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Dynamic Profiling and Binding Affinity Prediction of NBTI
Antibacterials against DNA Gyrase Enzyme by Multidimensional
Machine Learning and Molecular Dynamics Simulations
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ABSTRACT: Bacterial type II topoisomerases are well-charac-
terized and clinically important targets for antibacterial chemo-
therapy. Novel bacterial topoisomerase inhibitors (NBTIs) are a
newly disclosed class of antibacterials. Prediction of their binding
affinity to these enzymes would be beneficial for de novo design/
optimization of new NBTIs. Utilizing in vitro NBTI experimental
data, we constructed two comprehensive multidimensional DNA
gyrase surrogate models for Staphylococcus aureus (q* = 0.791) and
Escherichia coli (¢* = 0.806). Both models accurately predicted the
ICsos of 26 NBTIs from our recent studies. To investigate the
NBTT's dynamic profile and binding to both targets, 10 selected
NBTIs underwent molecular dynamics (MD) simulations. The
analysis of MD production trajectories confirmed key hydrogen-bonding and hydrophobic contacts that NBTIs establish in both
enzymes. Moreover, the binding free energies of selected NBTIs were computed by the linear interaction energy (LIE) method
employing an in-house derived set of fitting parameters (a = 0.16, § = 0.029, y = 0.0, and intercept = —1.72), which are successfully
applicable to DNA gyrase of Gram-positive/Gram-negative pathogens. Both methods offer accurate predictions of the binding free
energies of NBTIs against S. aureus and E. coli DNA gyrase. We are confident that this integrated modeling approach could be
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valuable in the de novo design and optimization of efficient NBTIs for combating resistant bacterial pathogens.

1. INTRODUCTION

Increasing bacterial resistance is a global health concern,
leading to ineffectiveness of antibiotics. The World Health
Organization (WHO) regularly announces about the increas-
ing number of bacteria-caused deaths as well as the financial
burden associated with the unrestrained and uncontrolled use
of antibiotics in treating bacterial resistance. According to the
WHO, around 4.95 million deaths were associated with
antimicrobial resistance in 2019, and 1.27 million of the deaths
were attributed to it.” Considering the current situation, it is
estimated that by 2050, the number of human deaths caused
by bacterial infections would exceed 10 million per year.’
Consequently, the discovery of novel antibacterial agents for
combating bacterial resistance is of imperative importance.
Among the various antibacterial targets, bacterial type II
topoisomerases, such as DNA gyrase and its paralogous
equivalent topoisomerase IV (topolV), proved to be well
validated in treating bacterial infections. The main function of
DNA gyrase enzyme is to maintain a correct spatial topology of
the DNA molecule through introduction of negative supercoils,
while topolV is responsible for DNA decatenation activity
during the recombination and replication processes. Structur-
ally, both bacterial type II topoisomerases are heterotetrameric
enzymes, with DNA gyrase consisting of two GyrA and two
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GyrB subunits (A,B,) and topolV consisting of two ParC and
two ParE subunits (C,E,). GyrA/ParC subunits are catalytic
domains that are responsible for cleavage and religation of the
DNA, while GyrB/ParE subunits are the ATPase domains that
provide energy for the enzymatic reaction.””> Consequently,
the perturbation of the correct spatial DNA topology by
intercalating small ligand molecules between DNA base pairs
that concomitantly bind to the enzyme prevents the essential
bacterial processes, which, in turn, lead to bacterial cell death.

A broadly known and commonly used class of intercalating
antimicrobial agents that target these bacterial enzymes are
fluoroquinolones.® Some representatives of this class, including
ciprofloxacin, levofloxacin, and moxifloxacin, are still used in
the clinical practice, but unfortunately, their clinical use over
several decades and frequent misapplication have promoted
acquired resistance in bacteria.’”® Approximately two decades
ago, a new promising class of non-fluoroquinolone intercalat-
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Figure 1. (a) Two-dimensional structure of an NBTI representative'> comprising the left-hand-side (LHS), linker, and right-hand-side (RHS)
moieties and established structure—activity relationship (SAR) of the NBTTs used in this study. (b) Structural alignment of our recently disclosed S.
aureus DNA gyrase (PDB ID: 6Z1A)" and E. coli DNA gyrase (PDB ID: 6RKS)'® enzyme; S. aureus GyrA (cartoon representation in blue) and E.
coli GyrA (cartoon representation in violet). The GyrB subunit is presented in cartoon representation in yellow and DNA in red. The amino acid
residues important for binding of the NBTIs are in stick representation (for S. aureus GyrA: Ala68, Met7S, Asp83, and Met121, i.e,, for E. coli GyrA:
Ala67, 1le74, Asp82, and Met120). The co-crystallized NBTI ligand (AMKI12)" is depicted as a ball-and-stick representation colored by

heteroatoms.

ing antibacterial agents commonly known as novel bacterial
topoisomerase inhibitors (alias NBTIs) was disclosed (Figure
la).””"" These intercalating antibacterials inhibit the same
bacterial type II topoisomerases as fluoroquinolones, however
via a completely different inhibitory mechanism, i.e.,
stabilization of single-strand DNA breaks relative to the
fluoroquinolones-induced stabilization of double-strand DNA
breaks.'"'* Moreover, in contrast to fluoroquinolones, NBTIs
bind to an alternative, close, but not overlapping binding site in
bacterial topoisomerases, thereby largely overcoming cross-
resistance with the fluoroquinolones (Figure 1b).""~"

The beginnings of the development of NBTIs as a new class
of antibacterials reach back nearly 20 years ago, with the
discovery of the first encouraging NBTI, viquidacin (NXL-
101), that underwent phase I clinical trials. However, it was
discontinued due to its hERG-related cardiotoxic issues
manifested as prolonged QT signals in the heart.'* Further
important breakthrough was the unveiling of the very first
crystal structure of Staphylococcus aureus DNA gyrase enzyme
in complex with an NBTT ligand (GSK299423)"" that enabled
structure-based design/optimizations of numerous NBTI
variants with improved antibacterial activity (Figure 1a). The
most advanced NBTI is gepotidacin, which currently finishes
the third phase of clinical trials for the treatment of
uncomplicated urogenital gonorrheals’16 and uncomplicated
urinary tract infection commonly caused by Escherichia coli.'’

As represented in Figure la, the NBTI antibacterials
comprise three key parts: a heteroaromatic “left-hand-side”
(LHS) that intercalates between central DNA base pairs, an

aromatic/heteroaromatic “right-hand-side” (RHS) that binds
into a deep, non-catalytic hydrophobic binding pocket formed
at the interface of both GyrA/ParC subunits in DNA gyrase/
topolV, and a specific linker connecting them. It was found
that the linker moiety is an essential NBTI structural
determinant that ensures not only proper spatial orientation
and conformation of the entire ligand for establishing key
interactions with amino acid residues delineating GyrA/ParC
subunits in DNA gyrase/topolV but also suitable physico-
chemical properties of NBTIs."”~*' This imposed introduction
of various linker variants, including aminopiperidine, tetrahy-
droindazole, oxabicyclooctane, tetrahydropyrane, dioxane, and
cyclohexane (Figure 1a).”?*7*® The basic nitrogen on the
linker moiety (Figure la, represented in blue) was found to be
of exceptional importance for the NBTI’s binding affinity and
consequently their antibacterial potency through establishing a
key ionic interaction with GyrA Asp83, i.e., Asp82 residue of S.
aureus and E. coli DNA gyrase.'”"'"'¥** Moreover, the available
X-ray and cryo-electron microscopy (cryo-EM) structural data
of S. aureus DNA gyrase (PDB ID: 6Z1A)"* and E. coli DNA
gyrase (PDB ID: 6RKS)'® in complex with DNA and
intercalated NBTTI ligands (AMK12 and gepotidacin, respec-
tively) revealed a high level of conservancy of amino acid
residues delineating NBTT binding sites in both enzymes of
Gram-positive and Gram-negative bacteria (Figure 1b)."*"*7°
This in turn enabled a more intuitive and rationally grounded
design/optimization of potent NBTI antibacterials on a
structure-based level.">*”*° 733 It should be stressed, however,
that the majority of structure-based strategies (e.g., pharma-
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Table 1. Summary of the Multidimensional QSAR Models of the DNA Gyrase Enzyme Originating from S. aureus and E. coli
Obtained by the Quasar® Partial Least-Squares Genetic Algorithm (PLS-GA) Method”

http://pubs.acs.org/journal/acsodf

model number of crossovers number of generations I 7 rmsd training  max. training I's rmsd test max. test
S. aureus DNA gyrase 34,000 170 0.795 0.791 LS 14.9 0.756 LS 5.1
E. coli DNA gyrase 75,000 375 0.810 0.806 1.3 8.4 0.582 LS 4.3

%2, Pearson’s correlation coefficient, qzz cross-validated %, and pzz predictive 7> for the test set; the rmsd and maximal deviation from the
experimental binding affinity are given as a factor (off) in ICg,.

