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Abstract

We extend our previous result on the behaviour of the quadratic part of a complex points of a
small C2-perturbation of a real 4-manifold embedded in a complex 3-manifold. We describe
the change of the structure of the quadratic normal form of a complex point. It is an immediate
consequence of a theorem clarifying how small perturbations can change the bundle of a pair
of one arbitrary and one symmetric 2 x 2 matrix with respect to an action of a certain linear

group.
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1 Introduction

Let M be a smooth real 2n-submanifold in C"*!. A point p € M is called complex when
T, M is a complex subspace in T,,(C”“; its complex dimension is equal to n. Locally, near
a complex point p € M we can see M as a graph (see e.g. [23]):

w =7z Az +Re(z" B2) +0(z1%), (z(p), w(p)) = (0,0), AeC™" BeCy",
(1.1)

in which (z, w) = (z1, 22, ..., zn, w) are suitable local coordinates on C"*1, and C"*",
Cg™" are sets of all n x n matrices and n x n symmetric matrices, respectively. A complex
point p is quadratically flat, if the quadratic part of (1.1) is real valued.

When n = 1 complex points are well understood; see papers of Bishop [3], Kenig and
Webster [18], Moser and Webster [19], Huang and Yin [16], Huang and Krantz [17], Bedford
and Klingenberg [2] and Forstneri¢ [13]. They are quadratically flat and given locally by
w =277+ %(z2 +Zz) + 0(|z|2), 0<y,orw= 242+ 0(|z|2). For n = 2 a relatively
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simple description of complex points up to quadratic terms was obtained by Coffman [7]; it
includes two generic normal forms given by equations

w=1t012+ 27 + %21 + 32 + bz + 21z + 423 + %Z% +o(lz1), (1.2)

w=271 +e0n+ S@+ D) FVnn VD + @G+ D) Fo(zh),  (13)

in which |a| = 1,b > 0,d € C, 7 € (0,1) and 6 € (0,n), d’,d" > 0,b' € C*
/ /

oy 4,8 = ([T o [ o]y ana e = ([ o] |5y o o =2
respectively). If n > 2 quadratically flat complex points were studied by Slapar and the author
[22]. We refer to the papers of Dolbeault, Tomassini and Zaitsev [9] and Fang and Huang
[12] for results on holomorphic flattenability of C R-nonminimal real analytic submanifolds
near complex points. Formal normal forms of C R-singularities were considered by Burcea
[6] and Gong and Stolovitch [15], among others.

In this paper we continue a research started in the paper [23], in which we explained when
the quadratic part of a complex point of a real 4-manifold embedded in a complex 3-manifold
can be transformed under small C2-perturbations to the quadratic part of another complex
point. For instance, [23, Corollary 3.8] implies that no sufficiently small C>-deformation of

_ _ . 107 [00],.
w = 2121 + 323 + 323 + o(|z|*) near (0,0) (with (A, B) = ([0 0] , [0 1]) in (1.1) for

n=2)canlead tow = 37120 + 2122 + 2} + 7] + 2122 + T %2 + 23 + 23 + o(|z[?) (with

01 211,.
(A,B) = ([% 0} , [1 2] ) in (1.1) for n = 2).
‘We now focus on the change of the type of a complex point, i.e. on the structure of (A, B)

in (1.1). In particular, we provide the following result describing possible arbitrarily small
C?-deformations to generic normal forms.

Theorem 1.1 Let M be a real 4-manifold in C* and let p € M be a complex point given

locally by (1.1) withn = 2 and A € C**2, B € C%XZ. It follows that A #* |:(1) e,%o] with

6p € [0, 1) (or A # [2} (l)i| with to € [0, 1)) if and only if there exists an arbitrarily small

C?-perturbation M' of M, and such that M' has a complex point p', arbitrarily close to p,
and p' is locally given by the equation of the form (1.2) (of the form (1.3)).

A more general situation is considered in Theorem 3.4 and Corollary 3.6. Due to tech-
nical reasons, these results are stated in Sec. 3. A substantial difference in comparison to
[23] is that our problem now reduces to a system of nonlinear equations with larger set
of parameters. It makes the analysis considerably more involved. However, the number of
cases to be considered now is smaller. We add that Theorem 3.4 is of independent interest
in matrix analysis since it clarifies how small perturbations can change the bundle of a pair
(A, B) € C?*2 x (C%X2 with respect to transformations (cP*AP, PT B P) with nonsingular
matrix P and |c| = 1.
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2 Normal forms in dimension 2

Any holomorphic change of coordinates that preserves (1.1) for n = 2 transforms (1.1) into
the equation that can by a slight abuse of notation be written as

w=72" (cP*AP)z+Re (zT(PTBP)z) +o(lz>), P eGLyC), ceSs',

where S! and G L, (C) are a unit circle and the group of invertible 2 x 2 matrices, respectively.
Studying the quadratic part of a complex point thus means examining the action of §' x
GL»(C) on C2*2 x (CéX2 (see also [7] and [23, Sec. 3]):

W: ((c, P), (A, B)) > (cP*AP,PT"BP), P eGLyC), ceS'. (21

An orbit at (A, B) € C2*2 x (C%X2 with respect to (2.1) is denoted by Orby (A, B).

For some applications it is useful to have a stratification into bundles of matrices, i.e.
sets of all matrices having similar properties. This notion was first introduced by Arnold [1,
Section 30] for the action of similarity; two matrices are in the same bundle under similarity
precisely when their Jordan canonical forms have the same structure (with bijection between
the sets of distinct eigenvalues). For instance, matrices with all distinct eigenvalues form the
generic bundle.

Three bundles with respect to the action (2.1) can be formed according to the sign of

det [2 g] for (A, B) € C¥*2 x (CéX2 (see [7, Sec. 4]). Slapar [20] (see also [21]) proved

that the bundles with nonvanishing determinant are connected components of C2*2 x (C§X2
and showed that up to smooth isotopy complex points of a real 4-submanifold in C3 are
locally given either by w = 7121 + 2222 or w = 2121 + Z%.

Our goal is to understand the change of normal forms of (2.1) under small perturbations,
thus we use the list [7, Sec. 7,Table 1] (see also [23, Lemma 2.2]) of normal forms for orbits
under (2.1), to form bundles so that they contain normal forms of similar structure. To be
more precise, each such set of normal forms is parameterized by smooth maps A — C2*2,
At A(A)and A — (C%ﬂ, A+ B()),inwhich A c RFisa parameter set, and we define
the bundle of (Ag, Bp) = (A(Xo), B(Ap)) for Ly € A with respect to the action ¥ in (2.1)
as:

Buny (Ag, Bo) := U Orby (A(A), B(L)). (2.2)
rEA

Elements of a bundle must behave similarly under small perturbations (Sect. 3).
To simplify the notation, a @ d denotes the diagonal matrix with a, d on the diagonal,
while the 2 x 2 identity-matrix and the 2 x 2 zero-matrix are I and 0.

Lemma 2.1 Bundles of the action (2.1), represented by pairs (A, B) given in Table 1, are
immersed submanifolds in C**% x (CéX2 with dimensions noted in the first column.

Note that we arranged orbits Orby (1 @ 0,dy ® d) foro € {1, —1},d > 0, dp € {0, d}
into bundles Buny (1 @ 0,0 & d) = U;-oOrby (1 & 0,0 & d) and Buny (1 & 0,d) =

Ug=00rby (1 0,dlr), o € {1, —1}. Next, Orbq,( |:O 1:| R |:§ b] ) for¢ € C,b > 0 are split

00 b1
. . 1017 [erb 017 T0b L
into bundles with representatives ( [0 O] , [b 1] )and ( [O O] , [b 1] )fors* e C*, b > 0.
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Table 1 Bundles of the action (2.1). Here 0 < 7 < 1,0 < 8 < m,a,b,d >0, € C,p € R, ¢* € C* are
the parameters

dim A B A B A B A B
w  [a¢* 01 &P b 01 01
18 e d]’ [fo boc| 1 00
=~ p+mT~9
[0 5] 0 b * b
12 b d] [b ei‘/’i|’ a®¢ [b 1]
.
b0 Qo+mT~9
a®d 1o¢
[0 b 0b [0 b]
10 b0 0@l [b o] b1
0b
a®0 |:b0i| ad1
.
0@ d b0
9 0ad
0b
8 0y 0y 50
160
01
02
02
11 I a®da<d 1®-1 a®da<d [(1)(1)] 1ode? 160
0b
10 [b 1] a®l1
9 dl dl
0b
o0]
0ad
8 190 01
01
10
6 0, I a®0
5 0y 0y
4 160 0y
0 0y

Sketch of the proof of Lemma 2.1 Fix (Ao, By) € C>*? x C3** from Table 1 and define
Wp: 8" x GLy(C) x A — CP2 % CF2, (¢, P, > W(e, P, AGY), BY),  (2.3)
where Wy (1, Ir, ko) = (Ag, Bo). For every g € S! x GL,(C) the maps W8: (A, B)

W(g, (A, B)) and Rg: h — hg are automorphisms of C2x2 x (C?(2 and S' x GL,(C),
respectively, and we have W8 o W) = W, o (Rg x idp). Thus the rank of dW, does not
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dependon X € A, g e S I'x GL,(C) and by the constant rank theorem (e.g. [5, Theorem
1V.5.8]) the bundle Buny (Ao, By) C C2%2 x (CéXz is an immersed manifold.
In a similar manner as tangent spaces of orbits in [23, Lemma 2.2] are computed, tangent
spaces of bundles are obtained. We choose paths (A(¢), B(¢)) in Buny (Ao, Bp) and
y:(=8,8) > S' x GL2(C), y@t) = (€, 1+1X), aecR XeC¥? 50,
and calculate:

E‘zzoeim(u +HIX)TANU +1X)) = iAo + %L:o"‘(f) + (X* Ao + ApX),

dt

tzo((l +1tX) B +1X)) = 4| _ B(t) + (X" By + BoX).

Writing X = Z; k=1 (Xjx +1yjr) Ejx, where E ji is the elementary matrix with one in the
Jj-th row and k-th column and zeros otherwise, we deduce that

2 2
X*Ag+ AoX = Y (rjx — iyi) ExjAo+ D (xjk +iyji) AoEji
Jk=1 jk=1
2 2
= Y xjk(ExjAo+ AoEj) + Y yjki(—ExjAo + AoE i),
Jk=1 Jj.k=1

ﬁieie, A=1®e?,0<0 <7
0, otherwise

’

%L:OA(” = B Ea1 + BnExn, P = {

01
Bot = 5’A—[zo]’0<’<1, B eR.
0, otherwise

In a similar fashion we conclude that

2 2
X"Bo+BoX = Y xjk(ExjBo+ BoEji) + Y yjki(ExjBo+ BoEjp).
jk=1 Jok=1
2 Zjks Bji(t) = (Bo) jk + zjkt. zjk € C
LlooBO =Y vixEjr.  vix = { i(Bo)jxwjk Bjr(t) = (Bo) ke, wj € R
k=1 0, otherwise

Note that if A jx(¢) (or Bjk(t)) is constant, then B = 0 (yjx = 0).
In view of the identification R® x R® ~ C2*2 x (CéX2 we denote (j, k € {1,2}):

Wjr ~ (0, Eji), Uik ~ (0,iE i), j<k
ujk ~ (ExjAo+ AoEjk, ExjBo+ BoEji), vjk ~i(—ExjAo+ AoEjk, ExjBo + BoE ji),
(ie%E»,0), A=10e?,0<0<m

01 wy X (iA,0),
wy ~ § (E21,0), A= [

},o cr<l . ws~©0i(B)uEn),

0 .
i wy ~ (0, i(Bo)2E»n).

0, otherwise

The tangent space of Buny (Ag, Bp) can be seen as a linear space spanned by vectors
{wr, wa} U {u i, Ujk}j,.ke{l,Q} and a subset of vectors {w3, ws} U {’IZJ‘/(, Ejk}j,ke{l,Z},jfb If
Bjj(t) = (Bo)jj(ro)e'®i' for j € {1,2}, then wj is in the span, while for Bj;(t) =
(Bo) jk + zjkt, zjk # 0 vectors ﬁjk, T)’jk are in the span. It is straightforward to compute the
dimensions; see [23, Lemma 2.2] for the details in the case of orbits. O
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3 Change of the normal form under small perturbations

In this section we study how small deformations of a pair of one arbitrary and one symmetric
matrix can change its bundle under the action (2.1). For the sake of clarity the notion closure
graph for bundles for an action is introduced; compare it with the closure graph for orbits in
[23]. Given an action ®, vertices of its closure graph are pairwise disjoint bundles of orbits
with respect to @, and there is a path from a vertex V to a vertex V precisely when V lies
in the closure of V. The path from Vto V is denoted by Y > V. To simplify the notation
we usually write Vo VfrVe 17, V € V (instead of V> V). We also require that if
VeV (hence Ol'bq>(‘7)) is contained in the closure of V, then whole bundle ¥ must lie in
the closure of V; it does not hold in general. Closure graphs are reflexive and transitive.

When V /> V itis useful to know the distance from V to the bundle V 5 V. It suffices to
consider the distance from the normal form of V (see e.g. [23, Remark 3.2]). We use the max
norm || X || = max;j xeq1,2) 1Xj kl, X = [xj,k]i’k:1 € C2*2 to measure the distance between
matrices.

