof as in Case VII (compare (5.34) and (5.39)) to show
( [

0 1
1 0

]
,

[
0 b̃
b̃ 1

] ) �→ (
1⊕ eiθ ,

[
0 b
b 0

] )
, b̃ > 0 and

( [
0 1
1 0

]
, 1⊕ d̃

) �→ (
1⊕ eiθ ,

[
0 b
b 0

] )
,

Imd̃ > 0.

(c)

[
a b
b 0

]
, a > 0, b ≥ 0

We multiply the squared equation in Lemma 3.1 (D2) for B̃ = ã ⊕ d̃ with (sin θ)2:

(̃a + ε1)
2y2 sin2 θ = ( − i(−1)l

√
ãd̃ + ε′

2

)
x2 sin2 θ, |ε′

2|

≤
{

ε(4max{̃a,d̃}+2+|̃ad̃|)
|̃ad̃| , ãd̃ �= 0

√
ε(4max{̃a, d̃} + 3), ãd̃ = 0

.

By applying (5.39) and (5.40) (for ω = i) we get |̃a + ε1|2(1 − δ) ≤ (√|̃ad̃| +
|ε′
2|

)
(δ + δ2), which fails for ã �= 0 and small ε, δ. For c(s) = ei

ϑ̃
2 , P(s) =

1
s e

−i π
4

[
−e−iα −ieiα

√
d̃ + s

eiα ie−iα
√
d̃ + s

]

with sin(2α(s)) = s2

2|
√

d̃+s|
, cos θ

2 = s3, B(s) =

|
√
d̃ + s|

[
2 1
1 0

]
in (5.2), it follows

( [
0 1
1 0

]
, 1 ⊕ d̃

) → (
1 ⊕ eiθ ,

[
a b
b 0

] )
, π > ϑ̃ =

arg d̃ > 0 or d̃ = 0. Taking c(s) = 1, P(s) = 1√
d̃+s

[
0 1

s (d̃ + s)
s − 1

s (d̃ + s)

]
, B(s) =

[
2b(s) + s2 b(s)

b(s) 0

]
, b(s) → b̃, cos( θ

2 ) =
{

s2

2(d̃+s)
, ω = i

s3, ω = 0
proves

( [
0 1
1 ω

]
,

[
0 b̃
b̃ d̃

] ) →
(
1 ⊕ eiθ ,

[
a b
b 0

] )
, b ≥ b̃ ≥ 0, either ω = 0, b̃ > 0, d̃ = 1 or ω = i , d̃, b̃ ≥ 0.

(d) B =
[
a b
b d

]
, a, d > 0, b ∈ C

First let b = 0. We deal with the case ω = 0 in the same manner as in Case VII (a) (ii)
(compare also (5.34) and (5.39); observe that the proof works in the case a > d , too).
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If ω = i we have |v|2 ≥ 1, |u|2
|v|2 ≤ δ ≤ 1

2 and using (5.39) we easily verify

|x |2
|y|2 = |u|2+δ

|v|2−δ
= |u|2

|v|2 + |v|2δ+|u|2δ
(|v|2−δ)|v|2 ≤ δ + |v|2δ+ 1

2 |v|2δ
1
2 |v|2 ≤ 4δ.

Multiplying the second equation of (5.6) with δ5 = x
y and δ6 = u

v
yields

ax2 + dv2δ6δ5 = (̃b + ε2)δ5, ay2δ6δ5 + du2 = (̃b + ε2)δ6.

By adding them and using (5.6) yields a contradiction for ã �= 0 and small ε, δ:

(̃a + ε2) + (d̃ + ε2)δ6δ5 = (̃b + ε2)(δ5 + δ6).

It is tedious to find c(s) = 1, cos( θ(s)
2 ) = s2, B(s) = 1

2

[
ãs−2 ãs−2 − 2ds2

ãs−2 − 2ds2 ãs−2

]
,

P(s) = 1√
2

[
s s−1

s −s−1

]
in (5.2) to prove

(
[
0 1
1 i

]
, ã⊕d̃

) → (
1⊕eiθ ,

[
a b
b d

]
)
,a, d, ã > 0,

b ∈ C
∗, d̃ ∈ C.