Figure 2. Multidimensional quasi-atomistic binding-site surrogate models of (a) S. aureus DNA gyrase enzyme and (b) E. coli DNA gyrase enzyme.
For clarity and easier interpretation of the quasi-atomistic properties mapped on the pseudosurface of the models, the corresponding key amino
acid residues crucial for NBTI binding and affinity (e.g,, A68, M7S, D83, and M121 from the S. aureus DNA gyrase—stick representation, inset:
blue, ie., A67, 174, D82, and M120 from the E. coli DNA gyrase—stick representation, inset: violet) as well as the central DNA base pairs [e.g,,

adenine-thymine (AT-TA) base pairs, stick representation, inset: red] were artificially inserted utilizing the available experimental data.

12,18

cophore modeling and screening, molecular docking calcu-
lations) utilized for NBTI’'s design/optimization provide a
satisfactory insight into their binding mode that is usually
quantified by a scoring function derived empirically.’* Indeed,
these in silico methodologies are capable of relatively correct
prediction of the NBTI binding mode; however, the accurate
prediction of their binding affinity is commonly demanding.
The latter one is of particular concern considering the
expectations that docking-derived binding affinity of a ligand
is indeed a good indicator of its actual binding affinity, which
in turn results in selection of NBTI hit candidates that
frequently fail at the later in vitro stages.”® Put differently, one
should implement a set of more vigorous and accurate enough
in silico modeling methodologies in describing the ligand’s
binding and subsequent derivation of its binding affinity for the
biological target under consideration.

In the present paper, we discuss the development and
validation of multidimensional predictive binding site surrogate
models of S. aureus and E. coli DNA gyrase enzymes. The
models aimed at predicting enzyme inhibitory potencies of
structurally diverse NBTI analogues with high accuracy as well
as identification of the relevant amino acid residues for their
binding and affinity in both bacterial targets. Those NBTI
analogues with highly predicted binding affinities by both
multidimensional binding site surrogates were selected and
subsequently subjected to molecular dynamics (MD) simu-
lations for profiling of their dynamic behavior and character-
ization of their ligand—protein interactions. In addition, the
linear interaction energy (LIE) method was employed for
prediction of binding free energies (AGying pred) for selected

NBTIs utilizing an in-house derived set of LIE weighting
parameters (a, /3, and y). Moreover, one can recognize this
integrated in silico modeling approach as an important
advantage in the identification of de novo designed/optimized
NBTI analogues with strong enzyme inhibitory potencies
against DNA gyrase enzymes of Gram-positive and Gram-
negative bacterial pathogens, which nowadays are of
considerable significance in combating bacterial resistance.

2. RESULTS AND DISCUSSION

2.1. Multidimensional QSAR Simulations. The multi-
dimensional QSAR simulations were based on a family of 200
parent models for each model separately (S. aureus and E. coli
DNA gyrase) that differ in the quasi-atomistic properties
mapped on their pseudosurface. During the modeling, the
family of each DNA gyrase surrogate model evolved for a
different number of crossover cycles that correspond to a
different number of generations (see Table 1).

The multidimensional S. aureus DNA gyrase QSAR model
was derived on 160 NBTI;, training compounds (Table 1 and
Supporting Information, Figure S1a). The model converged at
a cross-validated r* value (q* = 0.791, at 34000 crossovers),
and its predictive performance was evaluated on 39 test ligands
(p* = 0.756, predictive r*). The calculated binding affinity of
the training and test ligands differed on average by a factor of
L.§ from the experimental values, while the maximum deviation
of a single ligand was 14.9 for the training set and 5.1 for the
test set. In a similar manner, the E. coli DNA gyrase
multidimensional QSAR model grounded on 108 NBTI
training compounds (Table 1 and Supporting Information,

https://doi.org/10.1021/acsomega.4c00036
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Table 2. External, Independent Set of 26 NBTI Antibacterials with Experimentally Evaluated Inhibitory Potencies against S.
aureus, i.e., E. coli DNA Gyrase Enzyme (ICj,), Selected from Our Previous Studies for Additional External Validation
(Prediction of Binding Affinities) of the Constructed Multidimensional QSAR Models

S. aureus DNA gyrase

E. coliDNA gyrase

ID  Structure ICso (MM)®  AG°(kcal/mol) | ICsp (UM)* AG°(kcal/mol)
Exp. Pred. Exp. Pred. |Exp. Pred. Exp. Pred.
~o nﬁu
LO1 %NCV 0283 0338 -878 867 |197 9.09 -631 -6.76
|
N
~o HQCI
N N
L02 %oﬁ 166 166 775 7175 307 085 739 813
|
N
\O HQB'
Lo3 [ ! W IT 0.294 0231 -876  -890 |7.75 0915 -6.85 -8.09
|
N
Lo4 [ ! 0065 0087 -9.63  -946 | 157 0356 -7.78 -8.64
N
Los Y 7T F 10009 0039 -108 994 | 0356 0574 -8.64 -837
|
N
.
- ﬁ
LO6 [ " . } 9. -8. : . -8. -8.
) o LY Fo|0113 0244 931 8.87 (0234 0263 -889 -8.82
N
P Y
Lo7 () . (T 0.090 0.144 -945 917 |0.623 0333 -832 -8.68
|
N
.
- ﬁ
LO8 W N 0.034 0059 -100 969 |0379 0459 -8.61 -850
N/\‘ OMO/
.
o Hﬁ0|
LO9 (v oY Fol0182 115 -9.04 796 |257 229 749  -7.56
N/\‘ Oﬁ
.
- ﬁ
LI0 [ " : : 9. -10. : ) -8. -8.
) o Y 0.053 0024 975 102 |0.607 0445 -833 -8.52
g
~o nﬁm
L Y T * 10006 0187 -11.02 -9.02 |0236 464 888 -7.15
L
\O nﬁm
L2 O (T F 10007 0450 -1093 -850 |0.197 256 -8.99 -7.50
b
~o nﬁl
L3 )Y (7 T 10004 0091 -1126 944 0067 1.04 -9.62 -802
|
Nx
.
- ﬁ
L4 >y 7 10014 0187 -1053 -9.02 |0.172 2171 907 -7.59
T
18281 https://doi.org/10.1021/acsomega.4c00036
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Table 2. continued

Structure

S. aureus DNA gyrase

ICso (uM)*
Exp. Pred. Exp. Pred.

AG°(kcal/mol)

E. coliDNA gyrase

ICso (MM)"
Exp. Pred. Exp. Pred.