To emphasize the difference between the closure graphs for orbits and bundles we take
look at the action of similarity on C2*2. Given A, u € C with A # uwehave A\@A A ADu
in the closure graph for orbits (eigenvalues depend continuously on the entries of the matrix),
but A ® A — A @ w in the closure graph for bundles (the bundle of A @  is dense in C2*2).
For a comprehensive theory on closure hierarchy of matrices under similarity we refer to
[10] and [11].

The action (2.1) is closely related to the following two actions:

Wy:(c, P, A)) > cP*AP, P eGLy(C), ceS' AeC?? 3.1
Wy: (P, B)+> PTBP, P e GLy(C), B eC3 3.2)

Bundles under these actions are defined the same way as bundles for ¥ in (2.2).
The closure graph for (3.2) with trivial bundles (hence orbits) is simple (see [23, Lemma

3.2]); we add a few necessary conditions on its paths and prove them in Sec. 4. For closure
graphs of all 2 x 2 or 3 x 3 matrices see [8].

Lemma 3.1 The closure graph for the action (3.2) is
0> 1600— I, 3.3)

in which 1 @ 0 and I correspond to bundles of symmetric matrices of rank 1 and 2. Fur-

thermore, let B = [Z Z] IS (C%XZ, B = [g« g«] € (C%XZ, P = [z zi| € GLy(C) and

= |:Zl ?] € (CéXz be such that PTBP = B + F. Then the following statements hold:
2 €4

(1) IfE, B are normal forms in (3.3) and such that B + B, then |F| > 1.
- I F I 41 BlI4+2++/] det B)) . de tB # 0
(2) If B — B, thenthereexiste}, €] € C, |€}], || < /I det Bl
VIFI@B| +3), detB:O
so that equations listed in the third column (and in the line corresponding to B) of Table 2
are valid.

By making a more detailed analysis than in [23, Lemma 3.4] (see also [14, Theorem 2.2])
we get the closure graph for bundles under the action (3.1) along with necessary conditions
related to its paths; the proof is given in Sect. 4.
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Table 2 Necessary conditions on B and P (given that PTBP =B+ F)

B
DI 25 u(i(=1)!Vdet B+ b+ €h) = v(@ + ea),
v(=i(=)!Vdet B+ b+ €) = u(d + es)
D2 Z g YA(~=DIVdet B +b + €h) = x(d + ea),
x(=i(=1)!Vdet B+b + &) = y@+ep)
D3 28 2bvx = i(—=1)!Vdet B+ b+ ¢},
2buy = (—i(~=1)'Vdet B +b + ¢}
D4 0dd u® + e2) = v(@ + €4),
v+ €) = u(d + €4)
D5 a®0 y(b + €2) = x(d + €a),
x(5+ €) =y(d+e€p)
l@el? [g (1)] 8
01
[7 1] 7
01
00 6
b (\““z[?a ;
160 4
T
0, 0

Fig.1 The closure graph for the action (3.1)

Lemma 3.2 The closure graph for bundles under the action (3.1) is drawn in Fig. 1. It contains

six vertices corresponding to bundles (orbits) with normal forms 05, 1 D0, I, 1 & —1, [8 (l)j|

|:(1) ll:|, and two vertices for bundles with normal forms 1 & €' for 6 € (0, w) and |:S (1)i| for

T € (0, 1).
Furthermore, let A, A be normal forms in Fig. 1, and let E = cP*AP — A for some

ceSh, P= |:f¢ ij] € GL>(C), E € C¥*2 with |E|| < 1. Then the following statements
hold:

(1) If A +> A, then there exists a constant i > 0 which does not depend on c, P and such
that || E|| = p.
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(2) If A — A, then there is a constant v > 0 such that the moduli of expressions listed in
the fourth column (and in the line corresponding to A, A) of Table 3 are bounded by

vWIET. (If A € GLy(C) then also | E|| < #‘% is assumed.)

Remark 3.3 For calculations of u, v in Lemma 3.2 see the proof of the lemma.
We are ready to state the main results of the paper. The proof is given in Sect. 5.

Theorem 3.4 Let bundles with normal forms of types from Lemma 2.1 be vertices in the
closure graph for the action \V in (2.1). The graph contains precisely the paths described by
the following statements:

(1) There is a path from (03, 03) to any bundle. There exist paths from Buny (1 & 0, 05) fo
all bundles, except to Buny (02, B) for B € (C2><2 Furthermore, there are paths from
(1®0,a @ 0) witha > 0 to all bundles, except to (02, B) for B € (CZX2 and (A, 02)
for A e C2*2,

(2) There exist paths from Buny (02, 1 & 0) to all bundles, except to Buny (A, 0y) for A €
(C2><2.

(3) From every bundle, except Bungy (1 ® ¢'?, B) for0 <0 < m, B € CéXZ, there exists a

017 [e? b .
pathtothebundleBunq,( ol b ¢ )wzth05g0<n,0<b,§€@

(4) From every bundle, except Bunq,( I:S (1):| s B)for 0<t<lI1 Be (Céxz’ there exists a

. *

path to the bundle Bunw(l @ et |:§a* §di| ) with0 <0 <m, t*eC*anda,d > 0.

(5) All other paths that are not mentioned in (1), (2), (3), (4) are noted in Figs.2 and 3.
(Dimensions of bundles are indicated on the right.)

Remark 3.5 We prove (A B) — (A, B) by finding (A(s) B(s)) € Bun(A, B), c(s) €. st
P(s) € GL»(C) such that c(s)(P(s))*A(s)P(s) — A and (P(s))T B(s)P(s) — B as
s — 0. It often includes tedious calculations and intriguing estimates; but since these do
not seem to be of any special interest we omit them and thus shorten the proof significantly.
When (A B) + (A, B), then a lower bound for the distance from (A B) to Buny (A, B)
will be provided as part of the proof of Theorem 3.4. Note that if dimBungy (A, B) <
dunOrbq,(A B) then it implies (A B) 74> (A B) ([4, Propositions 2.8.13,2.8.14]), but
it gives no estimate on the distance from (A B) to Buny (A, B).

The following result is an immediate consequence of Theorem 3.4 (see [23, Corollary
3.8] for an analogous result in the case of the closure graph for orbits).

Corollary 3.6 Let M be a compact real 4-manifold embedded C*-smoothly in a complex
3-manifold X and let py, ..., px € M be precisely (all) its complex points with the cor-
responding normal forms up to quadratic terms (A1, By), ..., (A, By) € C™" x (C'S'X".
Assume that M is a deformation of M obtained by a smooth isotopy of M, and let p € M’
be a complex point with the corresponding quadratic normal form (A, B). If the iso-
topy is sufficiently C>-small then p is arbitrarily close to some Djor Jo € {1,...,k}, and
(Ajy, Bjy) — (A, B) is a path in the closure graph for bundles for the action (2.1).

Remark 3.7 The lower bounds for the distances from normal forms to other bundles give the
estimate how small the isotopy in the corollary needs to be.
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11

10

10

0 b

[8 (1)]’[{1}; l17 2 (1)'[;, ol 12
TN RN~

[2 815 6l - 10

[8 o)ael 10

.],02

[8 (1)]'02 02,12

19-1,0,

Fig. 2 Paths not mentioned in Theorem 3.4 (1), (2), 3), (4); a,b,d > 0,¢* € C*, 7 € (0,1),6 € (0, 7),
¢ €10,7)
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12

11

10

1®-1,0, 5
Fig.3 Paths not mentioned in Theorem 3.4 (1), (2), (3), (4);a,b,d >0, € C,7 € (0,1),6 € (0, 7)

4 Proof of Lemmas 3.1 and 3.2

In this section we prove Lemma 3.1 and Lemma 3.2. We start with a technical lemma which
is an adaptation of [23, Lemma 4.1] to the case of bundles.

Lemma 4.1 Suppose P € GL2(C), A, A,E, B, B, F € C>*2 ¢ e §!.

| det A| ~
MRy e 1) det4 #0

(1) IfcP*AP = A+ E, |E| < {1 , it then follows that

detA =0
- uEu<4||Xu+z> det A 0
|Vdet A| |det P| = |[Vdet A| +7, |r| <] ldetd] a
IEI@IA] +2), det A=0
4.1)
Moreover; if A, Ac GL>(C) and A = arg(ggi) we have
iA - 7 8[| A +4
c=(=Dfe? +g, =D +3 kel Igli%z”#'
(4.2)

T x5 - |det B
(2) IfP'"BP=B+F,|F| < m1n{4”B”+2, 1}, then

_ LF I 1B]+2) det B £0
vdetB det P =vdetB+r, |r|=< /1 det B| .
IFI@IB]+2), det B=0
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(3) Letfurther A, A € GLy(C), | E| < min{1, [|A~1]|71, ;lfjt‘lﬂ}a nd cP*AP = A+ E,
PTBP = B + F. It then implies that

|det A det B| = | det B det A| +r,
Ir < max{[|E|, [|FI[} 4L (4 max{|| A, | B]l, | det Al | det BJ} +2)°.

[det A|
Moreover, if in addition B, B are nonsingular and |det A| = |det ,Z| = ||Z|| =
| det B| det B
IEILNFI = sma sz = a8 (gig), then we have
— (—Dlei® 8I1B|I+4
detP =(=1)¢'2 +p, [€Z, |P|S||F||m-

Proof For &, h € C, ¢ e(C*wehave%‘(_l = 1+?

144 [Im?% |
Y¥oe (=73, )and|s1n1/f|_|1 (|1+[\) < |lm?

11+ ?wﬁ with |g| < 1, hence

2|h|
< 7] . Thus

g=c+h |nl < #£0 implies arg(®) —arg() =¥ € (-3, %), Isiny] =2L|.

(4.3)

Estimating the absolute values of the entries of the matrices by the max norm of the
matrices, and by slightly simplifying, we obtain that for any X, D € C>*%:

|| det(X + D)| — |det X|| < |det(X + D) —det X| < | D||(4IIX]| +2IDI)). (4.4
Furthermore, we apply the determinant to cP*AP = A+E, 0'BQ = B+ Fto get
c?|det P det A = det(A + E),  (det Q)>det B = det(B + F). (4.5)
Assuming || E|, || F]| < 1 and using (4.4) for X = A, D = Eand X = B, D = F gives

|det Al |det P|” = |det Al + p,  |p| < [E[@|A]l +2),
det B(det Q)2 =detB+q, lgql < |EII4B| +2), (4.6)

respectively. Equations (4.6) immediately imply statements (4.1) for det A = 0 and (2) for
det B = 0. Next, we observe another simple fact. If |s| < 1 then there exists s’ so that

Vits=(=D'(0+s), 1€Z Reis)=—1, |s'| <|s|. “.7)
. |detA| \detBI
We apply (4.7) to (4.6) with || E|| < -—=—= A2 and || F|| < B2 to obtain (4.1) for detA =0

and (2) for det B # 0.
The right-hand side of (4.4) for X nonsingular and D with ||D|| < 1 leads to

det(X+D) IDI41X+2)
detX+D) _ 1’ < IDIGIX|+2) (4.8)

By assuming || E|| < ldetAl 4nd applying (4.3) to (4.8) for X = K, D = E we obtain

8llA[+4
_ det(A+E) T : IENBIA]+4)
Y = arg (*M ) € (—5, 7), [siny| < laetAl 4.9)
From (4.5) we get B B
2 2 _ det(A+E) _ det(A+E) det A
cldet P|” = =0 = T 07 deca (4.10)
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and it follows that ¢ = (—1)fe i35 with k € Z, A= arg(gzif) Using the identity

¢! iy _ 1+ 2i(sin lp)e ¥ and the inequality 2| sin 5 | < |¢| < |siny| fory € (— 2),We
deduce (4.2).

We multiply (4.5) for P = Q by det B and det A. By comparing the moduli of the
expressions, and assuming || E| < ||A 1= (hence det(A + E) # 0), we get

e d d
|detB||detA|=|detA|%. 4.11)

Set dx p := |det(X + D)| — |det(X)| and apply (4.4) for X = Z, D = Fand X = E,
D =F:

!\detXHdel(E+F)\ ~|det Bl| = ’dg,F\de‘X\—d;,EmetEw _ Ldet BILEN (41 A1 +2) + det A1) 71 (41B1+2)
| det(A+E)| dy g+ det(A)] - \det;\f\\El\(4\|l’4~\|+2)

. . ~_1—1 |detA] e .
provided that || E|| < min {||A [, m}. We combine it with (4.11):

~ ~ _ |det A|| det(B+F)| _ ~
||detAdetB|—|dethetA||_|detA|W | det B||

< :detﬁl max{|| E|, | F|}4 max {| det A], | det B|} (4 max{|| A, | B} +2). (4.12)

Further, let B, B be nonsingular and |det A| = |det A| = |A| = 1, |F|| < {Jlfgt”i'z, 1},

= |det B| — | det B|. Applying (4.8) for X = B, D = F and (4.5) for Q = P yields

2 _ det(B+F) detB _ T /
et P)" = =% B = ¢ (1- |detBH— )+,
_ det B 4] B||+2
I =arg (gg) €1 < IFI 05
Provided that || E||, || F|| < | det B| we use (4.12) to assure |[r| < Ldet B| (hence
— 4(4max({l,| B||.det B}+2)2 - 4
11— et By B|+r — | < 3) By applying (4.7) we complete the proof of (3). O

We proceed with a simple proof of Lemma 3.1.

Proof of Lemma 3.1 The closure graph for 2 x 2 symmetric matrices is obtained by an easy
and straightforward calculation.