Case X.
(
[
0 1
1 ω

]
, B̃

)
���

(
[
0 1
τ 0

]
,

[
a b
b d

]
)
, 0 < τ < 1, ω ∈ {0, i}

The following expressions are bounded by δ (Lemma 3.2 (2) (C4) for α = 1):

Re(xu), (1 − τ)Im(xu),Re(yv), (1 − τ)Im(yv) − (−1)k |ω|, 1 − τ, xv + uy − (−1)k,

(5.41)

where k ∈ Z. If in addition ω = i , it then follows that

δ5 = |xu|
|yv| = (1−τ)|xu|

(1−τ)|yv| ≤
∣∣(1−τ)Re(xu)

∣∣+
∣∣(1−τ)Im(xu)

∣∣
∣∣(1−τ)Im(yv)

∣∣−
∣∣(1−τ)Re(yv)

∣∣ ≤ δ+δ2

1−δ−δ2
,

δ|yv| ≥ ∣∣(1 − τ)Im(yv)
∣∣ ≥ 1 − δ, (5.42)

(1 + δ)
|v|
|u| ≥ |uy + xv| |v|

|u| ≥ |vy| − |xv|
|uy| |vy| = |vy|(1 − |xu|

|vy| | v
u |2),

(1 + δ)
|y|
|x | ≥ |uy + xv| |y|

|x | ≥ |vy| − |uy|
|xv| |vy| = |vy|(1 − |xu|

|vy| | yx |2). (5.43)

(a) B = a ⊕ d
Let B = 0⊕1. If ã �= 0 (hence b̃ = d̃ = 0, ω = i) then (5.4) for a = b = d̃ = 0, d = 1
yields ( v

u )2 = ε2
ã+ε1

, thus (5.42), (5.43) give a contradiction for small ε, δ. Taking c(s) =
1, τ(s) = 1− s, P(s) = 1√

d̃+s

[
1 −is−1

0 d̃ + s

]
proves

( [
0 1
1 i

]
, 0⊕ d̃

) → ( [
0 1
τ 0

]
, 0⊕ 1

)
,

d̃ ≥ 0.
Next, B = 1 ⊕ d , d ∈ C. If either | xy | ≥ 1 (or | u

v
| ≥ 1), then in case ω = i the second

(the first) inequality of (5.43) yields a contradiction. When | xy |, | uv | ≤ 1 we multiply the
second equation of (5.4) for b = 0, a = 1 with u

v
and x

y , and simplify them:

δ5y
2 + du2 = (̃b + ε2)

u
v
, x2 + δ5dv2 = (̃b + ε2)

x
y (δ5 ≤ δ+δ2

1−δ−δ2
).

We add these equations and use (5.4) for b = 0, a = 1 to get δ5(d̃ + ε4) + (̃a +
ε1) = (̃b + ε2)

u
v

+ (̃b + ε2)
x
y . Since | xy |, | uv | ≤ 1, it fails for ã �= 0, b̃ = 0

and small ε, δ. Finally, c(s) = 1, τ(s) = 1 − s2, P(s) = 1√
b̃
e−i π

4

[
s2ei

π
4 b̃s−1

s s−1

]
,
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B(s) = 1 ⊕ b̃2
(
[
0 1
1 i

]
,

[
0 b̃
b̃ 0

]
) → (

[
0 1
τ 0

]
, 1 ⊕ d

)
, while, c(s) = 1, τ(s) = 1 − s3,

P(s) = 1√
2
ei

π
4

[
sb̃e−iα(s) −is−1eiα(s)

−iseiα(s) (̃bs)−1e−iα(s)

]
, B(s) = 1 ⊕ b̃2e4α(s)+β(s), sin(α(s)) = s3,

sin( β(s)
2 ) = −s2 gives

(
[
0 1
1 0

]
,

[
0 b̃
b̃ 1

]
) → (

[
0 1
τ 0

]
, 1 ⊕ d

)
, b̃ > 0, d ∈ C.

(b) B =
[
0 b
b eiϕ

]
, 0 ≤ ϕ < π , b > 0

Let a = 0 and B̃ = ã ⊕ d̃. Lemma 3.1 (D1) for ã �= 0 implies v
u = i(−1)l

√
ãd̃+ε′

2
ã+ε1

=

i(−1)l
√

d̃
ã + ε′′

2 , |ε′
2| ≤

{
ε(4|max{d̃ ,̃a}|+2+|̃ad̃|)

|̃ad̃| , det B̃ �= 0
√

ε(4|max{d̃, ã}| + 3), det B̃ = 0
, |ε′′

2 | ≤ 2
ã (|ε′

2| + ε

√
d̃
ã ),

l ∈ Z, provided that ε ≤ |̃a|
2 . It contradicts (5.42), (5.43) for ω = i . If ã = 1, d̃ =

|d̃|ei ϑ̃ �= 0, 0 < ϑ̃ < π we apply (4.3) to deduce ψ = κ − η − ϑ̃
2 − π

2 − lπ with

| sinψ | ≤ |ε′′
2 |

|
√
d̃| . Hence

xv + uy = xu v
u + yv u

v
= −(−1)l ei(

ϑ̃
2 +ψ)

(
Im(xu)| v

u | + Im(yv)| u
v
|)

+ Re(xu) v
u + Re(yv) u

v
.