AG°(kcal/mol)

L15

L16

L17

L18

L19

L20

L21

L22

L23

L24

L25®

\O : NH;,
L26® %OJ}J H
J
Ns

0.004 0.071 -1126  -9.59

0.009 0.103 -10.79  -9.37

0.009 0.109 -10.79 -9.33

0.123  0.637 -9.26 -8.31

0.120 1.488 -9.28 -7.81

0.372  0.308 -8.62 -8.73

0.321 3.18 -8.70 -1.37

0056 155 -9.72 -1.79

0.108 0.100 -9.34 -9.39

0.021 0.598 -10.29 -8.34

>100 51.62 -536 -5.75

>100 41.72 -5.36 -5.87

0.087 0.154 -946 -9.13

0326 0.412 -8.69 -8.56

0.126 0.177 -9.25 -9.05

10.309 0.869 -6.68 -8.12

0386 3.114 -8.60

-7.383

4784 0613 -7.13 -833

7995 2478 -6.83 -7.51

0334 1.044 -8.68 -8.02

2.069 0.508 -7.62 -8.44

0.054 5.612 -974 -7.04

>100 11.84 -536 -6.60

>100 103.4 -536 -5.34

“The experimental ICy, values for S. aureus and E. coli DNA gyrase are available in our recent publications.”**> PNBTI ligands used as negative

controls; the experimental ICy, values are available in our recent publications.

35,36

Figure S1b) reached a cross-validated r* value (q* = 0.806, at
75000 crossovers), which the predictive power was evaluated
on 25 test ligands (p* = 0.582, predictive r*). The average
calculated binding affinity of the training and test ligands
deviated from their experimental values by a factor of 1.3 and
1.5, respectively, whereas the maximum deviation of a single

18282

compound resembles a value of 8.4 for the training set and 4.3
for the test set. In addition, the sensitivity of both models to
the biological data used (ICs,) was assessed by conducting a
series of 20 scramble (Y-randomization) trials per model
(Supporting Information, Table S1). As demonstrated, one can
perceive that the resulting predictive p* values for both models

https://doi.org/10.1021/acsomega.4c00036
ACS Omega 2024, 9, 18278—-18295
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Figure 3. Two-dimensional plots representing the correlation of experimental (AG,,) versus predicted (AGp,.q) binding affinities in keal/mol of
NBTIs employed in this study (NBTIg, and NBTI, respectively) as derived by (a) S. aureus DNA gyrase multidimensional surrogate model (the
training set objects are depicted as solid blue squares), and (b) E. coli DNA gyrase multidimensional surrogate model (the training set objects are
depicted as solid violet squares). For both models, the test set compounds are represented as solid red circles, while the external set compounds are

represented as solid green triangles. The error bars correspond to the cumulative standard deviation (SD) values calculated for over 200 parent
models.

Figure 4. Comparison of Quasar® predicted and docking-derived binding poses of compounds L0S and LOG6 in S. aureus DNA gyrase (inset: blue)
and E. coli DNA gyrase (inset: violet). (a, b) Binding conformations of LOS and L06 in the S. aureus DNA gyrase model and (c, d) binding
conformations of LOS and L06 in the E. coli DNA gyrase model. The mapped yellow quasi-atomistic properties (hydrogen-bonding acceptors)
correspond to the carboxyl oxygen atoms of Asp83/Asp82 residues of S. aureus, i.e., E. coli GyrA subunits, which are crucial for establishing strong
NBTI—enzyme ionic interactions (green dots). GyrA subunits are represented as a cartoon, and the ionic interactions between ligand’s protonated
nitrogen and the aspartate residues are shown as green dots, while the bifurcated halogen-bonding interactions between RHS’s bromine atom and
backbone carbonyl oxygens of Ala68/Ala67 residues are depicted as yellow dots.

are significantly lower relative to those obtained by the selected selected multidimensional models for both enzymes are indeed
models (Table 1); these results clearly pinpoint that the sensitive to the biological data employed and consequently can
18283 https://doi.org/10.1021/acsomega.4c00036
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Figure 5. Root-mean-square deviation (RMSD [A]) and radius of gyration (Rg [A]) plots of 500 ns MD simulations for the ligand-free (Gyrapo) S.
aureus DNA gyrase enzyme (PDB ID: 6Z1A)"* and its NBTI-ligated complexes (Gyr-LO1—L08). (a) Backbone protein RMSDs; (b) DNA
RMSDs; (c) ligand RMSDs (LO1-L08); and (d) protein R, plots of the ligand-free (Gyrapo) and ligated systems (Gyr-LO1—L08).

be used for the prediction of binding affinities of newly
designed/optimized NBTIs.

By comparing the available crystal structure of S. aureus
DNA gyrase in complex with the AMK12 ligand, it can easily
be recognized that the S. aureus DNA gyrase model’s quasi-
atomistic properties mapped on its pseudosurface are correctly
reproducing some of the key amino acid functionalities for
NBTI binding and affinity [e.g, the yellow hydrogen-bonding
(HB) acceptor particles that correspond to the GyrA Asp83
carboxylate moiety as depicted in Figure 2a]. In addition, the
hydrophobic features (brown and gray particles) cover a
significant part of the pseudosurface and correctly reflect the
hydrophobicity of the binding pocket delineated by Ala68,
Met75, and Metl21 residues.

Considering the structural resemblance that both enzymes
share, similar arrangement of quasi-atomistic properties can
also be noticed on the pseudosurface representing the E. coli
DNA gyrase surrogate model (Figure 2b), ie., hydrogen-
bonding acceptor particles (yellow spheres) that correspond to
the GyrA Asp82 carboxylate group as well as the hydrophobic
entities (brown and gray particles) that coincide with Ala67,
Ile74, and Metl120 residues delineating the NBTI binding
pocket in E. coli DNA gyrase.'®

Thus, validated, the constructed quasi-atomistic S. aureus
and E. coli DNA gyrase surrogate models were further
challenged for prediction of the binding affinities for 26
structurally optimized NBTIs (L01—L26) selected from our
recent studies with experimentally determined inhibitory
potencies, which were compiled as an external, independent
set not used in the development of the models (Table 2).%***
Since the chemical property domain of the NBTIs encompass-
ing the external set corresponds to the property space of the
models (similar structural functionalities as the training set
compounds) and their activity range is within the broader
range of activities of the training set molecules, one could
expect reliable predictions of their binding affinities instead of
their extrapolation.

18284

As demonstrated in Table 2 and Figure 3, it is apparent that
the predictive power of the S. aureus DNA gyrase model
outperforms the E. coli DNA gyrase model to a certain extent.
This slight discrepancy is most probably a consequence of the
quality of four-dimensional (4D) representation of the ligand’s
ensembles obtained by the flexible docking of the ligands that
is directly related to the quality of the experimental structural
data utilized (e.g., 2.3 A resolution of S. aureus DNA gyrase X-
ray structure'” relative to the 4.0 A resolution of E. coli DNA
gyrase cryo-EM structure'®). It is evident that both models
relatively accurately predict the binding affinities of NBTIs
containing oxymethylene cyclohexane (e.g, LO6—L08) and
oxymethylene tetrahydropyran linkers (e.g, L09, L10, and
122).

However, it is interesting to note that binding affinities, in
particular those of compounds LO1, L11, L12, L14, and L18,
are significantly poorly predicted by the E. coli DNA gyrase
model compared to those obtained by the S. aureus DNA
gyrase model. Although these NBTIs encompass an amino-
piperidine-naphthyridine moiety that is comprehensively
covered by the training set ligands (the models), they contain
a variety of RHS fragments (e.g., chloropyridine, mono- and
difluoro p-halogenated phenyl moieties), which are outside the
structural space of the models, and expectedly, their binding
affinities are poorly derived. The same also stands for the
modest predictions of some of these compounds by the S.
aureus DNA gyrase model (e.g, L01, L11, L12, and L14).
Despite the structural differences of RHS fragments, it is also
notable that some compounds, in particular LOS (an
naphthyridine analogue) and L06 (oxymethylene cyclohexane
derivative), are well predicted by both models (Table 2),
which results are in line with their calculated binding
conformations, as well (Figure 4). Put differently, both
compounds contain difluorophenyl RHS moieties that differ
in the position of the fluorine atoms, which significantly affects
the enzyme’s inhibition. While LO6 is equally potent in both

https://doi.org/10.1021/acsomega.4c00036
ACS Omega 2024, 9, 18278—-18295
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]) plots of 500 ns MD simulations for the ligand-free (Gyrapo) E.

coli DNA gyrase enzyme (PDB ID: 6RKS)'® and its NBTI-ligated complexes (Gyr-L0S, Gyr-L06, and Gyr-L08—L10). (a) Backbone protein
RMSDs; (b) DNA RMSDs; (c) ligand RMSDs (L0S, L06, and L08—L10); and (d) protein R, plots of the ligand-free (Gyr,y,,) and ligated systems

(Gyr-L0S, Gyr-L06, and Gyr-L08—L10).

enzymes, LOS is 30-fold stronger against S. aureus DNA gyrase
(Table 2).

