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SCHWARZ–PICK LEMMA FOR HARMONIC MAPS
WHICH ARE CONFORMAL AT A POINT

FRANC FORSTNERIČ AND DAVID KALAJ

We obtain a sharp estimate on the norm of the differential of a harmonic map from the unit disc D in C

into the unit ball Bn of Rn , n ≥ 2, at any point where the map is conformal. For n = 2 this generalizes the
classical Schwarz–Pick lemma, and for n ≥ 3 it gives the optimal Schwarz–Pick lemma for conformal
minimal discs D → Bn . This implies that conformal harmonic maps M → Bn from any hyperbolic
conformal surface are distance decreasing in the Poincaré metric on M and the Cayley–Klein metric
on the ball Bn , and the extremal maps are the conformal embeddings of the disc D onto affine discs
in Bn . Motivated by these results, we introduce an intrinsic pseudometric on any Riemannian manifold of
dimension at least three by using conformal minimal discs, and we lay foundations of the corresponding
hyperbolicity theory.

1. Introduction

In this paper, we establish precise estimates of derivatives and the rate of growth of conformal harmonic
maps from hyperbolic conformal surfaces into the unit ball Bn of Rn for any n ≥ 3; see Theorem 2.6.
Such maps parametrize minimal surfaces, objects of high interest in geometry. To motivate the discussion,
we begin with the following special case of one of our main results, Theorem 2.1. This generalizes
the classical Schwarz–Pick lemma, due to H. A. Schwarz [1890, Band II, p. 108], H. Poincaré [1884],
C. Carathéodory [1912], and G. A. Pick [1915], to a substantially larger class of maps.

Theorem 1.1. Let D = {z ∈ C : |z| < 1} denote the unit disc. If f : D → D is a harmonic map which is
conformal at a point z ∈ D, then at this point we have

∥d fz∥ ≤
1 − | f (z)|2

1 − |z|2
, (1-1)

with equality if and only if f is a conformal diffeomorphism of the disc D.

The classical Schwarz–Pick lemma gives the same conclusion under the much stronger hypothesis
that the map f is holomorphic or antiholomorphic, which means that it is conformal at every noncritical
point; see, e.g., [Dineen 1989; Kobayashi 2005; Royden 1988]. This fundamental rigidity result in
complex analysis leads to the notion of Kobayashi hyperbolic manifolds [1967; 1976; 2005] and
provides a connection to complex differential geometry via the Ahlfors lemma (see [Ahlfors 1938;
Kobayashi 2005, Theorem 2.1; Royden 1988]) and its generalizations by S.-T. Yau [1978] and others.
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The conditions in Theorem 1.1 are invariant under precompositions by holomorphic automorphisms
of D, so the proof reduces to the case z = 0. On the other hand, postcompositions of harmonic maps
into D by holomorphic automorphisms of D need not be harmonic, so we cannot exchange f (0) and 0.
Hence, the standard proof of the classical Schwarz–Pick lemma breaks down. The estimate (1-1) fails
for some nonconformal harmonic diffeomorphisms of D (see Example 4.1), as well as for harmonic
maps D → D to more general domains which are conformal at a point (see Example 4.2 and Problem 4.3).

Our main results are precise estimates of the differential and the rate of growth of conformal harmonic
maps M → Bn from an open conformal surface M to the unit ball Bn of Rn for any n ≥ 3. It is classical
that such maps parametrize minimal surfaces. Indeed, a smooth conformal map f : M → Rn from an
open conformal surface M into Rn with the Euclidean metric parametrizes a minimal surface in Rn if and
only if f is a harmonic map; see [Alarcón et al. 2021, Chapter 2; Duren 2004; Osserman 1969], among
many other sources. Note that an oriented conformal surface is a Riemann surface.

The focal point of the paper is Theorem 2.1, which gives a precise upper bound on the norm ∥d fz∥ of
the differential d fz of a harmonic map f : D → Bn at any point z ∈ D where the map is conformal. The
estimate is similar to the one in Theorem 1.1, except that, for n ≥ 3, it also involves the angle θ between
the position vector f (z) ∈ Bn and the 2-plane d fz(R

2) ⊂ Rn. A related result (see Theorem 2.2) shows
that the worst case estimate, which occurs for θ =

π
2 (i.e., when the vector f (z) is orthogonal to the

plane d fz(R
2)), holds for all harmonic maps f : D → Bn provided that ∥d fz∥ is replaced by

√
2−1

|∇ f (z)|;
these quantities coincide if f is conformal at z.

We then give a differential geometric formulation and an extension of Theorem 2.1. Let CK denote
the Cayley–Klein metric on the ball Bn (n ≥ 2), also called the Beltrami–Klein metric; see (2-6) and the
footnote on page 985. This metric is one of the classical models of hyperbolic geometry. It coincides with
the restriction of the Kobayashi metric on the complex ball Bn

C
⊂ Cn (2-5) (which is the same as 1/

√
n + 1

times the Bergman metric on Bn
C

) to points of the real ball Bn and real tangent vectors. Theorem 2.1
implies that any conformal harmonic map f : M → Bn, n ≥ 3, from a hyperbolic conformal surface is
metric and distance decreasing in the Poincaré metric on M and the Cayley–Klein metric on Bn; see
Theorem 2.6. Furthermore, if the differential d fp has the operator norm equal to 1 at some point p ∈ M
in this pair of metrics, or if f preserves the distance between a pair of distinct points in M, then M is
necessarily the disc D and f is a conformal diffeomorphism of D onto a proper affine disc in Bn. In
particular, a conformal harmonic disc f : D → Bn with f (0) = 0 satisfies | f (z)| ≤ |z| for all z ∈ D

(see Corollary 2.7).
In Section 2 we give precise statements of the mentioned results. Theorem 2.1 is proved in Section 3.