Using (5.41)) and
∣∣| v
u | − |

√
d̃
ã |∣∣ ≤ |ε′′

2 |, the above calculation and (4.3) gives

ψ ′ = kπ − (
ϑ̃
2 + ψ + (l + 1)π

)
, | sinψ ′| ≤ 2δ

(
1 + |

√
d̃
ã | + |ε′′

2 | + (|
√

d̃
ã | − |ε′′

2 |)−1
)

,

which fails for small ε, δ (recall | sinψ | ≤ |ε′′
2 |

|
√
d̃| , 0 < ϑ̃ < π). Next, c(s) = −1,

P(s) =
[
− 2is

3b̃
1
s

s
3

2i b̃
s

]

, B(s) =
[
0 b̃
b̃ i

]
, τ(s) = 1 − s2

2b̃
implies

( [
0 1
1 i

]
,

[
0 b̃
b̃ 0

] ) →
( [

0 1
τ 0

]
,

[
0 b
b eiϕ

] )
, b̃ > 0.

For τ(s) =
{
1 − s

√
ã + s, ω = i

1 − s2, ω = 0
, P(s) = ei

π
4

[√
ã + s −i

s
s3e−i π

4 1√
a+s

]

,

B(s) =
[

−i
√
a+s
s√

ã+s
s −i (̃a + s)(d̃ − 1

s2
)

]

, c(s) = −1 we get
( [

0 1
1 ω

]
, ã ⊕ d̃,

) →
( [

0 1
τ 0

]
,

[
eiϕ b
b d

] )
, d ∈ C, ã ≥ 0.

(c) B =
[
0 b
b 0

]
, b > 0

We multiply the first and the second equality of (D1) and (D2) of Lemma 3.1 for
ã �= 0 to get a contradiction with (5.42) for ω = i and small ε, δ. Taking c(s) = 1,

τ(s) = 1−s, P(s) = e−i π
4

[
sei

π
4 s−1

s i

]
, B(s) = d̃+s

2 s

[
0 1
1 0

]
shows

( [
0 1
1 i

]
, 0⊕ d̃

) →
( [

0 1
τ 0

]
,

[
0 b
b 0

] )
.

For ã = 0, b̃ > 0we have b = b̃+δ′, with |δ′| ≤ δb̃2+max{ε, δ2

ν2
}(4max{̃b, b̃2, 1}+2)2
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(seeLemma4.1 (3 and (4.7)); recall 1−τ ≤ δ). Ifω = i (hence d̃ = 0) the last equationof
(5.12) for d̃ = 0 contradicts the second estimate of (5.42).Next, letω = 0 (hence d̃ = 1).
Using 2bvy = 1 + ε4 (see (5.12)) and |Re(yv)| ≤ δ (see (5.41)), we have |Im(yv)| ≥
|yv| − |Re(yv)| ≥ 1−ε

b+|δ′| − δ. Further Lemma 3.1 gives 2bvx = ((−1)l+1 + 1)̃b + ε′
2,

2buy = ((−1)l + 1)̃b + ε′′
2 , l ∈ Z, where |ε′

2|, |ε′′
2 | ≤ ε(4max{1,̃b}+2+b̃2)

b̃2
. So either

2bvx = 2b̃ + ε′
2, 2buy = ε′′

2 or 2buy = 2b̃ + ε′′
2 , 2bvx = ε′

2. In the first case we also

have xv = (−1)k + δ′
2 with |δ′

2| ≤ δ + |ε′′
2 |

2(̃b−|δ′|) (see (5.41)). We combine all facts:

| yx |2 = 2bvy yv
2bvx xv = (1+ε4)(iIm(yv)+δ0)

(2b+ε′
2)((−1)k+δ′

2)

For sufficiently small ε, δ the right-hand (the left-hand) side is (not) real, a contradiction.
The other case is treated similarly and yields a contradiction as well.

Case XI. (1 ⊕ 0, B̃) ��� (1 ⊕ 0, B)

If B =
[
0 1
1 0

]
, B̃ = ã ⊕ 1, ã ≥ 0, then [22, Theorem 3.6, Case XI (a)] applies. (Taking

c(s) = 1, P(s) =
[
1 s
ã
2 0

]
in (5.2) proves (1 ⊕ 0, ã ⊕ 0) → (

1 ⊕ 0,

[
0 1
1 0

] )
.)

Next, Lemma 3.2 (2) with (C12) for α = 1 gives
∣∣|x |2 − 1

∣∣ ≤ δ and |y|2 ≤ δ, hence
| yx |2 ≤ δ

1−δ
. When B = a ⊕ 0 for a ≥ 0, then dividing the last two equalities of (5.4) for

b = d = b̃ = 0, d̃ = 1 yields x
y = ε2

1+ε4
, which contradicts | yx |2 ≤ δ

1−δ
for small ε, δ.