We write the matrix equation PT BP = F + B for B = |:2 2i| componentwise:

2bux +du* =7 + €
bvx + buy + duv = b+ €
2byv + dv? = d + €. (4.13)

By adding and subtracting b det P = b(vx — uy) from the second equation yields
2bvx +duv =bdetP+b+e, 2buy+duv=>b+e —bdet P. (4.14)

We multiply the first (the second) equation of (4.14) by u (by v) and compare it with the first
(the last) equation of (4.13), multiplied by v (by u):

u(bdetP +b+e) =v(@+e), v(—bdetP +b+e)=u(d+ es). (4.15)
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For b = 0 we obtain (D4). Since det B = —b?* we deduce from Lemma 4.1 (2) that

< IFIGIBI+2) det B 20
bdetP =i(~D)'VdetB+r, 1€Z Ir|<| ldeB| PRV e
IFI@IBIl +2), det B=0

Together with (4.14) for d = 0 and (4.15) this gives (D3) and (D1).

Next, the equation PTAP = F + B for B = |:Z gi| yields

ax?® +2bux = d + €
axy + bvx + buy = b+ €
ay® 4+ 2byv = d + «. 4.17)
We add and subtract b det P = b(vx — uy) from the second equation of (4.17):
2bvx +axy =bdet P+b+ey,  2buy+axy =Db+ e — bdet P.

By multiplying the first (the second) equation by y (by x) and comparing it with the last (the
first) equation of (4.17), multiplied by x (by y), gives

y(bdetP +b+e) =x(d +es), x(—bdetP+b+e)=y@+e).  (4.18)

For b = 0 we get (D5), while using (4.16) and (4.18) we obtain (D2). O

Proofof Lemma 3.2 For actions ¥, W (see (2.1) and (3.1)), it follows that (A’, B)
Orby (A, 0) if and only if B” = 0 and A" € Orby,(A). Hence dim(Orby, (A)) =
dim(Orbq, (A, 0)), where dimensions of orbits of W are obtained from Lemma 2.1.

To prove A — A it suffices to find c(s) € SY, P(s) € GL2(C), A(s) € Bun(A) so that

m

c(s)(P(s)*A(s)P(s) — A—0Oass — 0. 4.19)

.. 01 01]1]01 01 i io
Trivially O, — 160, |:O 0j| — |:r 0], |:1 0i| — |:t 0j| forO <7 < land 1®e'” — 1he

ford e {0, },0 < 6 < m.Itis not too difficult to show 1 0 — 1A, 10 — [(r) é] for

0<t<1,19-1— |:(l)ll:|and|:(l)lli|—> [S(l)]for0<r<1,WetakeP(s)=1®s,

10 -1l —2i .
P(s)=¢]1?[1 s],P@):%[SS S_S]andp(s)=2¢ﬁ[_sis 2’]wnhr(s)=1—s

in (4.19), respectively; in all cases c(s) = 1. Finally, A(s) = 1 ® ¢/ with cos(%$?) = §,
. . —1 .
c(s) =1, P(s) = \/E[(l) _ljsfl] proves |:? ll:| 1@ for0<6 < 1.

It is left to find necessary conditions f(g the existence of these paths, i.e. given Z, E, we
must find out how ¢, P, A depend on E, A, if the following is satisfied:

cP*AP=A+E, ceS' PeGLyC). (4.20)

On the other hand, if (4.20) fails for every sufficiently small E, it gives A f) A. In such
cases the~ lower estimates for || E|| will be provided. These easily follow for A # 0, A =0
and det A # 0, det A = 0 (Lemma 4.1 (1)).
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Throughout the rest of the proof we denote

A R
Y o €3 €4 uv

01
Casel. A = [1 i] (Bunyg, (A) = Orby, (4))

This case coincides with [23, Lemma 3.4. Case I]; see (C6), (C8).

Casell. A=1 X, |1| €{1,0}

The equation (4.20) multiplied by ¢!

|)c|2 + )\|u|2 —cla= C_lel, Xy + Auv — C_I,B = c_lez,

yx + Avu — c_ly = C_1€3, |y|2 + )\|v|2 —c o= C_1€4. (4.22)

, written componentwise and rearranged is:

Subtracting the second complex-conjugated equation (and multiplied by 1) from the third
equation (and multiplied by A) for B, y € R gives

2im(Mvu —c 'y +c g =l — e,
—2Am)yx — ¢ Ry + e =R — e hie. 4.23)

@ r=e? 0<o0=<nm
From (4.23) for 8 = y = 0, Im(A) = sin 6 we get

|sin®)vu| < |E|l,  |Gsin®)xy| < |IE]. (4.24)

We take the (real) imaginary parts of the (last) first equation of (4.22) for A = et

sin®)ul> =Im(c o +cle), x>+ (cosO)|ul> = Re(c o+ ¢ Lep),
sin®)|v> =Imc "o+ ctes),  |y1? + (cosO)|v]> = Re(c o + ¢ ley).
(4.25)

If « = 0 we further have:
(sin®)|ul* < [E|l, Gin0)|x|* < | E|(sin6 + | cos b)),

sin®)|v]* —Im(c'w)| < IE|l, |Gsin®)|y[* —Re(c ™' w)| < | E[I(sin6 + | cosb)).
(4.26)

01

TO|
If 1 <7 < 1, then by applying the triangle inequality to the first equation of (4.23)
for 8 =1,y = 7, Im(X) = sin6 and using the first estimates of (4.26) for =0
we obtain 2| E|| > 2(sin)|uv| > 1 — T — 2||E||, which fails for | E|| < ITTT.

(i) A= (1); , we{0,i})

By applying the triangle inequality to the second equation of (4.22), and using (4.26)

with |¢~'w| < 1 leads to the inequality:

(sin0)(1 — |E|)) < sin6[xy + 2uv| < VIENA+ [ED) + 2 EI1 + 2] E).

If |E| < % then we deduce sin® < 3+/[[E[ and cos26 > 1 — 9| E|. If 6 is close
to 0 then the second and the last equation of (4.25) fora = 0, |c~'w| < 1 imply that

() A= 0<7<l
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lx|%, |u)? < \/% and |y|?, [v]? < Jﬂﬂ%,respectively For || E|| so small that

1 > 2MIEIAHIED % + || E|l, the second equation of (4.22) for B = 1 fails. Next, when

@ is close to 7, we deduce that 1;210959 = cot g isclosetoOand — 6 € (0, % )

hence

|cos 2| = |sm( | <sin(r — ) =sind, |cos (% )| = |sin (”49)| <siné,
. coszsm(ﬂ < sin6 . om0 coszg <

14+ cos = Wl S i sinf, 1 — sin 2 = Tan? = sin 6. 4.27)

We have ¢~ = —i(—1)kel? +3, |g| < 12| E|| with | E| < & (Lemma 4.1 (4.2)),
thus [Re(c™'i)| = | cos § +ig| < 3J/TET+ 12||E| (since sin@ < 3/[E]). Using
the second (fourth) equation of (4.25) and (4.26) for « = 0, w € {0, i} with (4.27)
further implies
x> = [ul*[ = I1E] < [Ix1* = ul* + (1 4 cos ) [u]?|
= |Ix* + (cosO)|ul*| < || E].

[Iy? = ol = PR < {1y = l? + (1 + cos O)[v | = [Iy[* + (cos D)[v]’|
<3JVIE|+ 13| E]|. (4.28)
Using the second equation of (4.22) and (4.26), (4.27) (fora = 0, w € {0, i}) we

get:

4] E||l > [Ty + €T + i (— kel 5| =
= |Gy —uv— (-1 )+2(cos 5) ei%ﬁv+2(—1)k (cos 0%) e"e#|
> IYy —uv — (—1)k| =2VIENIA+IEID) +6VIE]. (4.29)

For @ = i we have Im(c~'i) = sin% +Im(ig), |g| < 12| E||, therefore (4.26)
yields

BIE| = |sin®)[v]* — (=1* = (=DF (sin§ — 1) | = [Gin®)|v* — (=DF| = 3/ E].

Together with (4.28) and (4.29) it proves (C2). Note that the third equation of (4.25)
for 0 = 7, w = i fails for || E|| < ]1—3
(iii) A=a®0,a €{0,1}
If 0 € {0, }, then (4.22) for ¢ = o yields (C10).
By (4.24) and the second equation of (4.22) we have

Xy + (cosO)uv| < 2| E]||. (4.30)

If0 < 6 < 7, then (4.22), (4.24), (430)foro =B =y =0,A = e'? give (C1).
(v) A=1®e?,0<8 <7 )

By Lemma 4.1 (4.2) we have c = (—1)"e’l# + 8. [gl < 12||E||, assuming that

IE| < 11—2 Thus the first and the last equation of (4.22) fora = 1, A = e'? are of

the form:

. 60—
Ix|? + e ful* = (—1)kelT + (g +c e,

Iy]? + v = (- 1)’” 1 (@ 4+ cley). 4.31)
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We take the imaginary parts of (4.31) and apply the triangle inequality:

llul? sin & — (—1)¥ sin <T> Im(z) + Im(e)| < 1311 E],

|[v]?sin@ — (—1)¥ sin (%) m(ge’® + ' ey)| < 131E]. (4.32)
In particular we have

u|?sin6 > ’sm (929)’ —3IE|l, |v[*sin6 > |sm(939) | — 13| E].

By multiplying these inequalities and using the triangle inequality we deduce

(sm 9)|uv| > | sin (9 9) sin (9+0) |

— 13 E||(| sin (%) | + | sin (5%9) ) — 169 E|1%.

By combining it with (4.24) and rearranging the terms we obtain

1 cosd — cos 6] = | sin (929) sin (9;9) | < 17011 E|2 + 26| E|| < 196]|E|.
(4.33)

If 0 € {0, 7} with  # 6 then (4.33) fails for | E|| < ‘*'3;‘;55'.

We take the real parts in the first equation of (4.31), multiply them by sin 6, then
rearrange the terms and apply (4.32):

(sind) x> — (~1)* cos (T2 |
= | —sinf cos O|ul? + (sinO)Re(g + ¢!
(sin@)[1x2 — (=1)¥| — (sin )] cos (5%9) — 1] < [sin (9%5) | + 131 E[l + 13| E].

(4.34)
Next, let 0 < 6, 0 <. Thus—e( )and9+§€( 9+”)C(0 ) with
sm(9+9) > min{sin & 5, COS 2} We apply (4 33) and make a trivial estimate:
196|| E | 06 6—6 (=
m |Sln(2)|>|Sln( )|— |COS(2)—1|2 (435)

By combining (4.34) and (4.35) it is straightforward to get a constant C > 0 so that

: 2 k 196 E|| 196] E|| 2
(sm9)||x| - =D ’ = min{sin 6,cos 6} + 2(min{sin(i,cos(ﬁ}) +26|E| = CIEI.
(4.36)

We multiply the second equation of (4.31) by e'?. Then we take the imaginary
parts or only rearrange the terms; in both cases we also use (4.35):

(sin®)|y[* < | sin (H) |+ 14|El < C'|E|, C':= ngh + 14,
[v)? = (=D] < Iéf Bt P+ 1ge? el
196 E|| 2

52(*~—vmin{sin9,ws0}) + 13| E| + yI% 4.37)

From the first estimate in (4.32) we similarly obtain (sin 0)|u|?> < C’|| E||. If sin0 <
max{~/C, ~/C'}/|E]. then (4.33) yields a contradiction for sufficiently small || E||.
Otherwise [u|> < /C'TET and (4.36), (4.37) imply ||x|> — (-D¥| < JCIET,
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ly|> < /CTEJ, respectively. The last estimate in (4.37) concludes the proof of
(C7). B

Finally, suppose 0 < 6 < andf € {0, }; hence % € (—%, %). We apply
(4.33) and use (4.32) for & = 0 or & = 7 to deduce

14\/||E||2|sin<§%6>|z{sin(#)L u|?sin 6, [v[?sin6 < 13| E|| + 14/ E].

(4.38)
Assume now that /|| E|| < ‘2/—85. If6 = 0, then | cos %| > %, therefore 1 — cos 6 =
(sin 9)|tang| < /2siné. Similarly, for &6 = m we have |sing| > @ and so

14 cosf = (sinH)| cot %l < +/2sin6. We take the real parts of the first equation

(4.31) for o = ¢ with 6 € {0, 7}, rearrange the terms, and apply the triangle
inequality:

BIE| = [|x]? + olul — (=DF + (=D (1 — cos (%‘7» — |uP(o — cos )|
> [Ix? + o lul? — (=D!| = 392 Ell - V2(3| E]l + 14/ E]D.  (439)
The same proof applies if we replace x, u, (—1)¥ by y, v, o (—1)*, respectively. The
second equation (4.22) for 8 =0, A = ¢ and (4.24) finally yield
IE]| > |fy + emﬁv| = |¥y +ouv — (6 —cosO)uv + i(sin 9)ﬁv|
> %y +omv| — (1 +V2) (13| E|l + 14/ EJ).
Thus (C11) follows.