We introduce a new idea into the subject, connecting it to Lempert’s seminal work [1981] on complex
geodesics of the Kobayashi metric on bounded convex domains in Cn. Theorem 2.2 is proven in Section 4.
In Section 5 we apply Theorem 1.1 to estimate the gradient of a quasiconformal harmonic self-map of
the disc in terms of its second Beltrami coefficient at the reference point; see Theorem 5.1.

Motivated by these result, we introduce in Section 6 an intrinsic pseudometric on any domain in Rn ,
n ≥ 3 (and more generally on any Riemannian manifold of dimension at least three) in terms of conformal
minimal discs, in analogy to Kobayashi’s definition of his pseudometric on complex manifolds in terms
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of holomorphic discs. This provides the basis for a new hyperbolicity theory of such domains and of
Riemannian manifolds.

2. The main results

Given a differentiable map f : D → Rn, we denote by fx and fy its partial derivatives with respect to x
and y, where z = x +iy ∈ D. The gradient ∇ f = ( fx , fy) is an n×2 matrix representing the differential d f .
The map f is said to be conformal at z ∈ D if

| fx(z)| = | fy(z)| and fx(z) · fy(z) = 0. (2-1)

Here, the dot stands for the Euclidean inner product on Rn, and |x| is the Euclidean norm of x ∈ Rn. If f
is an immersion at z then (2-1) holds if and only if d fz preserves angles. It follows from (2-1) that f has
rank zero at any branch point. We denote by |∇ f | the Euclidean norm of the gradient:

|∇ f (z)|2 = | fx(z)|2 + | fy(z)|2, z ∈ D.

If f is conformal at z then clearly ∥d fz∥ =
√

2−1
|∇ f (z)| = | fx(z)| = | fy(z)|. The map f = ( f1, . . . , fn) :

D → Rn is harmonic if and only if every component fk is a harmonic function on D, meaning that the
Laplacian 1 fk = ∂2 fk/∂x2

+ ∂2 fk/∂y2 vanishes identically.
We denote by Bn the unit ball of Rn:

Bn
=

{
x = (x1, . . . , xn) ∈ Rn

: |x|
2
=

n∑
k=1

x2
k < 1

}
. (2-2)

Our first main result is the following; it is proved in Section 3.

Theorem 2.1. Let f : D → Bn for n ≥ 2 be a harmonic map. If f is conformal at a point z ∈ D and
θ ∈

[
0, π

2

]
denotes the angle between the vector f (z) and the plane 3 = d fz(R

2) ⊂ Rn, then

∥d fz∥ =
1

√
2
|∇ f (z)| ≤

1 − | f (z)|2

1 − |z|2
1√

1 − | f (z)|2 sin2 θ
, (2-3)

with equality if and only if f is a conformal diffeomorphism of D onto the affine disc 6 = ( f (z)+3)∩Bn.
(When f (z) = 0 or d fz = 0, the angle θ does not matter.)

Note that the number R =

√
1 − | f (z)|2 sin2 θ is the radius of the affine disc 6. In dimension n = 2

we have θ = 0, so Theorem 1.1 is a special case of Theorem 2.1. Without assuming that f is conformal
at z or that f (z) = 0, inequality (2-3) fails for some harmonic diffeomorphisms of the disc as shown by
Example 4.1.

For a fixed value of | f (z)| ∈ [0, 1), the maximum of the right-hand side of (2-3) over angles θ ∈
[
0, π

2

]
equals

√
1 − | f (z)|2/(1−|z|2) and is attained precisely at θ =

π
2 , i.e., when the vector f (z) is orthogonal

to 3 = d fz(R
2), unless f (z) = 0 when it is independent of θ . It turns out that this weaker estimate holds

for all harmonic maps D → Bn without any conformality assumption. The following result is proved in
Section 4.
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Theorem 2.2. For every harmonic map f : D → Bn (n ≥ 2) we have that

1
√

2
|∇ f (z)| ≤

√
1 − | f (z)|2

1 − |z|2
, z ∈ D. (2-4)

Equality holds for some z ∈ D if f (z) is orthogonal to the two-plane 3 = d fz(R
2) and f is a conformal

diffeomorphism onto the affine disc ( f (z) + 3) ∩ Bn. In particular, if f (z) = 0 then

|∇ f (z)| ≤

√
2

1 − |z|2
,

with equality if and only if f is a conformal diffeomorphism onto the linear disc 3 ∩ Bn.

The proof of estimate (2-4) relies on Parseval’s inequality, using the hypothesis that the L1-norm of
| f |

2
=

∑n
k=1 f 2

k on the circles {|z| = r} for 0 < r < 1 is bounded by 1. We find it surprising that this
simple approach gives an optimal estimate in certain cases indicated in the theorem. Except in these
cases, we do not know whether there exist harmonic maps D → Bn reaching (near) equality in (2-4).

The precise upper bound on the size of the gradient ∥d f0∥ of a nonconformal harmonic map f : D → Bn

with a given center f (0) = x ∈ Bn
\ {0} for n ≥ 2 in terms of the distortion of f at 0 is unknown; see

[Brevig et al. 2021; Kovalev and Yang 2020] for n = 2. On the other hand, for n = 1 the harmonic Schwarz
lemma (see [Axler et al. 2001, Theorem 6.26]) says that any harmonic function f : Bm

→ (−1, +1) for
m ≥ 2 satisfies the sharp estimate

|∇ f (0)| ≤
2 Vol(Bm−1)

Vol(Bm)
.

For m = 2 the inequality reads |∇ f (0)| ≤
4
π

, and a simple proof in this case was given by Kalaj and
Vuorinen [2012, Theorem 1.8].