Finally, c(s) = 1, P(s) =
[

1 0√
ã − a s

]
in (5.2) proves (1⊕0, ã⊕0) → (1⊕0, a⊕1), a ≥

0, and c(s) = 1, P(s) =
[

i s3

s−1 s

]
, B(s) = 1

s2
⊕1 implies

(
1⊕0,

[
0 1
1 0

] ) → (
1⊕0, a⊕1

)
,

a > 0.

Case XII. (1 ⊕ 0, B̃) → ( [
0 1
1 0

]
, B

)

Lemma 3.2 (2) for (C5) for α = 1, β = ω = 0 yields

2Re(xu) = (−1)k + δ1, 2Re(yv) = δ2, xv +uy = δ4, k ∈ Z, |δ1|, |δ2|, |δ4| ≤ δ. (5.44)

Next, (5.26) (compare (5.44) with (5.23)) is valid in this case as well. Since | det P| ≤ δ
√
6

ν

by Lemma 4.1 (1), it follows from (5.26) that

| v
u |, | yx | ≤ δ ν+√

6
ν(1−δ)

. (5.45)

(a) B = 1 ⊕ 0
The bundle consists of one orbit, hence [22, Theorem 3.6, Case XV (c)] applies. (We

take c(s) = 1 and P(s) =
[√

ã + s 0
1

2
√
ã+s

s

]

to get (1 ⊕ 0, ã ⊕ 0) → ( [
0 1
1 0

]
, 1 ⊕ 0

)
for

ã ≥ 0.)
(b) B = 1 ⊕ d , Im(d) > 0

For B̃ = ã ⊕ 1 we have (5.6) with b̃ = 0, a = 1. By multiplying the second equation
of (5.6) for b̃ = 0 with δ4 := v

u , δ5 := y
x and by simplifying it we obtain

ax2δ4δ5 + dv2 = ε2δ4, ay2 + dv2δ4δ5 = ε2δ5, (5.46)
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respectively. We add these equalities and using the first and the last equation of (5.6) we
get the equality that fails for d̃ �= 0 and ε, δ small enough (recall (5.45)):

ε2(δ4 + δ5) = (ax2 + du2)δ4δ5 + (ay2 + dv2) = (̃a + ε1)δ4δ5 + d̃ + ε4. (5.47)

Note that
(
1⊕0,

[
0 1
1 0

]
) → (

[
0 1
1 0

]
, 1⊕d

)
will follow afterwe prove

(
1⊕0,

[
0 1
1 0

]
) →

(
1 ⊕ −1,

[
0 b
b 0

]
)
(see Case XIV (a)).

(c) B =
[
0 b
b 1

]
, b > 0

Let B̃ = ã ⊕ 1, ã ≥ 0. From Lemma 3.1 (D1) for b̃ = 0, d̃ = 1 we get:

|u| ≤
√
ã+|ε′′

2 |
1−ε

|v|, (5.48)

which clearly contradicts (5.45) for sufficiently small ε, δ.

For P(s) =
[− 1

2 s s4

s−1 2s

]
, c(s) = 1, B(s) =

[
0 s−2

s−2 1

]
we show

(
1 ⊕ 0,

[
0 1
1 0

]
) →

( [
0 1
1 0

]
,

[
0 b
b 1

] )
.

Case XIII. (1 ⊕ 0, B̃) ���
( [

0 1
τ 0

]
,

[
a b
b d

] )
, 0 ≤ τ < 1

From Lemma 3.2 (2) for (C3) with α = 1 we get

Re(yv) ≤ δ, (1 − τ)Im(yv) ≤ δ, (1 − τ)|xv| ≤ δ, (1 − τ)|uy| ≤ δ,

xv + uy ≤ δ,
∣∣(1 + τ)Re(xu) + i(1 − τ)Im(xu) − 1

c

∣∣ ≤ δ. (5.49)

The last estimate yields either
∣∣(1 + τ)Re(xu)

∣∣ ≥ 1−δ
2 or

∣∣(1 − τ)Im(xu)
∣∣ ≥ 1−δ

2 , thus

|xu| ≥ 1−δ
4 . (5.50)

(a) B =
[
a b
b d

]
, either b > 0 or b = 0 and ad = 0

First, let B̃ = ã ⊕ 1, ã ≥ 0; we have (5.48). Using (5.49), (5.50) we thus get

δ

√
ã+|ε′′

2 |
|1−ε| ≥ (1 − τ)|xv|| u

v
| = (1 − τ)|xu| ≥ 1

4 (1 − τ).