Moreover, both multidimensional DNA gyrase surrogate
models also relatively accurately predicted the binding affinity
of compounds L25 and L26, which served as a negative control
(ICs, > 100 uM) for additional validation of their predictive
performance (Table 2). It is interesting to note that these
NBTIs comprise structural features that are not covered in the
training sets of both models (e.g., L25—an amide containing
NBTI and L26—an NBTI with a p-aminophenyl RHS
moiety),”>® yet their predicted relative binding free energies
differ around +1.0 kcal/mol on average (Table 2).

Nevertheless, considering the structural diversity of these
NBTT analogues as well as their reasonably predicted binding
affinities as derived by the multidimensional QSAR models, we
selected 10 compounds (LO1—L10) for further assessment of
their dynamic behavior and prediction of binding affinities by
MD simulations.

2.2. Molecular Dynamics Simulations. To investigate
the dynamic profile and binding of the selected NBTI
compounds (LO1—-L10) to S. aureus and E. coli DNA gyrase
enzymes, the compounds underwent 500 ns molecular
dynamics (MD) simulations. The MD simulations were
performed for eight S. aureus DNA gyrase (PDB ID:
6Z1A)" complexes assembled by utilizing LO1—L08 pre-
viously derived docked conformations, ie., five E. coli DNA
gyrase (PDB ID: 6RKS)'® complexes with L0S, L06, and
L08—L10 ligands (Table 2). Moreover, for comparison
purposes, MD simulations on apo (ligand-free; Gyr,,,) forms
of both enzymes (S. aureus and E. coli DNA gyrase) were
conducted, as well. The resulting MD production trajectories
of each investigated system (S. aureus and E. coli DNA gyrase)
were in the first instance analyzed to appraise their stability, the
dynamics profile, and the compactness by monitoring their
root-mean-square deviation (RMSD) and radius of gyration
(R,) (Figures 5 and 6). Considering the complexity of
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investigated systems, RMSD plots of each system’s entities
(e.g, backbone protein, DNA, and NBTI ligands) over the
entire simulation time were calculated.

Figures Sa and 6a show the backbone protein RMSDs of the
apo (ligand-free; Gyr,,,) and NBTI-ligated S. aureus DNA
gyrase (Gyr—LOl—LOSS, ie, E. coli DNA gyrase (Gyr-LOS,
Gyr-L06, and Gyr-LO8—L10) systems, respectively. As
demonstrated in Figure Sa, there are no significant backbone
protein RMSD deviations between the apo and S. aureus DNA
gyrase NBTI complexes (~1.5-2.8 A) that indicate well-
equilibrated, stable systems over the entire simulation time.

A similar outcome can also be observed for E. coli DNA
gyrase systems, i.e., backbone protein RMSDs deviate ~3.0—
4.0 A for most of the investigated complexes with slight
fluctuations for the Gyr-LOS and Gyr-L06 complexes (Figure
6a). In contrast to the enzyme, S. aureus DNA RMSD is
slightly higher for the apo (ligand-free) form (~1.0-2.8 A)
relative to those of complexated systems (~1.0-2.0 A),
indicating stabilization of the DNA molecule by intercalation
of the NBTT's LHS moieties between central DNA base pairs
(Figure Sb). However, in E. coli, there are no substantial DNA
fluctuations between the apo and complex systems, in which
RMSD values differ by ~0.5 A (Figure 6b).

Among the investigated NBTIs (Figures Sc and 6¢), one can
observe a relatively good stability for the majority of them
within S. aureus, i.e., E. coli DNA gyrase binding site, except for
L04 and LO7 ligands in S. aureus DNA gyrase, i.e, LOS and
L08 ligands in E. coli DNA gyrase, in which occasional RMSD
fluctuations appear as a consequence of the axial rotation of
their RHS moieties within the enzyme’s binding sites. These
findings are in agreement with the evaluations of the
compactness of the systems, as represented by the calculated
R, plots (Figures 5d and 6d).

2.3. Ligand—Protein Interactions. 2.3.1. Hydrogen-
Bonding and Hydrophobic Contact Analysis. The hydro-
gen-bonding (HB) occupancy analysis of the investigated

https://doi.org/10.1021/acsomega.4c00036
ACS Omega 2024, 9, 18278—-18295



ACS Omega http://pubs.acs.org/journal/acsodf

(a)

os IR IAN | NN AN NN N N[O
cor|| 1 NTCAMNMERN 1 00 10 0 A AT
coes | ||| D 0NN AN 1 T A oA

[N N A e

ces [HIIN (AERTERETEMNE XN (/T

o« NN NO AR D ORI 0 R A EET e
T N A YA T T
oz [ 1 R0 A ] AT T R
L"1I|||]|| |I|||I B €

i T
100 150 20] 250 300 350 400 450 500 Lo1 Lo2 Lo3 Lo4 LO5 LO06 Lo7 ™
time (ns)
(b)

88.88 @ Asps2
e ‘ H | ”.II..II|I|I|||- O Asps2”
wg_.l"”ll\"‘l.l g 69.18

B

o« N | | [

““IIII_-
- . ) 0 0__ 024 _ 0
0 450 50 Los L06 L09 10

hme(rls]

Figure 7. Hydrogen-bonding occupancy analysis of S00 ns MD-simulated NBTI compounds (L01—-L10) with (a) GyrA Asp83'/Asp83” residues

of S. aureus DNA gyrase and (b) GyrA Asp82’/Asp82” residues of E. coli DNA gyrase. Only direct ionic interactions between ligands and GyrA
aspartate residues were considered.

Figure 8. NBTI direct ionic interactions between the Asp83/Asp82 residue from one GyrA subunit and ligand’s protonated nitrogen as well as
indirect water-mediated HB interactions with the Asp83/Asp82 residue from the second GyrA subunit. (a) S. aureus DNA gyrase (left L0S, middle
L06, and right L08). (b) E. coli DNA gyrase (left L0S, middle L06, and right L08). The GyrA subunits are represented as cartoon (S. aureus GyrA
in blue and E. coli GyrA in violet), while NBTI ligands (gray) are shown as ball and stick representation and colored by heteroatoms. The direct

and water-mediated ionic interactions between the ligand’s protonated nitrogen and the aspartate residues from both GyrA subunits are depicted as
green dots.
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Figure 9. Hydrophobic interactions (HI) occupancy analysis of 500 ns MD-simulated NBTI compounds (LO1—L10) with (a) GyrA Ala68, Gly72,
Met7S, Asp83, and Met121 residues of S. aureus DNA gyrase and (b) GyrA Ala67, Gly71, Ile74, Asp82, and Met120 residues of E. coli DNA gyrase.
Solid bars correspond to binding site residues of one GyrA subunit, while striped bars represent those of the other GyrA subunit. An average
distance of <4.0 A was considered as a cutoff for measuring the hydrophobic contacts (e.g, aliphatic—aromatic carbons, aromatic—aliphatic

carbons, aliphatic—aliphatic carbons, and carbon—halogen).