(b) A =0 (hencedet A =0.)
IfA=a®O0fora € {0, 1}, then (C12) follows from (4.22) for ® = A = 0. Applying
(4.3) for ||E|| < % to the first equation of (4.22) for « = 1, A = 0 (multiplied by c),
01
0 O]’ then (4.22)

for A = @ = » = 0 yields |x|2, |y|* < | E|, thus (4.22) fails for A = y = O, || E| < 3.

yields ¢ = /¥ = 1 + 2i(sin %)e"% with |sin%| <2IE|.IfA = [

01

CaseIll. A = [r 0

j|,0§r§1

From (4.20) multiplied by ¢! we obtain

fu—}—rﬁx—c‘la:c_]el, Yv—i—tﬁy—c_lﬁ:c_lez,

TUX +§u—c_1y =c e, yv—i—rﬁy—c_lw:c_lm. (4.40)
Rearranging the terms of the first and the last equation immediately yields
(1 +DRe(@u) +i(l — DImGEu) = ¢ 'a+c ey,
(1 +)Re(Gv) +i(1 — ImGV) = ¢ o+ ¢ ey, (4.41)

while multiplying the third (second) complex-conjugated equation with t, subtracting it from
the second (third) equation, and rearranging the terms, give

(I-thiv=c'Bt+e)-tc F+a) = -1 P+ a-1 ')

A=u=cy+e)—tc ' Bra) ="y —wc B+ (e —1c o)
(4.42)
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For the existence of paths to |:(1) (1)] (x-congruent to 1 @ —1) see Case Il
Using (4.40) we obtain that
A+Dxul zla+el = A -xul, A+l =0+l =0 -1)yv]. (4.43)
By multiplying the left-hand and the right-hand sides of these inequalities we get
(1 + O [Fuyv] = |aw| - (la| + ) | E] — IE], (4.44)
lew| + (le] + [ IE] + 1 E? = (1 = 0)*[Fuyvl. (4.45)

(a) A= 2; ,either0 <y <l,w=0ory =1, 0w=1
Equations (4.42) for § = 1,0 <y < 1 imply
(=) x| = [ty = 1| = @+ DIE|, (I —t)ayl > |y — 1| — A+ D] E]|.
By combining these inequalities and making some trivial estimates we deduce
(1= ?yuxv| = [ty = Ully —t| = A+ O (ry + L +y + 1) | El = A+ D?|E*.
Together with (4.45) for « = 0 and using || E|| > IE|? we get
I+ 0>+ [DIE| = [ty =1y — 1| = 1+ (v + DIEI = (1L + 0)*| E],
A+0°B+lol+Y)IEl =ty — 1y =t = 1 —y|ly — 1. (4.46)
If0 <y < 1 (if y = 1) then the right-hand (the left-hand) side of (4.46) implies

(l+r)
|y—r|f{ e,y h @47)

(1 +T)«/(4+ lwDIEI, y =1

When either t = 0,y > Oort =1, y < 1 (and | E| is small enough), then (4.47)
. 2 _

fails. If0 <y < land |E| < m (hence 1 —7 > [1—y|—|y —t| = 51),
then (4.43) for & = 0 (for w = 0) yields [¥u| < %llEll (and [yv| < %HEH). Next,
(4.42), (447 for p =1,y =0, imply |yu| < C||E| and |xv —c¢~'| < C| E|| for some
constant C > 0 (see (C9) forT =0,0 <7 < 1).
By Lemma 4.1 (4.2)for 1 > 7 > 0, A= |:)(/) 1] withl >y >0and |E| < lz <+

wehave c™! = (=) + g, ke Z, |g| < 7||E||, thus (4.42) for 8 = 1 (and ¥ € R)

gives
(1—xv = (DA —1p) — gty +2) + (¢ a2 — 0 &)
A=tHyu=(-D'y -1 +yg—18+(c '&s -1 '&).
We further obtain
(A —)yul < (v =)+ (ry + DRIE| + (1 + D E],
(1= t)[Fv = (=D < 7@y — 1) + B E| + (e + DIE. (4.48)

Using (4.47) for 0 < y < 1 we deduce that the left-hand sides of (4.48) are bounded
by D| E|, where D := 4(4““)‘) + 12(y+1) + 2. Thus either 1 — 2 < +/DJ/JE| and

N—yl<lt—yl+[1-1| =< (1”) (2+|“’|)”E”+M
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| < VDJVIET (see (C9) for 0 <
79,7 < 1). The second equation of (4.40) with g = 1, ¢! = (=¥ + 3, k € Z,
lgl < 12| E| gives

[fv+ay — (=DF| — (1 = Dlay| < [xv + tay — (=DF| < 12| E| + |E]. (4.49)

From (4.40), (4.41), (4.47), (4.48), (4.49) fora = 0, w € {0, i}, y = 1 we deduce (C4).
fw=i,t=1and |E| < 1—13, then the second equality of (4.41) fails.

(b) A=a®w
From (4.42) for B = y = 0 it follows that

A =Hxv <A+ DIElN, (1 —)ayl < A+DIE], (1 —1)*xviy| < |E|*.
(4.50)

Next, (4.50) yields either (1 — 7)|xu| < ||[E| or (1 — 7)|yv| < ||E|| ;

By Lemma 4.1 (4.2) for0 < 7 < 1, A=1 &) e’g, we have ¢™" = (— l)k + g

k € Z, |gl < 12| E|. We take the imaginary parts of (4.41) witha = 1, 0 = e")

0 < t < 1 to deduce | cos %I < 14| E||, which fails for 0 < § < 7 and small IE].

By combining (4.50) with (4.44) for |¢| = |w| = 1 and using || E|| < %, we get

10-0? <1 -0 =2|E| - [E|») < (1 — ) xvay| < (1 + )| E|*

Thus 1 —7 < 4| E].(In particular, we obtain a contradiction fort = 0, |«| = |w| = 1.)
When8 =7 (ie. A= 1@ —1, ¢! = (=D 43,k € Z, |g| < 12||E|), we use
(4.40),(441) for B =0, 0 = —w = 1to get (1 — t)Im(xu), (1 — v)Im(xu) < 13| E||
and

[Xv +uy| =2|E|| < |[xv+uyl— (1 —0uyl < |xv+tuy| < | E],

|2Re(xu) — (—D*H| = 2| (1 + D)Re(@u) — (D! + (=DFT 5] < 30 EJ),

[2Re(3v) — (—1¥| = 2 |(1 + DRe(v) — (= DF + (=DFIFE| <301 E|. (4.51)
It gives (CS5). The first line of (4.51) is valid also for « € {0,1}, B = @ = 0 (see
(4.50)). If « = 1, then (4.41) for. T = 1 yields 2cRe(fu) = 1+ €;1. By applying (4.3)
for | E|l < 1 we getc =(—D¥eV ke Z, ¢ € (=%, %), |siny| < 2| E|l. Moreover,
’c — (—l)kl =2|sin 5 | < 4| E||. To conclude, (4.41), (4 43), (4.50) provides (C3).

This completes the proof of the lemma. m}

5 Proof of Theorem 3.4

To prove the nonexistence of some paths in the closure graph for bundles under (2.1), the
proof of [23, Theorem 3.6] (the closure graph for orbits) applies mutatis mutandis; we shall
not rewrite the proof in these cases, instead we refer to [23] for the proof. However, we
reprove the existence of paths for bundles consisting of one orbit, since short and plausible
arguments can be given (see e.g. (5.2)).

Proof of Theorem 3.4 Given normal forms (X E) (A, B) from Lemma 2.1 the existence of
a path (A B) — (A B) in the closure graph for bundles for the action (2.1) immediately
implies A— A, B — B. When this is not fulﬁlled then (A B) /> (A, B) and we already
have a lower estimate on the distance from (A, B) to the bundle of (A, B) (see Lemmas 3.1,
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3.2). Further, (A, 0,) — (A, 0») (or (02, B) — (05, B))ifand only if A — A (or B — B),
and trivially (A, B) — (A, B) for any A, B.
From now on suppose A—> A B—> B # 0 with (A B) ¢ Buny (A, B) and let
cP*AP=A+E, PTBP=B+F, ceS' PeGLyC), E,FeC>
(5.1)
Due to Lemmas 3.2 and 4.1 (1) the firstequation of (5.1) yields restrictions on P, ¢, A imposed
by ||E|l, A. The trick of the proof is to use these to analyse the second equation of (5.1).
We now work with equations with larger set of parameters than in [23, Theorem 3.6], and
it usually makes the analysis more involved. If it eventually leads to an inequality that fails
for any sufficiently small £ and F, it will prove (A, B) /4 (A, B); itis then straightforward
toNesiimate how small E, F should be, thus we omit this calculation. Otherwise, to prove
(A, B) — (A, B), we find c(s) € S!, P(s) € GL2(C), (A(s), B(s)) € Bun(A, B) such
that
c(s)(P(5))"A(s)P(s) — A =: E(s) =00, (P(s))" Bs)P(s) — B =: F(s) =00,
(5.2)

When we can arrange the parameter s so that A(s) — Aand B (s) —> B, this is trivial.
Throughout the proof we denote § = v/|| E|| for v > 0 (Lemma 3.2 (2)), € = || F]|,

(e A i el B
where sometimes polar coordinates for x, y, u, v in P might be preferred:
x = xle?, y=1yle’, u=lule, v=vle*, ¢, 0.0KkcR. (5.3)
The second matrix equation of (5.1) can thus be written componentwise as:
ax® 4+ 2bux + du®> =d + €,
axy + buy + bvx + duv = b+ €,
ay® +2bvy +dv? = d + €. (5.4)

For the sake of simplicity some estimates in the proof are crude, and it is always assumed
€,6 < l. Since we shall often apply Lemma 4.1, we take for granted that (é)2 =

\delA\ " \detBl
IlEI < {1 n{gzjpa 1 detA#0 IFl < min{g =0 1 det B #0 i

detA=0" - |1 det B =0
A, A are nonsingular we also assume ||E| < A=, while for B, B nonsingular with

_ _ Tl T | det B
1 =|det A| = |det A| = ||A| itis assumed | E|, || F| < T@max (LB BT

__We split our analysis into several cases (see Lemma 2.1 for normal forms). The notation
(A, B) --» (A, B) is used when the existence of a path is yet to be considered.

Casel. (1®¢? B)-—»(1@e? B).0<0<7,0<0<n

(a) 0 < 9. 0 <
From Lemma 3.2 (2) for (C7) we get

2 02 2
Iy > <8, |f® -

Ix[* — 1] < 8. (5.5)

)
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(i) B = [Z g],b,azo
Usmg (5.5) and Lemma 3.1 (D2) we get a contradiction for small ¢, and
d * 0 Next, Lemma 4.1 (3) for d = 0 gives b? = b]2 + 55, |85| <
max{e, & (4max{1 b2, b)) + 2) It fails for b = 0, 5 # 0 and e, F <

b2(4max{1, b2, |bl} +2)~ 2 while the case b = b = 0 is trivial. For a = 0,
d # 0 then the first equation of (5.4) for a = d = 0 and (5.5) yields an inequality
that fails for €, § small enough:

ld| = |e1 — 2bux| < € 4+ 2(b + 85)y/5(1 + ).

bd
Due to a symmetry we deal with this case similarly as with Case I (a) (i).
(iii)) B=a®d, a,d>0
From (5.4) for b = 0 we obtain

(i) B:[Ob],bzo,d;«éo

ax®> +du* =d+ e,
axy +duv = 5—!— €,
ay* + dv? =d + . (5.6)

By multiplying the first and the last equation of (5.6) by d¢ = % and 85 =
respectively, and by slightly simplifying them, we get

axy + duvdsde = 8¢(@ + €1),  axydsde + duv = 85(d + €4).
Adding these two equations and using the second equation of (5.6) we deduce
(b +€2)(1 +8586) = 85(d + €4) + 86(@ + €1),
which fails for 5 # 0 and sufficiently small €, § (by (5.5) we have |J5], |86 < 1‘%5 ).

(b) €07} _
Seto =¢? € {1, —1}. Lemma 3.2 (C11) yields

X2 +olul? = (=D + 81, Ty +ouv=258, |y*+olv)?=o(=D"+b,

(5.7)
where |81, [82], [84] < 8. Next, for v # 0, (Jx| — |u|)2 < |Ix* = ul?| = 1+ 8] we
deduce
Xy + ouv| > |[Xy| — [¥v| + [Xv] — [wv]| = |v]|x| — [ul| — x|y = |v]]

f|2—|u|2| ] bl o R B Wl IR 5 = 9P
- M(IXI+IMI) Y+l = 2\14\+~/1+|5/|‘ Tl [v] :
Tl [v]
(5.8)
. ab
(i) B = bd ,a,d,b>0,a+d #0

Let first B = a @ d. Using the notation (5.3) the following calculation is trivial:
ax’> +du® = aez'-"’(lxl2 + a|u|2) — uz(aaezi(¢_") —d), o e{-1,1},
ay? +dv* = ae2i¢(|y|2 + a|v|2) — v (0ae? @) — g,
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ay’ +dv* = dcrez“‘(ly|2 + cr|v|2) — Y (ode? =P — g). (5.9)
Furthermore, one easily writes:
axy +duv = aezi‘p(fy + ouv) — uv(oaezi(¢_") —d), oe{-—1,1},
axy + duv = ae*® (xy + ouv) — uv(ocae® ¥ — q),
axy + duv = do e** (xy + ouv) — xy(doe®«=9 — g). (5.10)
Rearranging the terms in (5.9), (5.10) and using (5.6), (5.7) yields for o € {—1, 1}:
u(cae® @™ —d) = ae¥?(=DF +8) —d — €,
uv(cae @M — gy = ae?98, — b — e,
V2 (0ae® @ — ) = ae®? (o (—1)* +84) — d — ea,
uv(ocae® ) — gy = ae¥95, — b — €,
V2 (ode? P —g) = doe® (o (—1)F +84) — d — es,
xy(doe® = —g) =dodr — b — €.