Similarly, when d = 0 then Lemma 3.1 (D2) for b̃ = 0, d̃ = 1 and (5.49), (5.50) yield

| xy | ≤
√
ã+|ε′

2|
1−ε

and
4δ(

√
ã+|ε′

2|)
1−ε

≥ 1 − τ . From Lemma 4.1 (1) we obtain
√

τ | det P| ≤
δ
√
6

ν
. By combining the above statements with (5.24), (5.25) we get Re(xu) ≤ Cδ, where

a constant C > 0 can be computed. Hence (1 − τ)Im(xu) ≥ 1 − δ − Cδ, and further

|yv|
|xu| = (1 − τ)|yv|

(1 − τ)|xu| ≤
∣∣(1−τ)Im(yv)

∣∣+
∣∣(1−τ)Re(yv)

∣∣
∣∣(1−τ)Im(xu)

∣∣−
∣∣(1−τ)Re(xu)

∣∣ ≤ 2δ

1 − δ − 2Cδ
. (5.51)

It is also easy to validate

|xv + uy|| u
v
| ≥ |ux |∣∣1 − |yv|

|xu| | uv |2∣∣, |xv + uy|| xy | ≥ |ux |∣∣1 − |yv|
|xu| | xy |2

∣∣. (5.52)
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We apply (5.49) and the estimates on | u
v
|, | xy |, | yvxu | to (5.52) to get a contradiction for

small ε, δ. Next, P(s) =
[−sei(α(s)+ π

4 ) s3

s−1ei
π
4 1

]
, B(s) =

[
s−4e−iα(s) s−2

s−2 1

]
, c(s) = −1,

τ(s) → 0, sin( α(s)
2 ) = ãs2

2 implies (1 ⊕ 0, ã ⊕ 1) → (
[
0 1
0 0

]
,

[
ζ ∗ b
b 1

]
)
, ζ ∗ ∈ C

∗.

Let B =
[
0 b
b 0

]
, b > 0, B̃ =

[
0 1
1 0

]
. The first (the second) equation of (5.12) for ã = 0

(for b̃ = 1) combined with (5.50) (with (5.49) for 0 ≤ τ ≤ 1
2 ) yields ε ≥ b|ux | ≥ b 1−δ

4
(and 1 + ε ≥ b|vx + uy| ≥ 4bδ), thus a contradiction for sufficiently small ε, δ

and 0 ≤ τ ≤ 1
2 . If 1 ≥ τ ≥ 1

2 then Lemma 4.1 (1), (2) leads to | det P| ≤ 2
√
3δ

ν

and b| det P| ≥ 1 − 6ε, hence 8
√
3εδ

ν(1−δ)
≥ b 2

√
3δ

ν
≥ 1 − 6ε, which fails for small

ε, δ. Taking P(s) =
[−s s4

s−1 2s

]
, B(s) =

[
ζ 1

2 s
−2

1
2 s

−2 1

]
with ζ

s2
→ 0 and P(s) =

[
s−1 2s
−s s4

]
, B(s) =

[
1 1

2 s
−2

1
2 s

−2 0

]
(both with c(s) = −1, τ(s) → 0) in (5.2) proves

(
1⊕0,

[
0 1
1 0

]
) → (

[
0 1
τ 0

]
,

[
ζ b
b eiϕ

]
)
, ζ ∈ C and

(
1⊕0,

[
0 1
1 0

]
) → (

[
0 1
τ 0

]
,

[
eiϕ b
b 0

]
)

with b > 0, 0 ≤ ϕ < π , respectively.

Finally, to see (1⊕ 0, ã ⊕ 0) → ( [
0 1
τ 0

]
, B

)
, 0 ≤ τ < 1, ã ≥ 0, where B is any of the

matrices

[
a b
b eiϕ

]
,a, b ≥ 0 and

[
eiϕ b
b d

]
,d, b ≥ 0,we take P(s) =

[
1√
ã+s

s√
ã + s s

]

, B(s) =
[
a(s) b(s)
b(s) 1

]
with b(s) → 0, a(s)√

s
→ 0 or P(s) =

[√
ã + s s
1√
ã+s

s

]

, B(s) =
[

1 b(s)
b(s) d(s)

]

with b(s) → 0, d(s)√
s

→ 0 in (5.2) (c(s) = 1, τ(s) → 0 in both cases). To prove

(1 ⊕ 0, ã ⊕ 0) → ( [
0 1
τ 0

]
,

[
0 b
b 0

] )
, b > 0, we put P(s) =

[
1 s
1 0

]
, B(s) = ã+s

2

[
0 1
1 0

]
,

c(s) = 1, τ(s) → 0 in (5.2).
(b) B = a ⊕ d , a, d �= 0

For c(s) = −i , P(s) =
[

s s3

is−1 s2

]
, B(s) = 1

s4
⊕1weget

(
1⊕0,

[
0 1
1 0

] ) → ( [
0 1
0 0

]
, a⊕

1
)
.