Let us mention a consequence of Theorem 2.1 related to the Schwarz lemma for holomorphic discs in
the ball of the complex Euclidean space,

Bn
C =

{
z = (z1, . . . , zn) ∈ Cn

: |z|2 =

n∑
k=1

|zk |
2 < 1

}
(2-5)

(see [Rudin 1980, Section 8.1]). The following corollary to Theorem 2.1 shows that the extremal
holomorphic discs in Bn

C
are precisely those extremal orientation-preserving conformal harmonic discs

D → Bn
C

which parametrize affine complex discs.

Corollary 2.3. Let f : D → Bn
C

be a harmonic map which is conformal at a point z ∈ D. If 3 = d fz(R
2)

is a complex line in Cn, then equality holds in (2-3) for this z if and only if f is a biholomorphic or
antibiholomorphic map onto the affine complex disc ( f (z) + 3) ∩ Bn

C
.

The Cayley–Klein metric. A differential geometric interpretation of the classical Schwarz–Pick lemma
is that holomorphic maps D → D are distance decreasing in the Poincaré metric on D, and isometries
coincide with holomorphic and antiholomorphic automorphisms of D (see [Kobayashi 2005]). The
analogous conclusion holds for holomorphic maps D → Bn

C
with the Kobayashi metric on the complex
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ball Bn
C

(2-5), where orientation-preserving isometric embeddings are precisely holomorphic embeddings
onto affine complex discs in Bn

C
.

In the same spirit, we shall now interpret Theorem 2.1 as the distance-decreasing property of conformal
harmonic maps D → Bn with respect to the Cayley–Klein metric1 on Bn:

CK(x, v) =

√
1 − |x|

2 sin2 φ

1 − |x|2
|v|, x ∈ Bn, v ∈ Rn, (2-6)

where φ ∈
[
0, π

2

]
is the angle between the vector x and the line Rv. Equivalently,

CK(x, v)2
=

(1 − |x|
2)|v|

2
+ |x · v|

2

(1 − |x|2)2 =
|v|

2

1 − |x|2
+

|x · v|
2

(1 − |x|2)2 . (2-7)

Let G2(R
n) denote the Grassmann manifold of two-planes in Rn. We define a Finsler pseudometric

M : Bn
× G2(R

n) → R+ by

M(x, 3) =

√
1 − |x|2 sin2 θ

1 − |x|2
, x ∈ Bn, 3 ∈ G2(R

n), (2-8)

where θ ∈
[
0, π

2

]
is the angle between x and 3. At x = 0 we have M(0, 3) = 1 for all 3 ∈ G2(R

n).
Assume now that x ̸= 0. Let v ∈ Rn

\ {0} be a vector having angle φ ∈
[
0, π

2

]
with the line Rx. The

angle θ between x and any 2-plane 3 containing v satisfies 0 ≤ θ ≤ φ, and the maximum of θ over all
such 3 equals φ. Hence, (2-6) gives

CK(x, v)

|v|
= min{M(x, 3) : 3 ∈ G2(R

n), v ∈ 3}, (2-9)

M(x, 3) = max
{
CK(x, v)

|v|
: v ∈ 3

}
. (2-10)

Inequality (2-3) in Theorem 2.1 is obviously equivalent to

M( f (z), d fz(R
2))|d fz(ξ)| =

√
1 − | f (z)|2 sin2 θ

1 − | f (z)|2
|d fz(ξ)| ≤

|ξ |

1 − |z|2
, (2-11)

where θ ∈
[
0, π

2

]
is the angle between f (z) and the 2-plane 3 = d fz(R

2). By (2-9) the left-hand side
of (2-11) is bigger than or equal to CK( f (z), d fz(ξ)). Equality holds if and only if the angle φ between
the line f (z)R and the vector d fz(ξ) ∈ 3 equals θ ; clearly this holds if and only if d fz(ξ) is tangent to the
diameter of the affine disc 6 = ( f (z)+3)∩Bn through the point f (z). This and the addition concerning
equality in (2-3) give the following corollary to Theorem 2.1. Note that PD(z, ξ) := |ξ |/(1 − |z|2) is the
Poincaré metric on the disc.

1The Beltrami–Calvin–Klein model of hyperbolic geometry was introduced by Arthur Cayley [1859] and Eugenio Beltrami
[1868], and it was developed by Felix Klein [1871; 1873]. The underlying space is the n-dimensional unit ball, geodesics are
straight line segments with ideal endpoints on the boundary sphere, and the distance between points on a geodesic is given by a
cross ratio. This is a special case of the Hilbert metric on convex domains in Rn and RPn, introduced by David Hilbert [1895].
These are examples of projectively invariant metrics discussed by many authors; see the surveys by S. Kobayashi [1977; 1984],
W. M. Goldman [2019], and J. G. Ratcliffe [1994].
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Corollary 2.4. If f : D → Bn is a conformal harmonic map then for every point z ∈ D and tangent vector
ξ ∈ R2 we have

CK( f (z), d fz(ξ)) ≤
|ξ |

1 − |z|2
= PD(z, ξ). (2-12)

Equality holds for some z ∈ D and ξ ∈ R2
\ {0} if and only if f is a conformal diffeomorphism onto the

affine disc
6 = ( f (z) + d fz(R

2)) ∩ Bn

and the vector d fz(ξ) is tangent to the diameter of 6 through the point f (z).

This shows in particular that every linear conformal embedding f : D → 6 onto a proper affine disc
in Bn is geodesic on each diameter (−1, +1) ∋ r 7→ f (reit) ∈ 6 for every fixed t ∈ R. However, distances
between points of different rays strictly decrease from the Poincaré metric on D to the Cayley–Klein
metric on the disc 6 ⊂ Bn.