By dividing the equations in each line we get

u _ ad(=)k4s)—a—e _ ae¥¥5,—b—e> x _ dodr—b—e)
v ae?98,—b—e) T aeliv(o(—1)k+84)—d—ey’ Y T doec(o(—1)k4+84)—d—eq
(5.11)
~ 0 b
If B = 50 forb > 0 (hence 0 = —1,d > a > 0), then Lemma 4.1 (3)

implies a2 < ad = b* + €, |¢/] < max{e (4max{l bl, b2} + 2) From the
first equation of (5.11) for d=d= = 0,0 =1 we now tham a Cgltradlction for
small €, 8. Similarly, it follows from Lemma 4.1 (3) for B =4d @& d and B = al;
that a? = dd + €/, |€/| < max{e, %}(4max{1, d|, |da|} +2)%. 1fd > a@ > 0,
then the first equation of (5.11) (with 0 € {—1, 1}, b = 0) fails as well. Next,
when @ = 0 we have a> = €. Hence (5.11) for o € {—1,1}, @ = b = 0 yields

u X et/e's . . .
1511 y| < Teve (s Further, the third equation of (5.9) with (5.6), (5.7) for

a=d= «/?,E:Ogives e < m We apply this and (5.7) to (5.8) to

deduce a contradiction for small €, § and d # 0.

Take P(s) = A | VA VA gy | 0 Nadrs |
Jd+od | ia U«/j Vad+sd—oa+s
i : ~ o [0D
Le? - oin(52) tosee (1@, a@d) — (1@, bd])’ and P(s) =
1 iva ovd B(s) = d—ocd+s~Nad +s (s) = 0. é® = o 1o
Vavoud | —ivd Va | vad + s 0o | ’
~ o lab
show(l@a,a@[i}%(1@6’9,[b0}),0<9<71.

(ii) B:[gg],b>0

From (5.4) for a = d = 0 we obtain

2bux =d + €,
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buy + bvx = Z+ €,
2bvy = d + €4. (5.12)

It suffices to take 0 < @ < d,d > 0, b = 0. By Lemma 4.1 (3) and (4.7) we have
b = ~dd+385 > 0,|85] < max{e, %}(4max{1, Zlv, 5{7}+2)2.Thus (5.12) and (5.7)
give:

2o _die 4145, (5.13)

2 d+e€ 2
<
+ 1468, (ul”,|x]” < 27 55)

2
[v|7, [y]” < 2(V7d+8)

Using Lemma 3.1 (D1), (D2) for det B =dd we get

u(@d + eg) = v(— i(=1)'Vad + €}) . el < COmald DD 77 £ 0
x(d +es) = y(i(=D'Vad + &) T eeman@ant, ad =0
(5.14)
By further applying the first and the third equality of (5.7) we deduce
Nk _ |(=D!Vad+ey? | o |=(=D!Vad+e)?| o
(D" + 681 =[x + olul? W' Vi ‘f“TWM
—(—1 IJ:E+ 112
_ %(a(—l)k +84) + &' |v]? (5.15)

with |8’| < C max{e, §}, where C > 0 is a constant that can be computed easiNIy.
By combining (5.15) and (5.13) we obtain a contradiction for 0 < @ < d and

sufficiently small €, 8. Next, let @ = 0, d > 0. From (5.14) it follows 51 < \;\2‘5

5 < ‘[‘;2 _ (y = 0 or v = 0 would contradict (5.12) for || > ). By applying this
with (5.7) and (5.15) (hence |v] is large) to (5.8), we obtain a contradiction for small
€, 6.
We take P(s) = [1 ’] B(s) = (d +s) [0 1} and c(s) = 1, ¢ — 1in (5.2)
V2|1 —i 10
to prove (I, Zi[z) - (1o e, |:0 b
b0

= —1 leads to

}),b>0,052,0<0 < 7. Using (5.7) for

§ =[xy —wv| = [IxPPI12 = ulP121] = [1x> = |ul?| = [P (1= 131) = lul* (1= 1 2).
(5.16)
From (5.14) we get that |§|, |5| are close to 1, and (5.13) implies that lu|?, |x|? are

bounded. Thus the last two terms on the right-hand side of (5.16) are small, while the

first one is close to 1 (see (5.7) for 0 = —1). For small €, § we get a contradiction.
01] [ab 017 [ab], ~ ~
Case IL ([ ] [b d]) --» ([T O]’[b d]), b,b >0, (T,7) € ([0,1) x (0,1)) U
{(0, 0)}

By Lemma 3.2 (2) for (C9) we have
lxul, [yul, lvy| <8, |lvx| — 1| < 6. (5.17)

It yields 8 = £ = X with [§¢] < 125 < 28,85 = % = “ with [65] < ;25 < 28 and

X Xv - v

87 = 3> with [87] < 28 (note § < 2)
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(a) B = [22],1)20, \d| € {0. 1), |b] + |d| £ 0
Yy

By multiplying the last two equations of (4.13) by 85 = 7 and using 87 = z—x we get
du® + (14 87)bux = (b + €)85,  287bvx + dvu = (d + €4)8s. (5.18)

Subtracting the first and the second equation of (5.18) from the first and the second
equation of (4.13) (in the form duv + b(1 + §7)vx = b + €3), we deduce

(1 —=8)bux =d+e; — (b+€)85, (1 —8)bvx =5b+er — (d+es)ds. (5.19)

It is clear that the first (the second) equality in (5.19) fails for @ # 0 (for b # 0) and
b = 0, provided that €, 6 are sufficiently small. Next, from the second equation of (5.19)
and using vx = e'? — 5o with |89] < 8, ¥ € R (see (5.17)) we obtain

_ bte—(d4eq)ss _ —iv T | e i Ph(574e 8o—8087)+er—(d+eq)ds
b=y ¢ 0T (I=67)(e” —b0) (5.20)
From (5.20) and |ux| < § (and |yv| < &) we get that the first equation of (5.19) fails for
a # 0 (the last equation of (4.13) fails for d # 0, d = 0), and ¢, § small enough.

. . s7ho 0 b(s)] . ~
Finally, it is easy to check that P(s) = s2 , B(s) = b(s) d with b(s) — b,

. 01] [0b 01] [ob
A(s) = [’f+ 0] ¢(s) = 1in (5.2) proves ([,{0][50}) — ([T 0]’[17 d]),

b>b=>0.

(b) B_[bg] b>0,7=0
We argue similarly as in Case II (a). We have equations (4.17); by multiplying the first
two equations by 8 = % and using §7 = 73 we obtain

ay* 4+ (14 87)bvy = (b + €2)8s,  287bvx + axy = (@ + €1)36. (5.21)

Subtracting the first and the second equation of (5.21) from the last and the second
equation of (4.13) (written as axy + b(1 + 7)vx = b + €3), respectively, we get

(1 —8)bvy =d +es— (b +€2)85, (1—87)bvx =b+er— @+ €1)8. (5.22)

The first (the second) equality in (5.22) fails for d = 0 (for b # 0) and b = 0, provided
that €, § are sufficiently small. We obtain a similar expression for b as in (5.20). It yields
a contradiction for b = 0, b # 0 and 8, € small enough, while by combining it with
[yv| < 8 (and |ux| < §) we contradict the first equation of (5 22) for d = 0 (or (4.17) for

2
d # 0,a = 0), provided that ¢, § are small. Take P (s) = 0 _]] B(s) = [b(ls) bg)]

b(s)—)g,c(s):1in(5.2)t0prove(|:g(1):|,[%g])—) ([88},[%]),&;35
© B=10ddeCO<t<horb=adla>0(=0)

Since Iy | < s and |“| < is the same proof as in Case I (a) (iii) applies.

N S2

From (5.2) for P(s) = |:0 -

],B(s) =1@s2dand P(s) = V/a @ %,B(s) —1®ad

01

with T — 7, ¢(s) = 1, in (5.2) we obtain ([g (1)] aed) ~ (|, ,

},1@51) (with

-1
0 <t < 1l)ford =0andd > 0, respectively. Finally, P(s) = |:SS2 ;i|, B(s) =
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(ds® + 5% @ 1 with c(s) = 1 gives ([0 0] d®0) - ([8(1)

d €10, 1}.

(d)B-[éf{] teC,pel0,m),7e(0, 1)0rB—|:b*l;i|,§‘ eC,t=0,b>0

e b
b ¢

],a@l),a > 0,

LetB:[ ]

j|,§ eC,0<yg < 7. If B is either [gg«] or [Qb] with 7 # 0 we take

2 ip 7
P(s) = [i S_l],Bm = [be+ bj ]orP(s) = B1e'F @ L%, ) = (- DA,

B(s) = :| with arg = arg(¢ + k) in (5.2) to get a path. Next,

[b—i—S( 1>’<|¢|2

3 -1 a

B(s) = [asb—:-ss b+s] c(s) = 1, P(s) = [ssz ;] shows ([g é][%g}) -
[ ] [ ] > 0,7 € {0, 1).

01

CaseIll. (1@ —1, B) --» ([r 0],B),O <1<l

Lemma 3.2 (2) with (CS) fora = —w = 1, B = 0 gives (|11, |61, 184] < 8):

2Re(xu) = (—D* + 68, 2Re(Gv) = —(—=D)*+ 8, Xv+uy=68;, 1—1, keZ,
(5.23)
Observe that u, v # 0, otherwise (5.23) fails. We compute

Xv4uy = e_2i¢(xv — yu) + 2cos(¢p — n)e_i(¢+”)uy =e 2P det P + Re(fu)%,

(5.24)
Tv+uy =—e 2det P+ 2cos(¢p — n)e @t yx = —¢7 X det P + Re(xu) .
(5.25)
Therefore, by combining (5.24) and (5.25) with (5.23) we obtain
Yy _ S4—e HVdetP v _ Sate ?"det P (5.26)

x T T (=Dfts; u (—D¥+8;

(@A) B=a®d, a=>0

Equations (5.6) and (5.26) yield

b+e =axy+duv = (])ﬁ(axz(rh — 7% det P) + du” (84 + e 2" det P))
= W((M(ax + du? ) + det P(— ax2e2¢ ¢ duze_z”i))
:W(Sél(a‘i‘fl)'i‘detP( alx|* +dul?)), (5.27)

and further fora, a € R:

d+es = ay® +dv? ax?(84 — ¢4 det P)? + du* (84 + e 2" det P)?)

T« l)"+5 )? (

W(&‘(ax +du® ) 4+ 284 det P(— a|x| +d|u| )+(detP) (ax +du ))

:W(MHGIHM((MQ)« D+ 81) — 84T + 1))
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+ et PY2 @47 + 2i1m(d)ﬁ2)). (5.28)
The equation (5.27) gives (a € R):
M@l = Im (s (B + ) (—DF +8) —84@+en)). (529
o2

Lemma 4.1 (1) yields | det P| > % (note 1 — 7 < § by (5.23). It follows for b=0

that |Im(d)u?| < \)26(1+8)2+‘3(“+5)v 148 1t contradicts (5.28) for @ < d, b = 0 and

—652
1 1

€, § small enough. Next, c(s) = 1, P(s) = \/T[b (I

1], B(s) = 1 ® b2e'* (or

B(s) = 1® —b%e~™*) yields a path from (1@ —1,b15), b > 0 (from (1 ® —1, [gﬂ ),

2s 57!

b> O)to([g é] 1®d),Im(d) > 0.For P(s) = [2s _S,l] we get (1®—1,0) —

([(1)(1)],1690).
(b)B:[bd:| b>0

LetE:[gg] b > 0.Fora =0wehave b> = b* — (1 — 1)b? + €’ with 1 — 7 < §,

l€'| < max{e, ;}(4 max{b, b*, 1} +2)? (Lemma 4.1 (3)). If d = ¢'¥ with ¢ < 7, the
proof in [22, Theorem 3.6, Case VIL. (b) (i)] applies, while for d = 0 the first equation
of (5.12) for a=0and (5. 23) yield b(1 — 8) < 2blux| < €, which fails for small €, §.

Suppose B=a®dfor0<d <d.lfd = ¢ the proof in [22, Theorem 3.6, Case VII.

|detA] _ |detB| _
[detA] — [detB|] —

5§| = 1withb? = Gd—(1—1)dd+€,1—7 < 8,|€/| < max{e, 52}(4max{c7 ad, 11+

2)2 (Lemma 4.1 (3)). If d = 0, the first equation of (5.12) for @ = 0 and (5.23) give

(ad — sad — le'HA — 8)2 < 4b*|ux)? < |a + €|2, which fails for small €, §. Note,
1

c(s)=1,P(s)=|:2S ;2 ],B(s) |:d+ )

01] [0b ~ T =2 1
(|:1 0] , |:b 1])ford > 0. By conjugating with 3 |:_1 _2:| and r @ 1 forr > 0, we

(b) (i1)] for a # d applies almost mutatis mutandis, we only replace

:| in (5.2) implies (1 & —1, dIz) —

get a path
~ o~ ([01] [ @a4+d 2d-2) 017 [r2e* b
(1@_1’“@d)”<[1 0} Z[2(61—51) 4(a+d)]>_’<[z o}’[ b r_2§:|>
~([Fo[52)
017 = 01
Case IV. ([ll],B) __9([“],3)
Lemma 3.2 (2) with (C8) for, 8 = 1, w = i, & = k = 0 (since ||v|> — (=1)¥| < &) gives

|)Tv +uy— 1| <8, |ul* <3, ||U|2 - 1| <4, [Re(xu)|, [Re(yv)| <34. (5.30)
(@ B=a®d,a>0,deC

2,0

. . e T 1 Z -1
It is not difficult to check that B(s) = s @ %2, c(s)=1,P(s) =e'% |:S e ! S] ]
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(b) B =

Case V. (

in(5.2)proves(|:(1) 1i|,|:g~§:|) |:(1) ll] a@d),de(c,a>0,320.