If τ ≤ 1
2 then we have |xv|, |uy| ≤ 2δ, thus using (5.50 ) we get | v

u | = | vx
ux | ≤ 8δ and

| yx | = | uyux | ≤ 8δ. On the other hand for τ ≥ 1
2 we get | det P| ≤ 2

√
3δ

ν
(Lemma 4.1

(1)), therefore (5.24), (5.25), (5.49) imply |Re(xu)|| v
u |, |Re(xu)|| v

u | ≤ 2
√
3δ + δ. If

|Re(xu)| ≤
√
2
√
3δ + δ, then (1− τ)|Im(xu)| ≥ 1−

√
(2

√
3 + 1)δ and similarly as in

(5.51) we obtain | v
u |, | yx | ≤ 2δ

1−2
√

(2
√
3+1)δ

. If B̃ = ã ⊕ d̃ with d̃ �= 0, then in any case

we proceed mutatis mutandis as in Case XII (b) to get a contradiction for small ε, δ.

Case XIV. (1 ⊕ 0, B̃) ��� (1 ⊕ eiθ , B), 0 ≤ θ ≤ π

From Lemma 3.2 (2) with (C1) for α = 1 and 0 < θ < π we have
∣∣|x |2 + eiθ |u|2 − c−1

∣∣ ≤ δ,
∣∣|y|2 + eiθ |v|2∣∣ ≤ δ, sin(θ)|uv| ≤ δ, |x y + cos(θ)uv| ≤ δ.

(5.53)
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Furthermore, Lemma 3.2 (2) with (C10) for α = 1, σ = −1 yields
∣
∣|x |2 − |u|2∣∣ = 1 + δ1,

∣
∣|y|2 − |v|2∣∣ = δ4, |x y − uv| = δ2, |δ1|, |δ2|, |δ4| ≤ δ,

(5.54)

while from (C10) for α = 1, σ = 1 we deduce

|x |2 + |u|2 = 1 + δ1, |y|2, |v|2 ≤ δ, |δ1| ≤ δ. (5.55)

(a) B̃ =
[
0 1
1 0

]

Taking c(s) = 1, P(s) = 1√
2

[
1 s

√
2

i −is
√
2

]
, B(s) =

√
2

2 s I2 gives
(
1 ⊕ 0,

[
0 1
1 0

]
) →

(I2, aI2), a > 0. If B = d I2 and θ = π , then Lemma 4.1 (1), (2) gives | det P| ≤ δ
√
6

ν

and d| det P| ≥ 1 − 6ε. The first equation of (5.4) for a = d ,b = ã = 0 yields ε ≥∣
∣d(x2 +u2)

∣
∣ ≥ |d|∣∣|x |2 −|u|2∣∣ ≥ |d|(1− δ) (see (5.54)). Thus εδ

√
6

ν
≥ (1− δ)(1−6ε),

which fails for ε, δ ≤ 1
12 .

(b) B̃ = ã ⊕ 0, ã ≥ 0

We take c(s) = e−iθ , P(s) =
[
s s
1 s

]
, B(s) =

[
a(s) b(s)
b(s) d(s)

]
with d(s) → ã,

sa(s), b(s) → 0 to prove a path (1 ⊕ 0, ã ⊕ 0) → (
1 ⊕ eiθ ,

[
a b
b d

] )
for d > 0,

b ≥ 0, 0 ≤ θ ≤ π .
(c) B̃ = ã ⊕ 1, ã ≥ 0

(i) B =
[
a b
b d

]
, |a| + |d| �= 0, a �= d

For c(s) = 1, P(s) =
[
1 s
0 s

]
, B(s) =

[
a(s) b(s)
b(s) s−2

]
, a(s) → ã, sb(s) → 0 and

c(s) = e−iθ , P(s) =
[
0 s
1 s

]
, B(s) =

[
s−2 b(s)
b(s) d(s)

]
with d(s) → ã, sb(s) → 1,

we get (1 ⊕ 0, ã ⊕ 1) → (
1 ⊕ eiθ ,

[
a b
b d

] )
for b ≥ 0, d > 0 and b ≥ 0, a > 0,

respectively. Next, c(s) = 1, P(s) =
[
−i 0
is s√

ã+s

]

, B(s) = (̃a + s)

[
0 s−1

s−1 s−2

]

and c(s) = e−iθ , P(s) =
[
is s√

ã+s
−i 0

]

, B(s) = (̃a + s)

[
s−2 s−1

s−1 0

]
in (5.2) imply

(1 ⊕ 0, ã ⊕ 1) → (
1 ⊕ eiθ ,

[
0 b
b d

] )
and (1 ⊕ 0, ã ⊕ 1) → (

1 ⊕ eiθ ,

[
a b
b 0

] )
for

b, a, d > 0.