NBTIs with amino acid residues covering the NBTT’s binding
site in S. aureus and E. coli DNA gyrase enzymes shows that
almost all of them interact mainly with Asp83 (Figure 7a), i.e.,
Asp82 residue (Figure 7b) from a sole GyrA subunit in both
enzymes during the entire simulation time. Such an outcome
was expected to a certain extent considering the predominantly
hydrophobic nature of the NBTI binding site in bacterial
topoisomerases. The only exception is the compound L04 in S.
aureus DNA gyrase, which establishes almost balanced direct
HB interactions with Asp83’ (35.64%) and Asp83” (50.08%)
residues from each GyrA subunit. Such a balanced HB
interaction is most probably due to the free axial rotation of
the amino-cyclohexane linker moiety; this finding is congruent
with the experimental evidence that a direct ionic inter-
action(s) between the linker’s protonated nitrogen and GyrA
aspartate residue is crucial for the NBTI antibacterial potency
(Table 2 and Figure 7a).'""®

The comparison of HB occupancy for NBTI ligands (e.g,,
L0S, L06, and L08) active against both S. aureus and E. coli
DNA gyrase enzymes (Table 2) shows that these compounds
establish relatively strong ionic interactions over the entire
simulation time with only a single GyrA Asp83, i.e., Asp82
residue. These steady ionic interactions (~2.52—3.40 A for S.
aureus DNA gyrase, i.e., ~2.45—2.67 A for E. coli DNA gyrase)
are undoubtedly one of the key interacting elements
accounting for the stability of these ligands within the enzyme
binding pockets, which in turn is notably reflected on their

relalgively strong inhibitory potencies in both enzymes (Table
2).

It should be stressed, however, that relative to other amino
acid residues (e.g., Ala68, Gly72, Met7S, and Metl21 in S.
aureus DNA gyrase, i.e, Ala67, Gly71, Met74, and Met120 in E.
coli DNA gyrase), which delineate the deep hydrophobic
binding pocket of NBTIs in DNA gyrase enzymes, the GyrA
aspartate residues (e.g.,, Asp83, i.e,, Asp82 in S. aureus and E.
coli DNA gyrase) are solvent-exposed as demonstrated by the
calculated solvent-accessible surface area (SASA) plots
(Supporting Information, Figure S2). Put differently, the
analysis of MD production trajectories of the investigated
NBTIs (LO1—L10) revealed that while the NBTT’s linker basic
nitrogen establishes a direct ionic interaction with the aspartate
residue from one GyrA subunit (Figure 7), it is also forming an
indirect HB interaction with the aspartate residue from the
second GyrA subunit through the surrounding water molecules
in both enzymes (Figure 8); these findings coincide with the
recent crystallographic experimental evidence.'

It is worth mentioning that these structural aspects are nicely
emulated at the multidimensional pseudoatomistic S. aureus
and E. coli DNA gyrase surrogate models, as well (Figure 2).
Put differently, aside from the NBTT’s direct ionic interactions
with one GyrA Asp83/Asp82 residue that are well defined by
the HB acceptor features (yellow particles) as described
previously, their indirect water-bridged HB interactions with
the second GyrA Asp83/Asp82 residue are appropriately

https://doi.org/10.1021/acsomega.4c00036
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Figure 10. Comparison of the different calculation methods employed for deriving the relative binding free energies (AGgq JHed) of the test set

compounds (A06, A10—A12). The green bars represent the experimental binding free energies (AG

0

exp) Of the test set compounds, while gray,

yellow, and red bars depict their average binding free energy values over four MD trajectory samplings (100—200, 250—350, 400—500, and 20—500
ns) as retrieved by the various LIE methods utilized. The bars with intense tones correspond to calculation methods that do not consider the SASA
parameter, while those represented in pale tones correspond to the methods that include the SASA parameter. The error bars correspond to the
standard deviation (SD) values calculated over four trajectory samplings.

mimicked by the HB donor features (green particles) situated
at the opposite side on the model pseudosurface (Figure 2).

It should be pinpointed, however, that although these HB
interactions are significantly contributing to the excellent
antibacterial properties of NBTIs, their overall stability and
antibacterial potency against the DNA gyrase enzyme is
additionally enhanced by establishing a network of hydro-
phobic interactions (HI) between the NBTI’s RHS moiety and
amino acid residues outlining the NBTI binding pocket
(Figure 1). The HI occupancy analysis of MD-simulated
NBTIs (LO1—-L10) revealed that Ala68/Ala67, Asp83/Asp82,
and Met121/Met120 residues from both GyrA subunits in S.
aureus and E. coli DNA gyrase enzymes almost equally
contribute in forming the HI network over the entire
simulation time, however, not with equal frequency (Figure
9). These amino acid residues are well conserved among DNA
gyrase enzymes originating from various bacterial species.
Nonetheless, it should be emphasized that even a negligible
variation in a single amino acid residue could have a
tremendous impact on the NBTIs antibacterial potency
between bacterial species. This is well demonstrated by the
differences in the antibacterial potencies of compounds LOS,
L06, and L08 making HI with Met7S, i.e., Ile74 residue in S.
aureus and E. coli DNA gyrase. Indeed, LOS establishes a
somewhat stable HI with the Met75 residue(s) in S. aureus
DNA gyrase (Figure 9a) and only a few HI with the Ile74
residue(s) in E. coli GyrA (Figure 9b), which in turn might be
the reason for its lower inhibition of E. coli DNA gyrase (Table
2). In contrast, the HI occupancy that L06 establishes with
Ile74 in E. coli DNA gyrase is high, which is also reflected in
the stronger inhibition compared to compound L0S. More-
over, the HI occupancy that LO8 provides is substantially lower
in E. coli DNA gyrase relative to S. aureus DNA gyrase, which is
reflected in a 10-fold lower inhibition of E. coli DNA gyrase by
this NBTI ligand (Table 2).

2.4. Linear Interaction Energy (LIE). The prediction of
binding free energy (AGpig prea) for selected external NBTI
ligands (Table 2, L01—L10) was conducted utilizing the linear
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interaction energy (LIE) method.”” Since default weighting
parameters @ = 0.5, # = 0.16, and y = 0 were not applicable to
our systems, suitable LIE parameters were determined from
the resulting MD production trajectories obtained by MD
simulations of 18 S. aureus DNA gyrase—NBTI complex
systems comprising structurally diverse NBTIs (A01—A18)
selected from the NBTIg, library (Supporting Information,
Table S2 and Figure S3). The adjustment of LIE weighting
parameters was accomplished on 14 training systems
(Supporting Information, Table S3; A01—A0S, A07—A09,
A13—A18) by means of linear fitting of their experimental
binding free energies (AGbmd_exp) and subsequently validated
by predicting the binding free energies (AGgi,q prea) Of four
test systems not used in the parameter calibration procedure
(Supporting Information, Table S3; A6, A10—A12).

For this purpose, the non-bonded van der Waals and
electrostatic interaction energy terms were calculated from the
resulting MD production trajectories (sampled at four time
ranges: 100—200, 250—350, 400—500, and 20—500 ns) by
employing three different calculation methods: cpptraj lie
command,*® LIEW,* and VMD’s NAMD Energy plugin,40
with and without considering SASA (Supporting Information,
Table S3). Based on the average calculated binding affinity
with the lowest SD value (AG,,eq avg) Of the test set consisting
of four ligands (Figure 10; A06, A10—A12), the “NAMD,, c.s.”
method was selected as the most appropriate one (Supporting
Information, Tables S3 and S4), which was subsequently used
to calculate the relative free energies of binding (AGgq Jmd) of
the external NBTIs (L01-L10) with correctly predicted
binding affinities by the quasi-atomistic surrogate models
(Table 2). It should be highlighted that the LIE weighting
parameters corresponding to the selected “NAMD,, .~
calculation method (a = 0.16, f = 0.029, y = 0.0, intercept =
—1.72, and RMSE = 1.17) were derived solely on NBTI
ligands active against the S. aureus DNA gyrase enzyme.
However, considering the high level of conservancy of amino
acid residues outlining the NBTI binding pocket in both
enzymes (S. aureus and E. coli DNA gyrase), we assumed that

https://doi.org/10.1021/acsomega.4c00036
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the same “NAMD,, ,,,” method and its corresponding LIE
fitting parameters might be applicable for prediction of binding
free energies of NBTIs against the E. coli DNA gyrase enzyme,
as well.