Remark 2.5. The Cayley–Klein metric (2-7) is the restriction of the Kobayashi metric on the unit ball
Bn

C
⊂ Cn to points x ∈ Bn

= Bn
C
∩Rn of the real ball and tangent vectors in TxRn ∼= Rn. A direct geometric

argument was given by Lempert [1993, proof of Theorem 3.1]. The Cayley–Klein metric also equals
1/

√
n + 1 times the Bergman metric on Bn

C
restricted to Bn and real tangent vectors; see [Krantz 1992,

Proposition 1.4.22]. (On the ball of Cn, most holomorphically invariant metrics coincide up to scalar
factors.) The Cayley–Klein metric equals the Poincaré metric |v|/(1 − |x|

2) on Bn on vectors v parallel
to the base point x ∈ Bn, but is strictly smaller on other vectors. While the Poincaré metric on Bn is
conformally equivalent to the Euclidean metric, the Cayley–Klein metric is not.

We now extend Corollary 2.4 to more general minimal surfaces. A conformal surface is a topological
surface M together with a conformal atlas, i.e., an atlas whose transition maps between charts are conformal
diffeomorphisms between plane domains. Every surface admits a conformal structure. Indeed, every
topological surface admits a smoothing, and a conformal structure on a smooth surface is determined by
the choice of a Riemannian metric in view of the existence of local isothermal coordinates (see [Osserman
1969] or [Alarcón et al. 2021, Theorem 1.8.6]). Oriented conformal surfaces are Riemann surfaces. There
is a well-defined notion of a harmonic function on a conformal surface. Indeed, a Riemannian metric g
defines the metric Laplacian 1g and hence g-harmonic functions satisfying 1gh = 0. The Laplacians
associated to any two Riemannian metrics in the same conformal class on a surface differ by a positive
multiplicative function (see [Alarcón et al. 2021, Corollary 1.8.2]), and hence the notion of a harmonic
function is independent of the choice of metric in a given conformal class.

A conformal surface M is said to be hyperbolic if its universal conformal covering space is the disc D.
Let h : D → M be a universal conformal covering map. Since conformal automorphisms of D are
isometries of the Poincaré metric PD = |dz|/(1 −|z|2), there is a unique Riemannian metric PM on M (a
Kähler metric if M is a Riemann surface) such that h is a local isometry. This Poincaré metric PM is a
complete metric of constant Gaussian curvature −4 (see [Kobayashi 2005, p. 48, Example 2]), which
agrees with the Kobayashi metric if M is a Riemann surface. This leads to the following generalization
of Corollary 2.4.
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Theorem 2.6 (metric and distance decreasing property of conformal harmonic maps). Let M be a
connected hyperbolic conformal surface endowed with the Poincaré metric PM . Every conformal harmonic
map f : M → Bn (n ≥ 3) satisfies the estimate

CK( f (p), d fp(ξ)) ≤ PM(p, ξ), p ∈ M, ξ ∈ Tp M. (2-13)

If equality holds in (2-13) for some point p ∈ M and vector 0 ̸= ξ ∈ Tp M, or if f preserves the distance on
a pair of distinct points in M, then M = D and f is a conformal diffeomorphism onto an affine disc in Bn.

Proof. Assume first that M is orientable and hence a Riemann surface. Choose a holomorphic covering
map h : D → M and a point z ∈ D with h(z) = p. The conformal harmonic map f̃ = f ◦h : D → Bn then
satisfies f̃ (z)= f (p) and d f̃z = d fp◦dhz . Let η ∈ R2 be such that dhz(η)= ξ . Then PM(p, ξ)=PD(z, η)

by the definition of the metric PM , and d f̃z(η) = d fp(ξ). From (2-12) it follows that

CK( f (p), d fp(ξ)) = CK( f̃ (z), d f̃z(η)) ≤
|d f̃z(η)|

1 − | f̃ (z)|2
=

|d fp(ξ)|

1 − | f (p)|2
,

which gives (2-13). If ξ ̸= 0 and equality holds, then by Corollary 2.4 the map f̃ = f ◦ h : D → Bn is a
conformal diffeomorphism onto an affine disc in Bn, and hence h : D → M is a biholomorphism.

For a nonorientable hyperbolic conformal surface M we obtain the same conclusion by passing to its
orientable two-sheeted conformal cover. The statement concerning distances is an immediate consequence.
Note that if the distances agree for a pair of distinct points in M and their images in Bn, then the differential
d fp has operator norm 1 at some point p ∈ M in the given pair of metrics. □

On the disc with the Poincaré metric PD = |dz|/(1 − |z|2), the Poincaré distance equals

distP(z, w) =
1
2

log
(

|1 − zw| + |z − w|

|1 − zw| − |z − w|

)
, z, w ∈ D. (2-14)

The Cayley–Klein distance function on the ball Bn coincides up to a scalar factor
√

n + 1 with the
restriction to Bn of the Bergman distance function on the complex ball Bn

C
or, equivalently, with the

restriction to Bn of the Kobayashi distance function on Bn
C

. The following explicit formula for the
Kobayashi distance between a pair of points z, w ∈ Bn

C
can be found in [Krantz 1992, p. 437]; here,

z · w =
∑n

k=1 zkwk :

dist(z, w) =
1
2

log
(

|1 − z · w| +
√

|z − w|2 + |z · w|2 − |z|2|w|2

|1 − z · w| −
√

|z − w|2 + |z · w|2 − |z|2|w|2

)
. (2-15)

As said before, the same formula applied to points in Bn gives the Cayley–Klein distance. Taking w = 0
and w = 0 in the above formulas, we obtain

distP(z, 0) =
1
2

log
(

1 + |z|
1 − |z|

)
(z ∈ D), dist(z, 0) =

1
2

log
(

1 + |z|
1 − |z|

)
(z ∈ Bn).