Next,let B=06&d,d > 0, B=3 @J5>0.Using(5.6)fora:0and lul> < 8 we
get

d+e<|du?| <ds, d(1—20)<|dv’| <e+|d.
Hence |d|+€ 8 > d + €, which fails for sufficiently small €, §.
0 b

b0
The proof in [22, Theorem 3.6, Case V. (b)] applies mutatis mutandis. Note,

~ i o1
B(s) = i;[?g)] P(s) = ¢7'% [e;ssi ]in (5.2) implies ([?}],O@EJ) -
017 [ob
([1ii|’[b0])d>0

01] ~ 01
10 (B) - ( 1i . B)

Lemma 3.2 (2) with (C8) foro = w = 0, B = 0 yields

, b > 0, (hence B=4d (&) d by Lemma 2.1)

ul®, [v* <8, [2Re(yv)| <8, [2Re(u)| <8, [xv+uy— (=D <8, keZ

(5.31)
(@) B=a®d,a>=0 1
Taking c¢(s) = 1, P(s) = |;1v SO ], B(is) =09 % in (5.2) proves ([(1) é:| ,EIGBO) —
T o]
(|:(1) l:| O@d) a € {0,1},d > 0. Next, c(s) = 1, P(s) =e§19|:; SO , B(s) =

(b)

~ ~ 01 01 ~ o~
2 1 —if
(Id] + 5)s* @ e ylelds([1 0],1@2)%([li],a@d),d=ld|e’”,a>o,
deC.

Proceed with b = [g ﬂ b > 0; we conjugate the first pair with 1

([a)-B1D~

B[ —
—
—_ N
— |
\S]
1

(5.32)

) ) i Leia(s) Le—ta(s)
Using ideas from Case III (a) we find c(s) = —1, P(s) = % [;240‘(?) stei"‘(s)

with sin(2a(s)) = s, B(s) = bs® @ (— — ﬁ (see (5.2)), which proves the existence
of (5.32).

0b
B = |:b 0:|, b>0
~ 0b| ~ . . . .
If B= Pl b > 0, the proof in [22, Theorem 3.6, Case VI. (b) (i)] applies mutatis
mutandis, we only use b2 = b2 + €, |€/| < maxle, —2}(4 max{b b2 1} + 2)% (see
Lemma 4.1 (3)) instead of 1 = }ggﬁ} I :gl = Z? .ForB=1@®d,d # 0 we apply
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[22, Theorem 3.6, Case VI. (b) (ii)], we only replace }gg:ﬁl‘ = }gztgl = ;—2| = 1 with

b? = |d| + €, || < max{e, %}(4 max{|d|, 1} + 2)* (Lemma 4.1 (3)).

Case VI (1@ —1,B) —» ([‘1) :] . B)

Lemma 3.2 (2) with (C8) for —w = o = 1, g = 0 yields (|11, |62], [84] < &,
k € Z):

2Re(xu) = (—D¥ + 81, 2Re(Yv) = —(—D* + 82, |ul, |v]> <8, Fv+uy = s
(5.33)

(a) B=|:23j|,b>0

X0
b > 0;recall b2 = b2 + €/, |€/| < max{e, %}(Zmax{l, b, b2} + 1)? (Lemma 4.1 (3)).
LetB=a®d,d>a>0.Ifd >d > 0 the proof in [22, Theorem 3.6, Case V. (b)
(ii)] applies for b2 = @d + €/, |¢/| < max{e, %}(4max{l, d,ad} + 2)? (Lemma 4.1

y Tis™t st ~ 01f.
(3)). For c(s) = —1, P(s) = 7| i ,B(s) =(d+s) Lol (5.2) we get

The proof in [22, Theorem 3.6, Case V. (b) (i)] applies mutatis mutandis for B = |:0 b:|,

N

1i b0
d—e < |$|JE(4L7+ 2)%, and Lemma 4.1 (1) gives |det P| < 1 + %2 By applying
this and (5.33) to (5.25) implies (1 — 8)(57— €) < \/E(4c7+ 2)%(5 + 1+ 6%;), which
fails for small €, §.
(b) B=a®d, a>0,deC
If b = 0,0 < d < d the same proof as in Case III (a) applies (see (5.23) and (5.33)).

(e-1,dhL) — ([O 1] , [0 b] ),d > 0.1fd@ = 0,d > 0 then Lemma 3.1 (D1) yields

01

Case VIIL ([l 0

]E) - (1®-1,B)

Lemma 3.2 (2) with (C2) forw = 0, 8§ = 7 gives

Ix|? = Jul* =81, Xy —mv—(=D* =8, |yI* = o> =84, 1811, 182,184 <8, k € Z.
(5.34)

(@ B=a®d, 0<a<d,d>0

N~ 0b]| ~
6)) B_[g;],b>0

. Sisis~!
First, c(s) = —1, P(s) = |:%

Ly ] B(s) = b® (b + s2) in (5.2) gives

01 0b

( 1ol 171 ) — (1® —-1,a® d),a < d. Fora = d we apply the proof
N 0d] .. [0b

of [22, Theorem 3.6, Case VIII (a) (ii)], but replace |:d 1] with |:E 1]; and use

d® = b2 + €, €| < max{e, &) (4max{[B]. [B%, 1} + 2)° (Lemma 4.1 (3)) at the
end of the proof.
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On structures of normal forms of complex points... Page310f43 48

(i) B=1®d,deC

-1 1
Weprove([ ] 160) > (1®— I,O@d)WithP(S)Z[Z

25 —
10 -1 _;s],C(S)—l,

B(s) = 0® s2. ~
Eroceed with B=a®d,0 < a < d. We have equations (5.6) forad = 1, Imd > 0,
b = 0. By combining them with (5.9), (5.10) for o = —1 and with (5.34) we get

€1+ 1 —ae®®s; = u*(@e® " + q),

a((—l)k +8) — e Moy = —729 (uv(aeﬁw_n) +d)),

a((=DF 4+ 8) — e 2%y = —e7 29 (uv(ae® ™ + d)),

€4+ d— ae®?5, = v*(@e? ) 1 a),

d((=DF +8) + e e = e 2 (xy(de® 9 + a)), (5.35)

We have ad = |d| +8,18 < max{e }(4 max{l |d|} + 2) (Lemma 4.1), hence
a < +/|d|+ 1, provided that max{e, 72} < W. Next, we divide the first
and the second (the third and the fourth) two equations of (5.35) to get

u _ e1+1—ac?i®s, —e_2i¢) _ a((—1)k+sz)—e72iw52 (—e2i¢)

v a((_])k+32)_e—2i¢52 €4t+d—aetivs,

The second equality yields that there is a (computable) constant D > 0 so that

. 5 /N2
=de O 55, P = SGEES - 105 < Dmax{e.8), (536)

Furthermore, we divide the third and the fifth equation of (5.35) to conclude:

— @D s tere)
M'U - (a((— 1)k+252)621(p62)2 =1 +865 |86| = Cmax{e, 8}7 (537)

while the first four equations of (5.35) yield

1 (H—E] _a32[¢51)(a(—l)k+at§2—e’2i¢ez)
j + 50 =17 2i . Y
(d+€1_“e ’w54) (0(—1)"4-1152—6 2"P62)

. 2
= /OR8] < K max(e, 8),
where constants C, K > 0 can be computed. By applying (4.7) for d= |E Ie’ﬁ we
get2n — 2« —2¢+2<p+5 = ¢ with |ei% — 1= |sin%| < |siny| < §p. Using
(5.37) we get

|7_1{_|\Xy\ i(p—p—k+n) _ |—||1+86|€( 2 %)_1|

vl €
. 5 . (2 v

=|e'% (e—’%+1)—(e'%—1>+(|1—56|—1)e’( 2+2)|
,iﬁ ¥

> le™"2 + 1] — 80| — 86| = cos 7,

provided that €, § are such that %Ie”'% +1] = %cosg > 18o], |86 with O < ¥ <.
Thus:

i 2 d|~"'+]s
— 1| = Juvlcos &, |uf* = {4 juv] < 41—l

cos 7

2> 1462 [xy —av| = [av]| 2

uv
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We simplify the first and the third equation of (5.35) and rearrange the terms:

2au® cos(p — )t @ =1+ €] —ae*?8, — (d — a)u®,

—2auvcos(p — k)e @) = (=¥ + ady — e *%ey + (d — a)uve ¥,
(5.38)

By applying (4.3) with d = Iglei5 to (5.36) and (5.38) we deduce (L > Ois a
constant):

Yo=0-20+¢). [siny| < IZ

Yi=(@+n —nh, [siny] < Lmax{e b}, ) €Z,
Vo= —¢)—nk+1h), |sinyz] <Lmaxfe, d}, IheZ.

Thus ! sin(yo+2¢1 — 21//2)| = |sind| < 2“25” +4 L max{e, 8} and it fails for small
€, 6.

(b)B:[Ob}b>O

'~

If B= [g I;] for b > 0 we can apply the proof of [22, Theorem 3.6, Case VIII (b) (i)],

recall b2 = b2 + €/, |€/| < max{e, 2}(4max{|b| 162, 1} +2)? (Lemma 4.1 (3)).

2571
2 951 _s]ac(s) =1,B(s) =

(D3) implies

=~ .0 =~ .0
bvx = 3 (6§ + (=D'iy |d|e’7> o buy =3 <€2 —(=D'iyf |d|617> ,

where |6£|, |6§/| < e(4max{l,|l;z]\}+2+|d|)

the first equality of (5.12) we get Y1, Y2, Y3 € (=%, 5) such that:

LetB:l@d,de(C.Toget [ ] 1®0) — (1@—1,[23}),wetakeP(s)=
S2
7

[1 0] in(5.2).1fd = |d|e”,0 < § < 7 Lemma3.1

. By applying (4.3) to these two equations and to

5 ) 20€)|

¢+ —Z -2 Iz +27l;5, |sin < =%,

Y1 ¢ 2 7 3 | Y1l \/m
Vr=¢+n—5%—5 —(+Dr+2rly, |siny| < 2‘73“,

Y3 =¢ +n+2xh, |[siny3] <e.

Therefore

-+ 8

=Xy —uv = |xy|ei(¢7¢) _ |uv|ei(l<*77) — e*i(¢+ﬂ)(|xy|ei(¢+n) _ |uv|ei(K+¢))

— ei(—1//3+27711)(|xy|ei(¢2—2ﬂl4+%+%+(1+l)n) _ |uv|ei(%+%+lﬂ—2ﬂl3+]/f]))

- ei<wz—w3+§+<z+1)n+%>(|xy| + luvlei 1=V
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Since ¥y, Y2, Y3 € (—%, %) are close to 0, the argument of the second factor is close
to 0, too. Using (4.3) again we obtain a contradiction for €, 6 small enough:

Y=kt — (Y2 — V3 + L+ A+ Dr+5) = (1 —v2),  Isiny| <25,
0;&|cos§|=|sin(%+%)|§|Sin(¢3+¢1)|§2€§+25-

Case VIIL ([(1) (1)] B) ([(1) (1)] .B)

(@ B=1®d,Imd >0, B = [gﬂ,5>0

We can apply the proof of [22, Theorem 3.6, Case IX (b)], and use |d| = |5|2 + €,
l€’| < max{e, %}(4max{|lj|, b2, 1} +2)? (Lemma 4.1 (3)).
0b

(b) B:|:b 1:|,b>0

For P(s) = [? (1)] B = [2 ;] c(s) = 1in (5.2) we get ([? (1)] 180 —

([? (1)] , [2 [;:I ), b>0TForB =160 47, d # 0 we use the proof of [22, The-

orem 3.6, Case IX (c)], but replace Iggg} = i—‘z with b2 = |E| + €, |€] <

max{e, %5} (4max{[B]. [B%, 1} + 2)* (Lemma 4.1 (3)).