Table 3 summarizes the experimental and predicted binding

free energy values of selected NBTI compounds (LO1—L10)

Table 3. Experimental (AGy;,g o) and Predicted

(AGYa _pred) Binding Free Energy Values of Selected
External Compounds (Table 2, LO1—-L10) against Both
Enzymes (S. aureus and E. coli DNA Gyrase, Respectively)
as Derived by the Selected LIE Method (“NAMD,,, ,..”; & =
0.16, § = 0.029, y = 0.0, Intercept = —1.72)

S. aureus DNA gyrase E. coli DNA gyrase

AGying ex AGging pred AGpind ey AGging preq
ID (keal/ mof) (kcal/mol) ID (keal/ mof) (kcal/mol)
Lo1 —9.08 -9.19 LO0S —8.94 —-10.26
Lo2 —8.01 -9.36 L06 -9.19 —-10.48
Lo3 —9.06 —-9.82 L08 —-8.90 -9.74
Lo4 —-9.96 —9.65 L09 —=7.75 -10.22
Los —11.15 -9.53 L10 —8.62 —10.68
Lo6 —9.96 —-9.22
Lo7 -9.77 —9.61
Lo8 —10.35 —9.49

for both enzymes (S. aureus and E. coli DNA gyrase) as derived
by utilizing the “NAMD,,,  method. For most of the
ligands, the accuracy of predicted binding free energy values
(AGying prea) deviates around +1.0 kcal/mol from their
experimental values (AGy;,4 exp) against S. aureus DNA gyrase
(Table 4). Nonetheless, it should be emphasized that although

Table 4. Comparison of AAGg;,4 for Both Methods
(Multidimensional QSAR, mQSAR and LIE) for S. aureus
and E. coli DNA Gyrase”

AAGP,q (keal/mol)

mQSAR LIE method

ID S. aureus E. coli S. aureus E. coli
Lo1 0.11 0.45 0.11

L02 0.00 0.74 1.35

LO3 0.14 1.24 0.76

Lo4 0.17 0.86 0.31

LOS 0.86 0.27 1.62 1.32
L06 0.44 0.07 0.74 1.29
L07 0.28 0.36 0.16

LO08 0.31 0.11 0.86 0.84
L09 1.08 0.07 2.47
L10 0.45 0.19 2.06

a o _ o o
AAGbind = IAGbind_exp - AGbincl_predl'

predictions of the binding free energies of NBTIs against the E.
coli DNA gyrase enzyme are not so satisfactory, they are
accurate enough considering the matter that the calibration of
LIE weighting parameters was grounded solely on S. aureus
DNA gyrase-NBTI complex systems.

As demonstrated in Table 4, the maximum deviation in the
prediction of binding free energies can be attributed to the
compound LOS for S. aureus DNA gyrase (1.62 kcal/mol), i.e.,
L09 for E. coli DNA gyrase (2.47 kcal/mol). However, it is
evident that both methods (the multidimensional quasi-
atomistic QSAR and LIE) provide correct predictions of the

binding free energies (AGging _pred) of L01-L10 NBTTIs, which
are sufficiently accurate relative to their experimental values
(AGy;q exp) considering their structural diversity and can
effectively be applied for prediction of binding affinities of de
novo designed/optimized NBTIs against the DNA gyrase
enzyme originating from Gram-positive (e.g, S. aureus) and
Gram-negative (e.g,, E. coli) bacterial species.

3. CONCLUSIONS

In this article, we present the construction and validation of
comprehensive multidimensional predictive NBTT’s binding
site surrogate models of DNA gyrase enzymes originating from
S. aureus and E. coli organisms. Both multidimensional models
(¢* = 0.791 for S. aureus DNA gyrase and g* = 0.806 for E. coli
DNA gyrase) exhibit good predictive performance as
demonstrated by the accuracy in predicting the binding
affinities of an independent external set of 26 NBTIs
(compiled from our recent publications) not used for
construction of the models (p* = 0.761 for S. aureus DNA
gyrase and p” = 0.677 for E. coli DNA gyrase; p’, predictive ).
The sensitivity of the models to the biological data used (ICs,)
was verified by conducting 20 scramble tests. Moreover, the
evaluation of quasi-atomistic properties populating the binding
site surrogates of both DNA gyrase enzymes correctly mirrored
some of the key amino acid residues (e.g, Ala68, Met7S,
Asp83, and Metl2l in S. aureus DNA gyrase, ie., Ala67,
Met74, Asp82, and Met120 in E. coli DNA gyrase), which are
of cardinal importance for the NBTI’s binding and affinity.

Furthermore, a subset of the external NBTIs (L01—-L10)
with highly predicted binding affinities against both DNA
gyrase enzymes (e.g., L01-LO08 for S. aureus DNA gyrase, i.e.,
L0S, L06, and LO8—L10 for E. coli DNA gyrase) was subjected
to extensive MD simulations for investigating their binding and
dynamic profile. Hydrogen-bonding occupancy analysis of the
studied NBTIs revealed that the majority of them establish a
direct ionic interaction with Asp83, i.e., Asp82 residue from a
sole GyrA subunit as well as a water-mediated ionic interaction
with Asp83, i.e., Asp82 residue from the second GyrA subunit
in both organisms over the entire simulation time; this finding
is firmly corroborated with the experimental crystallographic
evidence."”

In contrast to Asp83/Asp82 residues crucial for NBTI
potency that are solvent-exposed as confirmed by the
calculated SASA values (Supporting Information, Figure S2),
the amino acid residues delineating the NBTT’s binding pocket
(e.g, Ala68, Gly72, Met7S, and Metl21 in S. aureus DNA
gyrase, i.e, Ala67, Gly71, Met74, and Met120 in E. coli DNA
gyrase) are mainly hydrophobic in nature, i.e., properties which
are well emulated by the pseudoatomistic multidimensional
DNA gyrase models. These amino acid residues establish a
network of hydrophobic contacts with the NBTI's RHS
fragments and additionally contribute to the low nanomolar
enzyme inhibitory potency of this class of antibacterials as
g;)rztérgzed by their in vitro enzyme inhibitory potencies (Table

In addition, the binding affinities of selected, external NBTI
ligands (LO1-L10) were quantified by utilizing the LIE
method directly from their MD production trajectories, as well.
Since the default LIE weighting parameters (a = 0.5, §§ = 0.16,
and y = 0.0) are apparently not applicable for calculating
binding free energies (AGgiyq pred) Of Our systems, we were
forced to derive a new set of fitting parameters (a = 0.16, ff =
0.029, y = 0.0). Considering the high level of conservancy of

https://doi.org/10.1021/acsomega.4c00036
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amino acid residues delineating the NBTT’s binding pocket in
S. aureus and E. coli DNA gyrase, only the data acquired from
MD simulations conducted on S. aureus DNA gyrase
complexes were used for deriving the fitting parameters,
which were efficiently applied for calculating the NBTT’s
AGfing pred in the E. coli DNA gyrase enzyme. Both methods,
the multidimensional quasi-atomistic surrogate models and
LIE, provide relatively accurate predictions of the binding free
energies (AGping prea) Of the selected NBTI analogues relative
to their experimental values (AGyg o) that differ around
+1.0 kcal/mol. Accordingly, these two modeling strategies can
effectively be used for predicting the binding affinities of any de
novo designed/optimized NBTI against the DNA gyrase
enzyme originating from Gram-positive (e.g, S. aureus) and
Gram-negative (e.g, E. coli) bacterial pathogens. We are
convinced that the results conferred in this study would be
beneficial in the current NBTT’s hit-to-lead pipelines for design
and optimization of NBTI antibacterials that are effective in
combating bacterial resistance.

4. MATERIALS AND METHODS

4.1. NBTI Chemical Libraries. Considering the well-
established structure—activity relationships (SAR) guidelines
of currently known NBTI antibacterials (Figure la), two
chemical libraries comprising 199 and 133 structurally diverse
NBTIs, with experimentally determined in vitro antibacterial
potencies against S. aureus DNA gyrase (ICy, = 0.007—50 M)
and E. coli DNA gyrase (ICs, = 0.020—100 M), respectively
(hereafter named as NBTIy, and NBTIyc), were compiled
from the literature.'”**¥*'™* The chemical structures
comprising both NBTI libraries were initially sketched by
using the ChemDraw Professional 20.1.1 suite and sub-
sequently energetically minimized utilizing Discovery Studio’s
integrated Merck molecular force field (MMFF) module.”””"!