Together with Theorem 2.6 this implies the following corollary.
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Corollary 2.7. If f : D → Bn, n ≥ 3, is a conformal harmonic map with f (0) = 0, then | f (z)| ≤ |z| for
all z ∈ D. Equality at one point z ∈ D \ {0} implies that f is a conformal parametrization of a linear disc
obtained by intersecting Bn with a plane through the origin, and hence equality holds at all points.

3. Proof of Theorem 2.1

It suffices to prove Theorem 2.1 for z = 0. Indeed, with f and z as in the theorem, let φz ∈ Aut(D) be
such that φz(0) = z. The harmonic map g = f ◦ φz : D → Bn is then conformal at the origin. Since
|φ′

z(0)| = 1 − |z|2, inequality (2-3) follows from the same estimate for g at z = 0. On the image side, the
hypotheses and the statement of the theorem are invariant under postcomposition of maps D → Bn by
elements of the orthogonal group On .

We begin with an explicit description of conformal parametrizations of proper affine discs in Bn. Fix a
point q ∈ Bn and a linear two-plane 0 ∈ 3 ⊂ Rn, and consider the affine disc 6 = (q + 3) ∩ Bn. Let us
identify conformal parametrizations D → 6 sending 0 to q. Let p ∈ 6 be the closest point to the origin.
If n = 2 then p = 0 and 6 = D. Suppose now that n ≥ 3. Up to an orthogonal rotation, we may assume

p = (0, 0, p, 0, . . . , 0) and 6 = {(x, y, p, 0, . . . , 0) : x2
+ y2 < 1 − p2

}. (3-1)

Let q = (b1, b2, p, 0, . . . , 0) ∈ 6, and let θ denote the angle between q and 6. Set

c =

√
1 − p2

=

√
1 − |q|

2 sin2 θ, a =
b1 + ib2

c
∈ D, |a| =

|q| cos θ

c
. (3-2)

We orient 6 by the tangent vectors ∂x , ∂y in the parametrization (3-1). Every orientation-preserving
conformal parametrization f : D → 6 with f (0) = q is then of the form

f (z) =

(
cℜ

eit z + a
1 + āeit z

, cℑ
eit z + a
1 + āeit z

, p, 0, . . . , 0
)

, z ∈ D, (3-3)

for some t ∈ R. (Here, ℜ and ℑ stand for the real and imaginary parts of a complex number. If n = 2 then
p = 0 and c = 1, and the same holds if we drop all coordinates except the first two. Orientation-reversing
conformal parametrizations are obtained by replacing z = x + iy with z̄ = x − iy. By a rotation in the
(x, y)-plane, we may further assume that b2 = 0 and f (0) = (b1, 0, p, 0, . . . , 0); in this case a ∈ [0, 1).
By also allowing rotations on the disc D, we can take t = 0 in (3-3).) Using the complex coordinate
x + iy in the plane d f0(R

2) = R2
× {0}

n−2, the map (3-3) can be written in the form

f (z) =

(
c

eit z + a
1 + āeit z

, p, 0, . . . , 0
)

= (h(z), p, 0, . . . , 0).

From (3-2) it follows that

|h′(0)| = c(1 − |a|
2) =

c2
− c2

|a|
2

c
=

1 − |q|
2 sin2 θ − |q|

2 cos2 θ

c

=
1 − |q|

2√
1 − |q|

2 sin2 θ
=

1 − | f (0)|2√
1 − | f (0)|2 sin2 θ

.

Since ∥d f0∥ = |h′(0)|, this gives equality in (2-3) at z = 0.
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Theorem 2.1 now follows immediately from the following lemma.

Lemma 3.1. Let f : D → Bn (n ≥ 2) be the disc (3-3). If g : D → Bn is a harmonic disc such that
g(0) = f (0), g is conformal at 0, and dg0(R

2) = d f0(R
2), then ∥dg0∥ ≤ ∥d f0∥, with equality if and only

if g(z) = f (eisz) or g(z) = f (eis z̄) for some s ∈ R and all z ∈ D.

The proof of Lemma 3.1 uses ideas from Lempert’s seminal paper [1981] concerning complex geodesics
of the Kobayashi metric in convex domains in Cn; see Remark 3.2.

Proof. Let p, c and a be as in (3-2) related to the map f in (3-3), where q = f (0). Precomposing f by a
rotation in C, we may assume that t = 0 in (3-3). For simplicity of notation we assume that n = 3; the
proof for n ̸= 3 is exactly the same. If n = 2, we delete the remaining components and take c = 1.

Consider the holomorphic disc F : D → � = B3
× iR3 given by

F(z) =

(
c

z + a
1 + āz

, −ci
z + a

1 + āz
, p

)
, z ∈ D. (3-4)

Then, f = ℜF. Suppose that g : D → B3 is as in the lemma. Up to replacing g(z) by g(eisz) or g(eis z̄)
for a suitable s ∈ R, we may assume that

dg0 = rd f0 for some r > 0. (3-5)

We must prove that r ≤ 1, and that r = 1 if and only if g = f .
Let G : D → � be the unique holomorphic map with ℜG = g and G(0) = F(0). In view of the

Cauchy–Riemann equations, condition (3-5) implies

G ′(0) = r F ′(0), (3-6)

where the prime denotes the complex derivative. It follows that the map (F(z)− G(z))/z is holomorphic
on D, and its value at z = 0 equals

lim
z→0

F(z) − G(z)
z

= F ′(0) − G ′(0) = (1 − r)F ′(0). (3-7)

The bounded harmonic map g : D → B3 has a nontangential boundary value at almost every point of
the circle T = bD. Since the Hilbert transform is an isometry on the Hilbert space L2(T), the same is
true for its holomorphic extension G; see [Garnett 1981].