(ii) B =
[
0 b
b 0

]
, b > 0 (0 < θ ≤ π )

The second estimate of (5.53) gives (sin θ)|v|2 ≤ δ, thus either |v|2 ≤ √
δ or

sin θ ≤ √
δ (or both). If |v|2 ≤ √

δ, then the second estimate of (5.53) (or
(5.54)) implies |y|2 ≤ δ + √

δ. Since we have (5.14) for d̃ = 1, we further get

|u|, |x | ≤ (δ + √
δ)

|√ã|+max{|ε′
2|,|ε′′

2 |}
(1−ε)

, which contradicts the first estimate of (5.53)
and (5.54).
Let now v, y �= 0 and sin θ ≤ √

δ. If θ ∈ (0, π
4 ), then (1 − cos θ)|v|2 =
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2(sin2 θ
2 )|v|2 ≤ 2(sin2 θ)|v|2, hence the second estimate of (5.53) yields

δ ≥ ∣
∣|y|2 + cos θ |v|2∣∣ ≥ ∣

∣|y|2 + |v|2∣∣ − (1 − cos θ)|v|2 ≥ ∣
∣|y|2 + |v|2∣∣ − 2δ.

Hence |y|2, |v|2 ≤ 3δ and it gives a contradiction again. If θ ∈ ( 3π4 , π], then
| cos θ

2 | = | sin π−θ
2 | ≤ | sin(π − θ)|, and by combining it with the first equa-

tion in (5.14) for d̃ = 1 and the third estimate of (5.53) we get (cos θ
2 )|u|2 ≤

(sin θ)|uv|| u
v
| ≤ δ

√
ã+|ε′

2|
1−ε

. Since |x |2 + eiθ |u|2 = |x |2 − |u|2 + 2(cos θ
2 )|u|2ei θ

2 ,
the first estimate of (5.53) yields

|x |2 − |u|2 = c−1 + δ5, |δ5| ≤ δ + 2δ
√
ã+|ε′

2|
1−ε

. (5.56)

Next, (5.14) for d̃ = 1 yields | xy |, | uv | ≤ |√ã|+max{|ε′
2|,|ε′′

2 |}
(1−ε)

. From the first estimate

of (5.53) (or (5.54)) we deduce either |x |2 ≥ 1−δ
2 or |u|2 ≥ 1−δ

2 , and the second

estimate of (5.53) (or (5.54)) gives |y|, |v| ≥ (1−ε)(1−δ)

2(|√ã|+max{|ε′
2|,|ε′′

2 |}) −√
δ. To conclude

we use the (5.8) with (5.53), (5.54) and (5.56) to obtain an inequality that fails for
small ε, δ:

δ ≥ ∣∣x y + (cos θ)uv
∣∣ ≥ ∣∣|x y| − |uv|∣∣ − |uv||1 − cos θ |

≥ 1−|δ5|
2 |u|

|v| +
√

1+|δ5 |
|y|

− ( |u|
|v| +

√
1+|δ5||v|

)
δ − 2δ.

(iii) B = aI2, a > 0 (hence A = 1 ⊕ σ , σ = eiθ ∈ {1,−1})
The first equation of (5.6) for a = d and (5.54) yield

ε+|̃a|
a ≥ |x2 + u2| ≥ ∣∣|x |2 − |u|2∣∣. (5.57)

If σ = 1, then the last equation of (5.6) for a = d and the last estimates in (5.55)
imply 1−ε

a ≤ y2 + v2 ≤ 2δ. Hence (5.57) gives
∣∣|x |2 −|u|2∣∣ ≤ δ0 := 2δ(|̃a|+ε)

1−ε
. The

first equation of (5.6) further yields that |x |, |u| ≥ 1−δ
2 − δ0 with

|v|
|u| ,

|y|
|x | ≤ 2δ

1−δ
2 −2δ0

.

If B̃ = ã⊕1, we proceed mutatis mutandis as in Case XII (b) to get a contradiction.

Let σ = −1. By Lemma 4.1 (1), (2) we have a δ
√
6

ν
≥ a| det P| = |√ã + δ′| with

δ′ ≤ ε 4̃a+2
ã if ã �= 0 (or δ′ ≤ ε

√
4̃a + 2 if ã = 0). If ã �= 0, we combine it with the

first equality of (5.54) and (5.57), to obtain δ
√
6(ε+|̃a|)

ν(|√ã|−|δ′|) ≥ ∣∣|x |2 − |u|2∣∣ ≥ (1 − δ),

which fails for small ε, δ. Next, if ã = 0 then (5.57) and (5.54) imply a ≤ ε
1−δ

.