4.2. Molecular Docking Calculations. To account for
induced fit of investigated NBTT antibacterials within S. aureus
and E. coli DNA gyrase NBTT’s intercalating site, the NBTI
libraries (NBTIg, and NBTI;:) were subjected to flexible
molecular docking calculation campaigns using the GOLD
docking suite.>” For this purpose, our recently disclosed crystal
structure of S. aureus DNA gyrase—DNA-AMKI12 complex
(PDB ID: 6Z1A)"* and cryo-EM structure of E. coli DNA
gyrase—DNA-gepotidacin complex (PDB ID: 6RKS)'® were
employed. The experimental coordinates of the AMK12 ligand,
i.e,, gepotidacin in S. aureus and E. coli DNA gyrase, were used
for defining the NBTI’s binding site (cavity radius of 15.5 A) in
both enzymes. The amino acid residues Met7S, Asp83, and
Met121 in S. aureus GyrA and Ile74, Asp82, and Met120 in E.
coli GyrA were considered flexible during the docking
calculations (Figure 1b). The molecular docking protocol
was initially validated, by conducting threefold redocking
validation trials of the natively present AMKI2, i.e.,
gepotidacin conformation within its corresponding DNA
gyrase binding site in S. aureus, ie, E. coli As a key
determinant for the well-conducted ligand’s reproduction as
well as the goodness of all performed structure-based settings,
the heavy-atom root-mean-square deviation values (RMSD <
2.0 A) between redocking-derived solutions and AMK12, i.e.,
gepotidacin ligand conformation, were calculated (see the
Supporting Information, Table S5 and Figure $4).°” In order
to sample a much wider conformational space of investigated
NBTIs, each compound comprising NBTI, and NBTIg
library, respectively, was flexibly docked up to 100 times

within the corresponding binding site of S. aureus, i.e., E. coli
DNA gyrase, by employing the same settings and parameters of
the GOLD genetic algorithm (population size = 100, selection
pressure = 1.1, number of operations = 100,000, number of
islands = S, niche size = 2, migrate = 10, mutate = 95, crossover
= 95). The quality of the docking-derived NBTI’s binding
poses was quantified utilizing the GoldScore Fitness
function.™

4.3. Construction of the 4D Ligand’s Representation.
The multidimensional binding-site surrogate modeling in a
broader sense can be regarded as an evolved three-dimensional
(3D) QSAR concept considering the widely accepted ligand-
target induced-fit paradigm.>**>> This requires a proficient
implementation of a so-called 4D formalism in the conforma-
tional sampling/representation of the binding species (the
ligands).® The 4D representation of ligand molecules is
substantiated on the idea that each ligand might be expressed
as a 3D spatial ensemble of various conformers, orientomers,
or protomeric forms, which in turn significantly contributes in
minimizing the bias connected with the ligand’s binding
hypothesis. Consequently, the needed 4D representation of
experimental NBTIs comprising the NBTIs, and NBTIgc
library, respectively, was achieved in three consecutive steps:

(i) Identification of the minimum-energy NBTI conforma-
tion from each cluster of 100 docked NBTI poses
corresponding to each NBTI ligand separately.

(ii) Assembling of ligand ensembles comprising usually 5—8
NBTI docked poses from each cluster selected within an
energy framework of =+5.0 kcal/mol around the
previously identified minimum-energy NBTI conforma-
tions.

iii) Flexible alignment of thus assembled NBTI conformers
g
over the bioactive co-crystallized AMK12, i.e., cryo-EM
gepotidacin conformation (the templates).

The input parameters critical for multidimensional induced-
fit binding-site simulations were calculated on the prepared 4D
ligand’s data representing NBTIg, and NBTIg libraries, in a
concomitant fashion by constructing an efficient one-step
Pipeline Pilot protocol.”” AMSOL 7.1 was utilized for
calculation of the NBTT's CMI1 partial atomic charges and
SM2 solvation energies,’é while their internal strain energies
were computed using DMol® engine.’® Moreover, the
experimental inhibitory potencies of NBTIg, and NBTIg
antibacterials originally expressed as ICy, (#M) were converted
to molar concentrations (M) for deriving and fitting their free
energies of binding during the simulations. The obtained data
served as an input for multidimensional QSAR modeling.

4.4. Multidimensional QSAR Modeling. The NBTTI’s
quasi-atomistic binding-site surrogate modeling of S. aureus
and E. coli DNA gyrase enzyme, respectively, was conducted by
using the Quasar® 6.2 platform that allows construction and
validation of genetic algorithm-optimized 6D-QSAR mod-
els.*”*° In Quasar®, the ligand’s binding site is represented as a
surrogate, which is a 3D quasi-atomistic pseudosurface
covering a series of superimposed, bioactive conformations of
the binding entities (4D ligand’s representation) at van der
Waals distance.”’ The topology of such a pseudosurface
emulates the 3D spatial shape of the ligand’s binding site that is
capable to simulate a local induced fit in an aqueous
environment through dynamic adaptation to the ligand’s
conformations. In Quasar®, this is allowed by scaling the
dimensionality of the initial 4D ligand’s representation through
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concomitant consideration of various induced-fit scenarios
(5SD-QSAR)®'™%* as well as introduction of diverse solvation
models (6D-QSAR).>’ Moreover, the pseudosurface is
occupied by a variety of color-coded quasi-atomistic properties
(e.g., hydrogen-bonding donors and acceptors, flip-flop
hydrogen-bonding entities, salt bridges, and hydrophobic
properties) that correspond to different structural function-
alities of amino acid residues delineating the binding site at the
true biological target, which in turn enable a qualitative
evaluation of the crucial ligand—protein interactions. The
modeling procedure is grounded on generating a family of 200
or more quasi-atomistic binding-site surrogates (parent models
derived from the training set) averaged during the simulation
using a genetic algorithm. The relative free energy of ligand’s
binding (E,q,) is estimated for the average binding site
surrogate model as

— AE,

Ebdg ~ E]jg»rec - Esolv,lig int lig — TAdeg - Eind.ﬁt.,lig

where Ej;, .. denotes the enthalpic contribution to the ligand—
protein interaction determined by the Quasar® directional
force field,” Eqqjig is the ligand desolvation energy, AE,,
and TASy, refer to the change in the ligand’s internal energy
and entropy, respectively, upon its binding to the protein
target, and Ejq g1 18 the energy uptake required for dynamic
adaptation of the average pseudosurface. Since Quasar® deals
with the 4D ligand’s data, the energy contribution of each
individual ligand conformation (Ebdg’ind) to the total energy

(Ebd%mt) is weighted by a normalized Boltzmann factor
5166

(w;)

N E
_ bdg,ind
Epggror = Z Epdg ind eXp W
i=0 bdg,ind,lowest

-1

= [ 3 M]

i=0 Ebdg,ind,lowest
The binding free energies of the ligands (AG;red) are then
calculated by means of a cross-validated linear regression
between their experimental free energy (AG,,) and the
estimated relative free energy (E,q,) considering solely the
ligands comprising the training set

AGg.q = lal-Eyg, + b
where fitting coefficients a and b denote the slope and
intercept, respectively, which are an integral part of a specific
binding site surrogate model and can subsequently be applied
for estimation of the relative binding free energy of new ligands
not used for the development of the model.