Denote by ⟨ · , · ⟩ the complex bilinear form on Cn given by ⟨z, w⟩ =
∑n

i=1 ziwi for z, w ∈ Cn. Note
that on vectors in Rn this is the Euclidean inner product. For each z = eit ∈ bD the vector f (z) ∈ bB3

is the unit normal vector to the sphere bB3 at the point f (z). Since B3 is strongly convex and f is
real-valued, we have

ℜ⟨F(z) − G(z), f (z)⟩ = ⟨ f (z) − g(z), f (z)⟩ ≥ 0 a.e. z ∈ bD, (3-8)

and the value is positive for almost every z ∈ bD if and only if g ̸= f . It is at this point that strong
convexity of the ball B3 is used in an essential way.
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We now consider the map f̃ on the circle bD given by

f̃ (z) = z|1 + āz|2 f (z), |z| = 1. (3-9)

An explicit calculation, taking into account zz̄ = 1, shows that

f̃ (z) =


1
2 c(1 + a2

+ 4(ℜa)z + (1 + ā2)z2)

1
2 c(i(1 − a2) + 4(ℑa)z + i(ā2

− 1)z2)

p(z + a)(1 + āz)

 . (3-10)

We extend f̃ to all z ∈ C by letting it equal the quadratic holomorphic polynomial map on the right-hand
side above. Since |1 + āz|2 > 0 for z ∈ D, (3-8) implies

h(z) := ℜ⟨F(z) − G(z), |1 + āz|2 f (z)⟩ = ⟨ f (z) − g(z), |1 + āz|2 f (z)⟩ ≥ 0 a.e. z ∈ bD,

and h > 0 almost everywhere on bD if and only if g ̸= f . From (3-9) we see that

h(z) = ℜ

〈
F(z) − G(z)

z
, f̃ (z)

〉
a.e. z ∈ bD. (3-11)

Since the maps (F(z)− G(z))/z and f̃ (z) are holomorphic on D, formula (3-11) provides an extension
of h from bD to a nonnegative harmonic function on D which is positive on D unless f = g. Inserting
the value (3-7) into (3-11) gives

h(0) = ℜ⟨F ′(0) − G ′(0), f̃ (0)⟩ = (1 − r)ℜ⟨F ′(0), f̃ (0)⟩ ≥ 0,

with equality if and only if f = g. Applying this argument to the linear map g(z) = f (0) + rd f0(z)
(z ∈ D) for a small r > 0 we get ℜ⟨F ′(0), f̃ (0)⟩ > 0. It follows that r ≤ 1, with equality if and only
if g = f . □

Remark 3.2. The main point in the above proof is that the complexification of a conformal proper affine
disc in Bn is a stationary disc in the tube TBn = Bn

× iRn. In Lempert’s terminology [1981], a proper
holomorphic disc F : D → � in a smoothly bounded convex domain � ⊂ Cn, extending continuously to D,
is a stationary disc if, denoting by ν : bD → Cn the unit normal vector field to b� along the boundary
circle F(bD) ⊂ b�, there is a positive continuous function q > 0 on bD such that the function zq(z)ν(z)
extends from the circle |z| = 1 to a holomorphic function f̃ (z) on D. Lempert [1981] showed that every
stationary disc F in a bounded strongly convex domain is the unique Kobayashi extremal disc through the
point F(a) in the tangent direction F ′(a) for every a ∈ D. In our case, a suitable holomorphic function f̃
is given by (3-9) and (3-10). Lempert’s theory also works on tubes over bounded strongly convex domains
(see [Jarnicki and Pflug 2013, Section 11.1]); however, our proof of Theorem 2.1 does not depend on this
information.

4. Proof of Theorem 2.2

Precomposing the given harmonic map f : D → Bn in Theorem 2.2 by a holomorphic automorphism of
the disc D, we see that it suffices to prove estimate (2-4) for z = 0.
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Assume first that f : D → R is a harmonic function on D. Let F(z) = a0 + a1z + a2z2
+ · · · be the

holomorphic function on D with ℜF = f and F(0) = f (0) ∈ R. Writing z = reit with 0 ≤ r < 1 and t ∈ R,
we have

f (reit)2
=

1
4(a0 + a1reit + r2e2it

+ · · · + a0 + ā1re−it
+ ā2r2e−2it

+ · · · )2

= a2
0 +

1
2

∞∑
k=1

r2k
|ak |

2
+ · · · ,

where each of the remaining terms in the series contains a power emit for some m ∈ Z \ {0}. Integrating
around the circle |z| = r for 0 < r < 1 annihilates all such terms and yields∫ 2π

0
f (reit)2 dt

2π
= a2

0 +
1
2

∞∑
k=1

r2k
|ak |

2.

Clearly, a0 = f (0). Writing z = x + iy, we have that a1 = F ′(0) = Fx(0) = fx(0) − i fy(0) by the
Cauchy–Riemann equations. Therefore,

a2
0 = f (0)2 and |a1|

2
= fx(0)2

+ fy(0)2
= |∇ f (0)|2,

and hence ∫ 2π

0
f (reit)2 dt

2π
= | f (0)|2 +

1
2
|∇ f (0)|2r2

+
1
2

∞∑
k=2

r2k
|ak |

2. (4-1)

Suppose now that f = ( f1, . . . , fn) : D → Bn is a harmonic map. Then,
∑n

j=1 f j (reit)2 < 1 for
all 0 ≤ r < 1 and t ∈ R. Integrating this inequality and taking into account the identity (4-1) for each
component f j of f gives∫ 2π

0
| f (reit)|2

dt
2π

= | f (0)|2 +
1
2
|∇ f (0)|2r2

+
1
2

∞∑
k=2

r2k
|ak |

2 < 1.