01

Case IX. ( [1 ”

],E) - (1@, B),0<0 <7, 0el0,i})

From Lemma 3.2 (C2) we get

llul* = x*| <8, [P =1y <8 [Fy—av—(-=DF| <8, keZ sind <s;

if w=i, then (sin®)|v|*> =148, (sin®)|u|® =83, |82, |83 <. (5.39)
For w = i we further deduce
(sin®)|y)* = 1| <8 +8% (sin@)|x|* <8+ (5.40)

(a) B:[gz},bzo,d>0

Lemma3.1 (Dl)forE = 56967,5 # 0and (5.39) forw = i(hence(1+82)|u|2 = 53|v|2)
s —1
yield a contradiction for small €, §. Next, c(s) = 1, P(s) = ivVd+s [dars s 71j|,
—s

2 ~ ~.

cos(%) = [SZQZH)’ Z i :) , B(s) = [g 255 52] in (5.2) proves ( [? j)i| ) [g 3] ) -

3

(1®ei0,|:22i|),i; > 0, either v = O,g = lorw = i,Ziv = 0. Taking

s

-1
cs) =1, P(s) = Vd+s |:d6” —Ss_li|’ COS(%) = ﬁ-%)’ B(s) = 0 & s> shows

( [(1) ll} 0@ d) — (1&e,0®d). Finally, c(s) = —ie'?, cos(?§)) = 53, P(s) =
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v ela(s)  jo—ials) g+s

1 —i . _ 52 _ ~ 01
Le=i% |:_e_ia(s) i T#—s:|’ sina(s)) = Pk B(s) = |Vd +s]| |:l 2]
. 01 : 0b
in (5.2) proves ( |:1 0:| o1 EBL?) — (1 @ et [

bd]),b>0,lm(c7)>0.
(b) B:[Ob],b>0

b0

b0
€' < max{e (4 max{1, |b|, |b|?} + 2) s0 the third equation of (5.12) for d = 0

Let B = |:9 b], b > 0and w = i. It follows from Lemma 4.1 (3) that b? = b2 + €,

yields ( yv)2 By combining it with (5.39) and (5.40) we deduce

T

(1=8(1+8)(1 =) = (sin0)? |y = ;5=

) -1
which fails for €, § small enough. Next, c(s) = l,cos(@) = 52, P(s) = \}—5 |:S § 1i|,

s =S

~ 017, o1 o T05], ~
B(s):(d+s)s2|:10]1n(5.2)g1ves(|:1 i],OEBEl)—)(IGBee, b01|)’d20'

We apply the same proof as in Case VII (compare (5.34) and (5.39)) to show

([ié],[%ﬂ)ﬁ(l@em,[gg])b>0and(|:0 ] 10d) £ ( @eig,[gg]),

Imd > 0.

(©) [Zg],a>0,b20

‘We multiply the squared equation in Lemma 3.1 (D2) for B =4 @ d with (sin 6)?:

@+ e)?y?sin?0 = (—i(=1)'Vad + €)xsin’ 6, |}

e(dmax{d,d}+2+ad)) ~5
{ T R ad #0

Ve(@max{a,d} +3),dd =0

IA

By applying (5.39) and (5.40) (for @ = i) we get |d + €(|*(1 — 8) < ( lad| +
|e§|)(8 + 82), which fails for @ # 0 and small €, 8. For ¢(s) = , P(s) =

| _im | e —iet*\/d +s S 0 3

~e '4 . L e with sin(2a(s)) = os3s = §°, B(s) =
s el ie_la\/tm (2a(s)) = 2|\/tﬁ| 52 2
IVd + s| [f (1)] in (5.2), it follows ( [ ] 1od) > (1o, [a b])’ o

N\\ol

1
argd > 0 ord = 0. Taking c(s) = 1, P(s) = \/dl:[(s) _-Y;(?E—:_S;)], B(s) =
2 ~.
2b(s) + 5% b(s) ~ oy _ | s 0=i 017 [o»b
|: b(s) 0 ,b(s) — b,cos(5) = s§,+‘) 0 proves ( Lol 15T ) —
(1%”,[25]),1; >0, eithero =0,5>0,d=lorw=1i,d,b > 0.
() B=[ZZ],a,d>0,be(C

First let b = 0. We deal with the case w = 0 in the same manner as in Case VII (a) (ii)
(compare also (5.34) and (5.39); observe that the proof works in the case a > d, too).
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> :ﬁ:z <é6=<3 L and using (5.39) we easily verify

If o = i we have |v]? > 1
el uPas _ Juf?

|v|25+|u\28
P = P — wE T

[o]28+1 |v[?s
2 —_— <
(v]2=8)[v> = 4é.

1 =
j\v|2

<dé+

Multiplying the second equation of (5.6) with 5 = % and 8¢ = % yields

ax? + dv26685 = (i;+ €2)d5, ay28685 +du® = (5—}- €2)d6.
By adding them and using (5.6) yields a contradiction for @ # 0 and small €, §:
@+ €2) + (d + 28685 = (b + €2) (35 + 56).
as—? as2 —2ds?
2 _2ds®>  ds? ’

-1
1S s . 01| ~ o lab ~
P(s) = |:s _s71i|1n(5.2)t0pr0ve( |:1 i] ,aEBt}) — (1@e'?, bd ).a,d,a >0,

beC*,geC.

Case X. ([(I)C'J,E) ——->(|:(t)(1)j|,|:ZZ:|),0<t<l,a)e{O,i}

The following expressions are bounded by § (Lemma 3.2 (2) (C4) for o = 1):

It is tedious to find c(s) = 1, cos(@) =52, B(s) = % |:Zz'9

Re(xu), (1 — 1)Im(xu), Re(3v), (1 — 1)Im(Gv) — (=¥ |w|, 1 — 7, ¥v + uy — (= DF,

(5.41)
where k € Z. If in addition w = i, it then follows that
s |xu] _ (1=1)|xul < ’(l—r)Re(Iu)|+|(1—r)[m(fu)| < 5482
5= lyv] = (I=1)|yv| — |(1—‘L’)Im(yv)|—|(1—‘C)Re(yv)| — 1-86—682"
Slyv| = |1 — r)Im(yv)| >1-3, (5.42)
(1+8){5 = [y +Fvli = vyl — B vyl = oyl(1 - B4 12),
(18P = [y +Fvl{ = oyl — {2 vyl = loyl(1 — f [27). (543)

(@) B=aédd o _
LetB:O@lIf’d;éO(henceb—d 0,w=1i)then(5.4)fora=b=d =0,d =1
yields (5)2 thus (5.42), (5.43) give a contradiction for small €, §. Taking c(s) =

a+e ’

-1
1,z(s) =1—s, P(s) = \/t [(1) ;lj_ ]proves([(l) i] ,0693) — [0 (1)] 0@1)
d > 0.
Next, B=1®d, d € C. If either I’}i,l > 1 (or |§| > 1), then in case @ = i the second
(the first) inequality of (5.43) yields a contradiction. When |§|, |%| < 1 we multiply the
second equation of (5.4) for b =0, a = 1 with £ and f, and simplify them:

85y’ +du? = b+ e, x? +85dv’ = (g‘*‘e?)% (0 < 15;652)

We add these equatlons and use (5.4) for b = 0, a = 1 to get 55 (d +e) + @ +
e) = b+ )5 + b + 62)7 Since |x| |¥] < 1, it fails forad # 0, b = 0

. -
and small ¢, 8. Finally, c(s) = 1, 7(s) = 1 — 52, P(s) = L % [S i ]
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~ 101 0b 01 .

_ 2 v _ _1_3
B(s)=1®b ([1 i],[b(]) — ([T 0],1®d),whlle,c(s) =1,10)=1-s,
x [she @) _jg=1qia(s) ~ ) N .

P(s) = 7't [—isemm (Es)flefw]’ B(s) = 1 ® D2e**OH0) sin(a(s)) = 5%,
B o 017 [ob 01 ~
sin(552) = —s glves(|:1 O]’[gl )= ( -0 1@®d),b>0,deC.
0 b
(b) B:[bei‘/’ , 0<gp<m,b>0
~ ~ (—1 N7 ’
Leta =0and B =@ ® d. Lemma 3.1 (D1) for @ # 0 implies ; = % =
= e@max(d.a)|+2+[@d) gt § £ 0 ~
i(—l)’\/%eg, les| < ad iy le)] < 2(€] + €4/ %),
Ve@ max{d,a}| +3), det B =0
| € Z, provided that € < \%I It contradicts (5.42), (5.43) forw = i.Ifad = 1, d =
|dle’” # 0,0 <9 < 7 we apply (4.3) to deduce ¥ = k —n — 5 — % — I with
[sinyr| < ‘ﬁl.Hence
¥+ 2y =xXul + yol = —(—= 1)/ T (ImEu) 2| + Im(y) | £)
+ Re(xu) 2 4+ Re(yv) L.
Using (5.41)) and ||5| - |\/g|| < |e§/|, the above calculation and (4.3) gives
v =k — (% +¥ +(+ D), |siny/| <25 (1 + |\/§| + )] + (|\/§| - |eg|)—‘> ,
which fails for small €, § (recall |siny| < ‘If/%, 0<7? < ). Next, c(s) = —1,
2is 1 o~
-3 5 0b 2 01 0b
— 3 s — |2 — 1 — 5o -~
P(s) = |: : 2§i|, B(s) = |:b:|’ t(s) = 1 — J implies (|:1 i]’|:b 0]) —
01 0 b
L)
— a =1 . 5+S i
Fort(s)= | | ~SYats@=i py_ 3 |VITS T |,
1 —s~, w=0 s’e 4ﬁ+s
[ _; Yats 01 ~
B(s) = - oS ,c(s) = —1 we get |: ],5@([, —
( VT @+ s9d - b ( et ({10 )
01 e’ b ~
([T po d:|),de<C,azO.
05]
(¢) B= b0 ,b>0

We multiply the first and the second equality of (D1) and (D2) of Lemma 3.1 for
a # 0 to get a contradiction with (5.42) for = i and small ¢, §. Taking c(s) = 1,

1 oz seld g7 _d+s |01 01
(s)=1—s5,P(s)=¢ 4[ . i]’B(s)_ + s|:10 shows ( 1 ,0@5)—>

(7o) [no]

Ford = 0,b > Owehave b = b+, with |§'] < 8h*+max{e, %}(4max{l~7, b2, 1}+2)2
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(seeLemma4.1(3and @.7);recalll—t < 8).lfw =i (henceg = 0) thelast equg}ion of
(5.12) ford = 0 contradicts the second estimate of (5.42). Next, letw = 0 (henced = 1).
Using 2bvy = 1 4 €4 (see (5.12)) and |[Re(yv)| < & (see (5.41)), we have |[Im(yv)| >

|[yv] — |[Re(yv)| > E+_|5€/ — 8. Further Lemma 3.1 gives 2bvx = ((—1)'T! + 1)?;4— €},

2buy = (=1} + 1)b+eg,l € Z, where |62| lef] < MB’M So either
2bvx = 2b + €}, 2buy = €} or 2buy = 2b + €}, 2bvx = €. In the first case we also

ave xv = (— + 85 wit <o+ — (see (9. . We combine all tacts:
h (— 1)k + 8} with 8] < 8 2(b'€_2"6|)( (5.41)). We combine all f;

|X|2 — 2bvy yv — (1+€4) ([ Im(yv)+3¢)
x 2buxxv T 2bteh) ((—DF+8))

For sufficiently small €, § the right-hand (the left-hand) side is (not) real, a contradiction.
The other case is treated similarly and yields a contradiction as well.

Case XL (190, B) --» (160, B)

If B = |:(1) (1)] B=d®1,d> 0, then [22, Theorem 3.6, Case XI (a)] applies. (Taking

c(s) =1, P(s) = [é :| in (5.2) proves (1 0,d ®0) — (1 @0, |:? (1)i| ).)
Next, Lemma 3.2 (2) with (C12) for ¢ = 1 gives ||x|2 — 1| < § and |y|2 < §, hence
|, > < 2. When B =a @O0 fora > 0, then d1v1d1ng the last two equalities of (5.4) for

b=d= b d_lyleldsf 2 for small €, 5.

+
Finally,c(s) = 1, P(s) = |;/517 0i| in (5.2) proves (160, a®0) — (140,a®d1),a >

01

1 . .
O,andc(s) =1, P(s) = [ = X—ZGBllmphes (1690, |:1 0]) — (IEBO,a@l),

B

a>0.

Case XIL. (190, B) — [ ]
Lemma 3.2 (2) for (C5) fora = 1, f = w = 0 yields

2Re(xu) = (—1)* +68, 2Re(yv) = 8, Xv+1y =84, k € Z, 1811, 1821, [84] < 8. (5.44)

Next, (5.26) (compare (5.44) with (5.23)) is valid in this case as well. Since | det P| < %
by Lemma 4.1 (1), it follows from (5.26) that

21 12] < 828 (5.45)
(a B=1®0
The bundle consists of one orbit, hence [22, Theorem 3.6, Case XV (c)] applies. (We
Ja 0
take c(s) = 1 and P(s) = al—i—s toget (100,ad0) — (|:(1)(1)i|,1690) for
2/ a+s §

a>0)

(b)) B=1®d, Im@d) >0
For B =@ & 1 we have (5. 6) with b = 0,a = 1. By multiplying the second equation
of (5.6) for b = 0 with 34 1=, L 85 = ; and by simplifying it we obtain

ax?8485 + dv? = €284,  ay® + dv>8485 = €265, (5.46)
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respectively. We add these equalities and using the first and the last equation of (5.6) we
get the equality that fails for d # 0 and ¢, § small enough (recall (5.45)):

€2(84 + 85) = (ax® + du®)8485 + (ay> +dv®) = (@ + €1)8485 +d + €4.  (5.47)

Note that (160, |:(1) (1)]) — ( [(1) (1)] , 1d) will follow after we prove (160, [(1) é:|) —

16 —1, 0b (see Case XIV (a)).
b0

(c) B:[gﬂ,b>0

Let B=d® 1,4 > 0. From Lemma 3.1 D1) forb=0,d = 1 we get:
f—HEZ

lul <
which clearly contradicts (5.45) for sufficiently small €, §.
For P(s) = -8 st (s) = 1, B(s) = 0 s~ we show (1 @ 0 01 ) —
or P(s) =1 (21 g &) = LB = 2y 110

(16)-[25]

Case XIIL. (130, B) ——» ([S (1)][2 Z]),Of‘[ <1

[v], (5.48)

From Lemma 3.2 (2) for (C3) with @ = 1 we get

Re(yv) =46, (I—-DImGv) <4, (I—-1lxv[ =4, (I—-1)luyl =34,

Xv+uy <6, ’(1 + t)Re(xu) +i(1 — t)Im(xu) — H <3. (5.49)
The last estimate yields either |(1 + T)Re(¥u)| > 152 or |(1 — ©)Im(Fu)| = 52, thus
x¥ul > 12 (5.50)

(a) B = |:b 2:| eitherb > Oorb =0and ad =0

First, let B =a @ 1,d > 0; we have (5.48). Using (5.49), (5.50) we thus get

YAl > (1 - n®oll4) = (1= 0)lFul = $(1 - ).