Following the classical QSAR modeling protocols, the NBTI
libraries (NBTIg, and NBTIyc) containing 4D ligand data for
S. aureus and E. coli DNA gyrase enzyme, respectively, were
divided into training and test sets (in percentage ratios of 80
and 20%, respectively) prior to the modeling procedure by
taking into account their maximum scaffold dissimilarity and
binding affinity. Two comprehensive quasi-atomistic NBTI
binding site surrogate models of S. aureus and E. coli DNA
gyrase enzyme were constructed separately in an evolutionary
fashion starting from an initial family of 200 parent models by
using the Quasar™ partial least-squares genetic algorithm (PLS-
GA) modeling methodology.®” The flexibility of both enzymes
was emulated by considering six induced-fit scenarios, as
implemented in Quasar®. During the modeling, the models

were internally validated by weighted cross-validation leave-n-
out (n = 3) procedure (¢g2)°"*® as well as externally by
estimation of the predictive squared correlation coefficient for
the test set molecules (p’; predictive r* for the test set). To
account for transcription of mapped quasi-atomistic properties
on the pseudosurface during the modeling, a fixed mutation
rate of 0.02 was used. The sensitivity of established and
validated S. aureus and E. coli DNA gyrase NBTI binding site
surrogate models toward the biological data used (ICs,) was
evaluated by performing 20 scramble (Y-randomization)
trials.®” It should be stressed that in both cases, the training
set molecules were used solely for constructing the S. aureus
and E. coli DNA gyrase surrogate models, while their predictive
power was estimated by employing the test set molecules that
were not used for the development of the models. Lastly, the
validity of both models was additionally challenged by
predicting the binding affinities for an external set of 26
NBTI antibacterials with in vitro experimentally determined
inhibitory potencies for S. aureus and E. coli DNA gyrase from
our previous studies.”®*>**3¢

4.5. Molecular Dynamics Simulations. All-atom molec-
ular dynamics (MD) simulations on the investigated DNA
gyrase-DNA-NBTI complex systems were performed using the
AMBER20 package.”” The AMBER-ff14SB’' and DNA-
OL157 force fields were used to parametrize the proteins
and DNA, respectively. Partial atomic charges of investigated,
geometry-optimized NBTI ligands were calculated with the
Gaussian16 package’” by performing Merz—Kollman’s pop-
ulation analysis at the Hartree—Fock level of theory using the
6-31G* basis set, while for those NBTIs containing iodine, a
mixed 6-31G*/3-21G basis set was used. To derive the
restrained electrostatic potential (RESP) charges as well as the
other ligand’s force field parameters, the bond lengths and
angles obtained from the NBTI optimized geometries were
employed by utilizing the Antechamber module of
AMBER20.”* The parametrized systems were initially neutral-
ized by addition of Na*/CI~ counterions” and then immersed
in a 10 A cubic box (128 A x 130 A x 112 A) of TIP3P
explicit water molecules,”® which resulted in ~186,461 atoms
per simulation system. Prior to running MD simulations, all
assembled systems were first minimized by using steepest
descent energy minimization to circumvent any existing van
der Waals clashes between the atoms as well as to fix the poor
geometries of protein side chain residues. The integrity of the
simulation systems was assured by conducting an extensive
equilibration on the fully restrained systems via two-step
heating from 0 to 150 K for 2 ns and from 150 to 303 K for the
next 2 ns, followed by an additional 10 ns of unrestrained NPT
equilibration. 500 ns MD production simulations were
performed with the canonical (NVT) ensemble using periodic
boundary conditions on fully unrestrained systems at a time
step of 2 fs. The particle-mesh Ewald method’” was used to
account for the long-range electrostatic interactions. The
analysis of the obtained MD production trajectories [calcu-
lation of RMSD and radius of gyration (Rg), the NBTI-gyrase
hydrogen-bonding analysis, contact analysis, and the analysis of
solvent-accessible surface area (SASA)] for each simulated
system (deprived of water and counterions) was conducted by
utilizing the VMD software package”® and cpptraj module of
Ambertools 20.”°

4.6. Linear Interaction Energy Calculations. The
estimation of relative free energy of the ligand’s binding
(AGgnq) is of paramount importance in the rational design of
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new drug molecules.”” Nowadays, there is a plethora of highly
accurate, force field-grounded free energy calculation methods
directly from MD simulations, of which the alchemical ones
such as free energy perturbation (FEP)* and thermodynamic
integration (TI)"' are frequently utilized. Indeed, these
methodologies proved highly rigorous in estimating AGg,q;
however, they were found computationally more expensive in
sampling a variety of non-physical, intermediate states (e.g.,
protein, ligand, and solvent configurational spaces) and
consequently less practical for fast computation of the relative
ligand’s binding free energies.82 In contrast, the end-point
approaches such as the linear interaction energy (LIE) method
allow relatively fast and accurate calculation of AGg,4 by
explicit sampling of the ligand, protein—ligand, and solvent
configurational space considering two states only, i.e., protein—
ligand bound and unbound states.”” In the LIE approach,
which is substantiated on the linear response approximation
(LRA) theory,™** AGg,4 of a ligand is presumed to be in a
linear correlation to differences in the van der Waals and
electrostatic interactions (AV,qyw and AVy, respectively)
between the ligand and its surrounding derived from MD
simulations of ligand—protein bound and unbound states in
the explicit solvent. The differences in non-bonded ligand
interaction energy terms (AV, gy and AVy,) are scaled by the
fitting parameters o and f3, respectively®>*°
AG = ab(VEY) + BAVE) + 7

—S

Vl‘ﬁisvv = <‘/1v—dsw>bound - <‘/1‘ﬁisvv>free

‘llFLl: = <‘/IIiISS>bound - <‘/I£il:>free
where (Vi) and (V) are MD-derived averages of the non-
bonded van der Waals (vdW) and electrostatic (Ele)
interactions of a ligand with its surrounding, respectively, A
denotes the change in these averages obtained by simulating
the ligand in its free state (simulation of the ligand in solution
only) and bound state (simulation of the ligand bound to its
solvated target), and 7 is an offset parameter usually related to
the surface area.”* While default values for the fitting
parameters @ = 0.5 and = 0.16 (and optionally, y = 0)
frequently %ive reasonable AGg,,q4 predictions for a variety of
systems,””"" ™ it was determined that they are not universally
applicable for any system.”® Put differently, the & and f fitting
parameters are proposed to be freely adjustable and can be
obtained by fitting to experimentally determined AGy 4 values
for a specific set of ligand—protein systems.”"”*

Considering the high level of structural resemblance, in
particular, the conservancy of amino acid residues delineating
the NBTI's binding site in Gram-positive (e.g., Ala68, Met7S,
Asp83, and Metl21 in S. aureus GyrA) and Gram-negative
(e.g, Ala67, 1le74, Asp82, and Metl20 in E. coli GyrA)
bacteria,'* LIE parameters (@, 3, and y) were derived solely
from MD simulations conducted on S. aureus DNA gyrase—
NBTI systems, assuming that the same would be applicable for
AGy;q predictions of NBTIs targeting E. coli DNA gyrase, as
well. For this purpose, 18 structurally diverse NBTIs (ICy, =
0.007—4.7 pM)'#?&3LALA24540%9 g4 the NBTIg, library
were selected (see the Supporting Information, Table S2) and
subjected to 500 ns MD simulations. For each NBTI ligand,
two concomitant MD simulations were performed (free NBTI
and DNA gyrase—NBTI complex in an aqueous environment),
whereas our recently disclosed crystal structure of S. aureus
DNA gyrase (PDB ID: 6Z1A)"* was employed for assembling

the initial DNA gyrase—NBTI simulation systems. The
calibration of LIE parameters was done on the experimental
AGynd_exp Values for the training systems utilizing the ordinary
least-squares (OLS) fitting procedure as implemented in the
Python scikit-learn 0.17 package®”®® and validated by
predicting AGyi,g prea Values of the test systems. To minimize
the uncertainty in fitting of the LIE parameters and
consequently predicted AGgg peq values, the non-bonded
van der Waals and electrostatic interaction energy terms were
calculated from the resulting MD production trajectories
sampled at four different time ranges (e.g., 100—200, 250—350,
400—500, and 20—500 ns) by employing three different
calculation methods: Ambertools cpptraj lie command,*®
Ambertools linear interaction energy workflow (LIEW)
module,” and VMD’s NAMD Energy plugin.”’ Standard
deviation (SD) of the predicted relative binding free energies
averaged over all four trajectory samplings (AGPrediavg) was
used as a decisive criterion in selection of the most appropriate
LIE method, which was subsequently used to reproduce the
relative free energies of binding (AGgig _pred) of those external
NBTIs with correctly predicted binding affinities by the quasi-
atomistic surrogate models.
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