Letting r increase to 1 gives | f (0)|2 +
1
2 |∇ f (0)|2 ≤ 1, with equality if and only if all higher-order

coefficients in the Fourier expansion of f vanish. The latter holds if and only if f is a linear disc. This
gives the estimate (2-4).

Note that (2-4) holds if the L2-Hardy norm of f is at most 1. This does not necessarily imply that there
is a harmonic disc in Bn reaching equality in (2-4). However, equality is attained if f (0) is orthogonal to
the two-plane d f0(R

2). In this case we may assume that f (0) = (0, 0, p, 0, . . . , 0) for some 0 ≤ p < 1
and d f0(R

2) = R2
× {0}

n−2. The affine disc

6 = {(x, y, p, 0, . . . , 0) : x2
+ y2 < 1 − p2

}

of radius c =
√

1 − p2 is then orthogonal to f (0), proper in Bn, and its conformal linear parametrization f
has gradient of size c

√
2 at the origin, so | f (0)|2 +

1
2 |∇ f (0)|2 = p2

+ c2
= 1. (Compare with (3-1)

and (3-3).) This completes the proof of Theorem 2.2. □
We now show by examples that the inequality (2-3) fails in general for some nonconformal harmonic

maps, and even for harmonic diffeomorphisms of the disc.
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Example 4.1. Let U be the harmonic function on the disc D given by

U (z) = ℑ
2
π

log
1 + z
1 − z

=
2
π

arctan
2y

1 − x2 − y2 . (4-2)

This is the extremal harmonic function whose boundary value equals +1 on the upper unit semicircle
and −1 on the lower semicircle, and we have that ∇U (0) =

4
π
(0, 1) and |∇U (0)| =

4
π

. For every c ∈ R

the harmonic map

f (z) =
1√

1 + |c|2
(c + iU (z)), z ∈ D,

clearly takes the unit disc into itself. For c = 1 we have

f (0) =
1

√
2
, ∇ f (0) =

2
√

2
π

(
0 0
0 1

)
, |∇ f (0)| =

2
√

2
π

≈ 0.9,
√

2(1 − | f (0)|2) =

√
2

2
≈ 0.7.

Hence, inequality (2-3) fails in this example. On the other hand,
√

2
√

1 − | f (0)|2 = 1, so inequality (2-4)
holds, as it should by Theorem 2.2.

With some more effort we can show that inequality (2-3) fails for harmonic diffeomorphisms of the
unit disc onto itself. Consider the sequence ϕn , n ∈ N, of orientation-preserving homeomorphisms of the
interval [0, 2π ] onto itself, defined by

ϕn(t) =

{ π

2π−1/n
t if t ∈

[
0, 2π −

1
n

]
,

2(π − nπ2) + nπ t if t ∈
[
2π −

1
n , 2π

]
.

Let φn : T → T be the associated sequence of homeomorphisms of the circle T = bD given by φn(eit) =

eiϕn(t) for t ∈ [0, 2π ]. Denote by

fn(z) = P[φn](z) =
1

2π

∫ 2π

0

1 − |z|2

|eit − z|2
φn(eit) dt, z ∈ D,

the Poisson extension of φn . By the Radó–Kneser–Choquet theorem (see [Duren 2004, Section 3.1]),
fn is a harmonic diffeomorphism of D for every n ∈ N. As n → ∞, the sequence fn converges uniformly
on compacts in D to the harmonic map f = P[φ0], where φ0(eit) = limn→∞ φn(eit) = eit/2 for t ∈ [0, 2π).
Further, we have

lim
n→∞

|∇ fn(0)|

1 − | fn(0)|2
=

|∇ f (0)|

1 − | f (0)|2
.

A calculation shows that
1

√
2

|∇ f (0)|

1 − | f (0)|2
=

√
|A|2 + |B2|

1 − |C |2
,

where

A =
1
π

∫ 2π

0
eit/2 cos t dt = −

4i
3π

, B =
1
π

∫ 2π

0
eit/2 sin t dt =

8
3π

, C =
1

2π

∫ 2π

0
eit/2 dt =

2i
π

.

Hence,
1

√
2

|∇ f (0)|

1 − | f (0)|2
=

2
√

10
3π(1 − 4/π2)

≈ 1.1.

This shows that (2-3) fails for harmonic diffeomorphisms of the unit disc onto itself.
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Example 4.2. Let U (x, y) be the function (4-2). The harmonic map f (x, y) = (U (y, x), U (x, y)) takes
the disc D onto the square P = {(x, y) ∈ R2

: |x | < 1, |y| < 1} and d f0(0, 0) =
4
π

Id. In particular,
f is conformal at (0, 0) and ∥d f0∥ =

4
π

≈ 1.27. On the other hand, a conformal diffeomorphism of D

onto P mapping the origin to itself has the derivative at the origin of absolute value ≈ 1.08. Hence, the
Schwarz–Pick lemma in Theorem 1.1 fails for maps from the disc to more general domains in C. In
particular, while the domain C \ {0, 1} is Kobayashi hyperbolic, one can find nonconstant harmonic maps
C → C \ {0, 1} whose differential is nonvanishing and conformal at the origin.

Problem 4.3. Assume that D ⊊ R2 is a simply connected domain such that, for some point p ∈ D, the
supremum of the norm ∥d f0∥ of the differential of f at 0 ∈ D over all harmonic maps f : D → D with
f (0) = p which are conformal at 0 is attained by a conformal diffeomorphism of D onto D. Does it
follow that D is a disc?