)

Similarly, when d = 0 then Lemma 3.1 (D2) for 5 = 0, d = 1 and (5.49), (5.50) yield
@t':z‘ and 45(“{‘1‘52” > 1 — 7. From Lemma 4.1 (1) we obtain /7| det P| <

%. By combining the above statements with (5.24), (5.25) we get Re(xu) < C§, where
a constant C > 0 can be computed. Hence (1 — 7)Im(xu) > 1 — § — C§, and further

=
vl =

Iyvl _ A =1yl - |(H)Im(fv)|+{<1—r>Re®v)l - 28 _ (5.51)
lxu| — (1—1)|xul ~ [d-0mGu|-|d-0Re@n| = 1 -8 —2C8
It is also easy to validate
Fv + iyl 4] = fux|[1 = BRI Fo+ayll3] = juxl]l - 2HEPL (5.52)
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We apply (5.49) and the estimates on I%l, |§|, |%| to (5.52) to get a contradiction for

_epl@)+E) 3 —4 —ia(s) (2
small €, 8. Next, P(s) = | ", ;= [ B =" °, | cs)=-1,
sThe's 1 s 1

. a2 .. ~ 01 * b
7(s) = 0, sm(%s)): 45~ implies (1 ©0,a ® 1) — (|:O 0]’|:b 1] ),4‘* e C*.

Let B = I:g 8], b>0, B = |:(l) (1)i| The first (the second) equation of (5.12) fora = 0
(for b = 1) combined with (5.50) (with (5.49) for 0 < 7 < 1) yields € > blux| > 132
(and 1 + € > blvx 4+ uy| > 4b$), thus a contradiction for sufficiently small €, §
and 0 < 17 < % Ifl1=>17> % then Lemma 4.1 (1), (2) leads to |det P| < @

and b|det P| > 1 — 6e, hence $3<5 > p2¥3 > | — 6e, which fails for small
1.-27

—g 54 1
€, 8. Taking P(s) = |:sj ;si|, B(s) = [lf—Z 2S1 with Y% — 0 and P(s) =
2 i

s~12s 1 %s‘z . .
o 4] B(s) = 127 (both with ¢(s) = —1, 7(s) — 0) in (5.2) proves
2

01 011 ¢ b (01 017 [e? b
(1@0,[1 0])—)(|:t0j|,|:bei¢:|),§G(Cand(l@o, i Oj|)_)(|:10i|’|:b 0])
with b > 0,0 < ¢ < 7, respectively.

Finally, to see (10,2 @ 0) — ( |:(3 (1)

],B),OS‘L’ < 1,d > 0, where B is any of the

e b

b d

. a b
matrices [b ei¢:|,a,b > Oand[ s

1
],d,sz,wetakeP(s):[ Ths s:|,B(s):

a(s) b(s)| . a(s) _|vatss _[ 1 b
|:b(s) 1 ] with b(s) — 0, NG — Qor P(s) = |: \/ﬁ Si|, B(s) = |:b(s) d(s)]

with b(s) — 0, %) — 0in (5.2) (c(s) = 1, 7(s) — 0 in both cases). To prove

- 017 oo s a0l
(160,200 — ([T O]’[b 0]),19 > 0, we put P(s) = [1 0],3@) =310l
c(s) =1,7(s) > 0in (5.2).

(b) B=a®dd, a,d#0
Fore(s) = =1, P&) = | 1 53| B(s) = Lol we et(120. (2 ) > (|91 ae

I PR el e g 110 00/

1).
Ift < % then we have |xv|, luy| < 28, thus using (5.50 ) we get || = |75 | < 85 and
|| = |52| < 85. On the other hand for t > % we get |det P| < @ (Lemma 4.1
(1)), therefore (5.24), (5.25), (5.49) imply [Re(xu)||2], [Re(xu)|[2| < 24/38 + 5. If
[Re(xu)| < v2+4/38 + 68, then (1 — 7)[Im(Xu)| > 1 —+/(2+4/3 + 1)8 and similarly as in
(5.51) we obtain ||, I%I <2  IfB= Zl'@gwithg;zé 0, then in any case

1-24/(2V/3+1)8
we proceed mutatis mutandis as in Case XII (b) to get a contradiction for small €, §.

Case XIV. (100,B) --» (1®e? B),0<0<x

From Lemma 3.2 (2) with (C1) fora = 1 and 0 < 6 < & we have

Ix|* + &> — 7! <3,

112+ e vf?| < 8, sin(@)[uv| < 8, [Xy + cos(@)uv| < 8.
(5.53)
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Furthermore, Lemma 3.2 (2) with (C10) fora = 1, 0 = —1 yields

[x> = lul?| = 1481, [y = | =84, Xy —uv| =8, 811,182l 184] <8,
(5.54)

while from (C10) fora = 1, 0 = 1 we deduce

wi-[:]
Taking c(s) = 1, P(s) = \sz |:ll _si;(2/72i|’ B(s) = ‘2@12 gives (1 & 0, |:0 1]) —

X2+ Jul? =148, |yl ? <8, |61l <6 (5.55)

10

(Ip,aly),a > 0.1If B=dI, and 8 = 7, then Lemma 4.1 (1), (2) gives | det P| < %
and d|det P| > 1 — 6¢. The first equation of (5.4) fora = d,b = d@ = 0 yields € >

|d(x? +u?)| = |d]||x]> = [u]?| = |d|(1 —8) (see (5.54)). Thus % > (1=28)(1 —6¢),

which fails for €, § < -5

w -
(b)y B=a®0,a>0
a(s) b(s)

We take c(s) = e ¥, P(s) = [i j B(s) = [b(s) d(s)] with d(s) — 4,

sa(s), b(s) — 0 to prove a path (1 © 0,7 & 0) — (1 & ¢, [ZZ
b>0,0=<6 <m.

© B=a®1,a>0

])ford > 0,

(i B=[Zfl],|a|+|d|¢0,a¢d

For c(s) = 1, P(s) = [(1) i} B(s) = [2‘23 1;(52)} a(s) — @, sb(s) — 0 and
c(s) = e, P(s) = [? j}, B(s) = [;:) Zgﬂ with d(s) — @, sh(s) — 1,
weget (190,7®1) — (1@(3"9,[22 )forb > 0.d > 0and b > 0,a > 0,
respectively. Next, ¢(s) = 1, P(s) = [;’ f?j} B(s) = @ +5) [s91 z_;]

. s 2 2 -1

and c(s) = e~%, P(s) = ’_sl VIS | B(s) = @+ ) [i_] ‘) ] in (5.2) imply
- . ~ o |ab

(1@0,ddl) > (1@, [bd]) and (100, a0 1) — (1, [b O])for

b,a,d > 0.

(ii) B:[gg],b>0 0O<b6<m

The second estimate of (5.53) gives (sin 0)|v]? < 8, thus either [v|? < /8 or
sind < /8 (or both). If |v|2 < /8, then the second estimate of (5.53) (or

(5.54)) implies yI> < 8 + /8. Since we have (5.14) for d = 1, we further get

lul, |x] < (8§ + ﬁ)%, which contradicts the first estimate of (5.53)

and (5.54).
Let now v,y # 0 and sind < V6. If 0 € (0,%), then (1 — cos®)|v|* =
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(iii)

2(sin §)|v|? < 2(sin? §)|v|?, hence the second estimate of (5.53) yields
8 > [IyI* +cos@lv]?| = [Iyl* + [v*| = (1 = cosO)v|* > |IyI* + [v]?| — 26.

Hence |y|%, |[v|> < 38 and it gives a contradiction again. If 6 € (32, 7], then

| cos %I |sin & 9| < |sin(wr — #)|, and by combining it with the first equa-
tion in (5.14) for d = 1 and the third estimate of (5.53) we get (cos 2)|u|2 <
f+‘52‘

(sinO)[uv|[4] < § . Since |x|> + ¢ |u|> = |x|> — |u|> + 2(cos §)|u|26i%,
the first estimate of (5 53) yields

WP =l = 485, 185 < 6 +2sYerll (5.56)

Next, (5.14) for d = 1 yields | X, |*| < 'f'““(f"‘% From the first estimate

of (5.53) (or (5.54)) we deduce either |x|> > 52 or |u|> > 52, and the second
estimate of (5.53) (or (5.54)) gives |y|, [v| > —U=ad=9)____ /5 Toconclude

= 2(Ival+max{|e), €] )
we use the (5.8) with (5.53), (5.54) and (5.56) to obtain an inequality that fails for

small €, §:

8 = [¥y + (cosO)uv| > |[Xy| — lwv|| — |uv||1 — cos 6|
1—|8s] _(lul | S1HD8s]
== 2M+*/1+‘55‘ (|v| + [v] )8 28.

[v] ¥l

B=abh,a>0(ence A=1@o,0 =¢? {1, -1}
The first equation of (5.6) for a = d and (5.54) yield

Al > 2 i) = [l — (5.57)

If o= 1 then the last equation of (5.6) for @ = d and the last estimates in (5.55)
—¢ < y2 492 < 25. Hence (5.57) gives ||x|2 ul?| < 8o := 202 The

first equatlon of (5.6) further yields that | x|, |u| > % — &g with %, % 5 ‘*52828 .
3 —<90

fB=do 1, we proceed mutatis mutandis as in Case XII (b) to get a contradiction.
Let o = —1. By Lemma 4.1 (1), (2) we have a‘s‘[ > aldet P| = |v/a + §'| with
8 < 64‘1;_2 ifad #0(oré <eda+2ifa =0).Ifa # 0, we combine it with the

first equality of (5.54) and (5.57), to obtain 5*[(”‘“‘) |u|2’ > (1-9),
which fails for small €, §. Next, if @ = 0 then (5 57) and (5.54) imply a < 1%3

a62i¢527€4
ae?i¥§,—1—ey
the last equation of (5.6) for a = d, d = 1 and the second inequality of (5.54) give
2102 > 12;: — §. Applying this and (5.54) to (5.8) leads to an inequality that fails
for small €, 6.

Using the second equation of (5.9) and (5.10) we deduce % = , while

1

Case XV. (180, B) --» ( [O 1.] , B),

From Lemma 3.2 (2) for (C6) with @ = 1, ¢! = €' we deduce

Xv+uy| <8, v Juv] <8, [2Re(Vv)| <8, [2Re@u) +ilul* —e'T| < 5. (5.58)
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0b
(a) B = |:b0]’b>o
If B =4 & | we again have (5.14) for d = 1, and by combining it with [v]? < § (see

(5.58)), we get [u] < YTHEDYE iy 7 is as in (5.14). The last estimate of (5.58) then
g 1—e€ 2
S(Va+ley)?
(i—ey
2
(1)) and the first estimate of (5.58) to (5.25) we get | 2|(1 —§ — M) <§_ 86
v
which contradicts (5.14) for small €, §.

yields |2Re(xu)| > 1 + 6 + . By applying this, M > | det P| (Lemma 4.1

01 5% s 01

. _ 1 . s
Taking B(s) = 1 [1 o]’ P(s) = [] S], c(s) = —i gives (1 ® 0, [1 0]) -
( 01 0b )

1i|’|b0]|”

(b) B=a®d, a>0,deC
2

First, B(s) = iz a,P(s) = |:sl sszi|,c(s) = —igive (190,ad1) — (|:(1) ll:| ,a@d),
a > 0.
IfB=3d®1,d > 0anda = 0, then the last two equations of (5.6) for d 1,
a=b= 0 give (1 +e4)u = epv with |7| < L . Thus |u|® = |7||uv| < (1 )2 and
2Re(ux)| > 1 -6 — W By applying this, 5‘[ > | det P| (Lemma 4.1 (1)) and
(5.58) to (5.25) we get |;|(1 e = 5)2) < f ; it contradicts |7| < = for

small €, §.

So far we have proved Theorem 3.4 (1), (5). Furthermore, Theorem 3.4 (3), (4) can be
concluded for all cases except maybe for (02, 1 @ 0).

Case XVIL. (02,16 0) --+ (A, B)

@ o=1 (B=Dh)

|:ab
|bd
-2

We prove (02, 1) — (4 )b > 0,A € C>*?bytaking P(s) = J5e' ¥ [ : _ll]

a(s) s
s72 d(s)

s s

c(s) = 1, B(s) = [ j|,a(s),d(s) < L Next, P(s) = %fz [1 } B(s) =

% @1, cls) = 1give (02, ) - (A,a @& 1) with a > 0 and either A = |:8 (1)j| or

s s
A = 1@ 0, while P(s) = f o
02, ) > 1®o,add),d>a> 0.

(b) o =0 (B=1&0)

To prove (02, 1 ®0) — (1 D 0,a & 0) fora > 0 we take B(s) = Siz @O0, P(s) =s1y,
c(s) = 11in (5.2). From what we proved so far this implies (02, 1 ©0) — (A, B) for all
B # 0.

L B(s) = 5@ (5 + 59, c(s) = 1 yield

This completes the proof of the theorem. O
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