Using the second equation of (5.9) and (5.10) we deduce u
v

= ae2iϕδ2−ε4
ae2iϕδ4−1−ε4

, while

the last equation of (5.6) for a = d , d̃ = 1 and the second inequality of (5.54) give
2|v2| ≥ 1−ε

2a − δ. Applying this and (5.54) to (5.8) leads to an inequality that fails
for small ε, δ.

Case XV. (1 ⊕ 0, B̃) ���
( [

0 1
1 i

]
, B

)
,

From Lemma 3.2 (2) for (C6) with α = 1, c−1 = ei� we deduce

|xv + uy| ≤ δ, |v|2, |uv| ≤ δ,
∣∣2Re(yv)

∣∣ ≤ δ,
∣∣2Re(xu) + i |u|2 − ei�

∣∣ ≤ δ. (5.58)
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(a) B =
[
0 b
b 0

]
, b > 0

If B̃ = ã ⊕ 1 we again have (5.14) for d̃ = 1, and by combining it with |v|2 ≤ δ (see

(5.58)), we get |u| ≤ (
√
ã+|ε′′

2 |)√δ

1−ε
with ε′′

2 is as in (5.14). The last estimate of (5.58) then

yields |2Re(xu)| ≥ 1 + δ + δ(
√
ã+|ε′

2|)2
(1−ε)2

. By applying this, δ
√
6

ν
≥ | det P| (Lemma 4.1

(1)) and the first estimate of (5.58) to (5.25) we get | v
u |(1− δ − δ(

√
ã+|ε′′

2 |)2
(1−ε)2

) ≤ δ − δ
√
6

ν
,

which contradicts (5.14) for small ε, δ.

Taking B(s) = 1
s

[
0 1
1 0

]
, P(s) =

[
s2 s
1 s

]
, c(s) = −i gives

(
1 ⊕ 0,

[
0 1
1 0

]
) →

(
[
0 1
1 i

]
,

[
0 b
b 0

]
)
.

(b) B = a ⊕ d , a ≥ 0, d ∈ C

First, B(s) = 1
s2

⊕ã, P(s) =
[
s2 s
1 s2

]
, c(s) = −i give (1⊕0, ã⊕1) → (

[
0 1
1 i

]
, a⊕d

)
,

a > 0.
If B̃ = ã ⊕ 1, ã ≥ 0 and a = 0, then the last two equations of (5.6) for d̃ = 1,

a = b̃ = 0 give (1 + ε4)u = ε2v with | u
v
| ≤ ε

1−ε
. Thus |u|2 = | u

v
||uv| ≤ ε2δ

(1−ε)2
and

|2Re(ux)| ≥ 1 − δ − δε2

(1−ε)2
. By applying this, δ

√
6

ν
≥ | det P| (Lemma 4.1 (1)) and

(5.58) to (5.25) we get | v
u |(1 − δ − δε2

(1−ε)2
) ≤ δ − δ

√
6

ν
; it contradicts | u

v
| ≤ ε

1−ε
for

small ε, δ.

So far we have proved Theorem 3.4 (1), (5). Furthermore, Theorem 3.4 (3), (4) can be
concluded for all cases except maybe for (02, 1 ⊕ 0).

Case XVI. (02, 1 ⊕ σ) ��� (A, B)

(a) σ = 1 (B̃ = I2)

Weprove (02, I2) → (
A,

[
a b
b d

] )
,b > 0, A ∈ C

2×2 by taking P(s) = s√
2
ei

π
4

[
1 −i
−i 1

]
,

c(s) = 1, B(s) =
[
a(s) s−2

s−2 d(s)

]
, a(s), d(s) ≤ 1

s . Next, P(s) = 1√
2

[
s s
1 −1

]
, B(s) =

1
s2

⊕ 1, c(s) = 1 give (02, I2) → (A, a ⊕ 1) with a > 0 and either A =
[
0 1
0 0

]
or

A = 1 ⊕ 0, while P(s) = 1√
2

[
s s
s −s

]
, B(s) = 1

s2
⊕ ( 1

s2
+ d−a

s ), c(s) = 1 yield

(02, I2) → (1 ⊕ σ, a ⊕ d), d ≥ a > 0.
(b) σ = 0 (B̃ = 1 ⊕ 0)

To prove (02, 1 ⊕ 0) → (1 ⊕ 0, a ⊕ 0) for a > 0 we take B(s) = 1
s2

⊕ 0, P(s) = s I2,
c(s) = 1 in (5.2). From what we proved so far this implies (02, 1⊕ 0) → (A, B) for all
B �= 02.

This completes the proof of the theorem. ��
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22. Slapar, M., Starčič, T.: On normal forms of complex points of codimension 2 submanifolds. J. Math.

Anal. Appl. 461(2), 1308–1326 (2018)
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