5. A Schwarz–Pick lemma for quasiconformal harmonic maps

In this section we apply the Schwarz–Pick lemma for harmonic self-maps of the disc, given by Theorem 1.1,
to provide an estimate of the gradient of an orientation-preserving harmonic map f : D → D in terms of
its second Beltrami coefficient

ω(z) =
( f z̄)

fz
, z ∈ D. (5-1)

Here, fz =
1
2( fx − i fy) and f z̄ =

1
2( fx + i fy). If the map f is harmonic then ω is a holomorphic function;

see (5-2). This is not the case for the Beltrami coefficient µ from the Beltrami equation f z̄ = µ(z) fz . The
number |µ(z)| = |ω(z)| measures the dilatation of d fz; in particular, µ(z) = ω(z) = 0 if and only if f
is conformal at z. We refer to [Ahlfors 1966; Duren 2004; Lehto and Virtanen 1973; Hengartner and
Schober 1986] for background on the theory of quasiconformal maps.

The main question is to find the optimal estimate on ∥d f0∥ for a harmonic map f : D → D with
f (0) = 0 and with a given value of |ω(0)| = |µ(0)|. A related problem was studied by Kovalev and

Yang [2020] and Brevig et al. [2021], where the reader can find references to earlier works. Here we
prove the following result.

Theorem 5.1. Assume that f is an orientation-preserving harmonic map of the unit disc into itself , and
let ω(z) denote its second Beltrami coefficient (5-1). Then we have the inequality

∥d fz∥ ≤
2(|ω(z) f (z)2

| +ℜ(ω(z) f (z)2))

(1 − |ω(z)|2)(1 − |z|2)
+

1 + |ω(z)|
1 − |ω(z)|

1 − | f (z)|2

1 − |z|2
, z ∈ D.

If f is conformal at a point z, i.e., ω(z) = 0, this estimate coincides with the Schwarz–Pick inequal-
ity (1-1) in Theorem 1.1.

Proof. It suffices to prove the inequality in the theorem for z = 0. For other points, we obtain it replacing f
by f ◦φz for φz ∈ Aut(D). However, we cannot reduce to the case f (0) = 0 since postcompositions by
automorphisms of D are not allowed. The main idea is to construct from f a new harmonic map f̃ : D → D

which is conformal at 0, to which we then apply the Schwarz–Pick lemma given by Theorem 1.1.
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Let us write f = g + h̄, where g and h are holomorphic functions on D. Then,

fz(z) = g′(z), f z̄(z) = h′(z), ω(z) =
h′(z)
g′(z)

. (5-2)

Recall that the second Beltrami coefficient ω (5-1) is holomorphic. It follows that

∥d f ∥ = |g′
|(1 + |ω|). (5-3)

Since f is orientation preserving, we have that |g′(z)| ≥ |h′(z)| for all z ∈ D. Let

a = g′(0) and b = h′(0). (5-4)

We may assume that |a|+ |b| > 0, for otherwise the estimate is trivial. Since | f (z)| < 1 for all z ∈ D, the
complex harmonic function

f̃ (z) :=
ā f − b̄ f̄
|a| + |b|

, z ∈ D, (5-5)

clearly maps the unit disc into itself. We have f̃ = g̃ + h̃, where

g̃ =
āg − b̄h
|a| + |b|

and h̃ =
ah − bg
|a| + |b|

(5-6)

are holomorphic functions on D. Since

h̃′(0) =
ah′(0) − bg′(0)

|a| + |b|
= 0, (5-7)

the second Beltrami coefficient ω̃ of f̃ vanishes at z = 0, and hence f̃ is conformal at 0. Our Schwarz–Pick
lemma (see Theorem 1.1) gives

∥d f̃0∥ ≤ 1 − | f̃ (0)|2. (5-8)

Taking into account (5-3), (5-4), (5-6), and (5-7), we have

∥d f̃0∥ = |g̃′(0)| = |g′(0)| − |h′(0)|.

Together with (5-5), (5-4), and (5-8) this gives the estimate

|g′(0)| − |h′(0)| ≤ 1 −
|g′(0) f (0) − h′(0) f (0)|2

(|g′(0)| + |h′(0)|)2

=
2|g′(0)| · |h′(0)| · | f (0)|2 + 2ℜ(g′(0)h′(0) f (0)2)

(|g′(0)| + |h′(0)|)2 + 1 − | f (0)|2.

In view of (5-2), this inequality can be written in the form

(1 − |ω(0)|)|g′(0)| ≤
2(|ω(0)|| f (0)|2 + ℜ(ω(0) f (0)2))

(1 + |ω(0)|)2 + 1 − | f (0)|2.

From (5-3) we see that

|g′(0)| =
∥d f0∥

1 + |ω(0)|
.
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Inserting this into the expression on the left-hand side of the previous inequality gives

∥d f0∥
1 − |ω(0)|

1 + |ω(0)|
≤

2|ω(0) f (0)2
| + 2ℜ(ω(0) f (0)2)

(1 + |ω(0)|)2 + 1 − | f (0)|2,

which is clearly equivalent to

∥d f0∥ ≤
2|ω(0) f (0)2

| + 2ℜ(ω(0) f (0)2)

1 − |ω(0)|2
+

1 + |ω(0)|

1 − |ω(0)|
(1 − | f (0)|2). □

6. An intrinsic pseudometric defined by conformal harmonic discs

In this section we introduce an intrinsic Finsler pseudometric gD on any domain D in Rn, n ≥ 3, and
more generally on any Riemannian manifold of dimension at least three, in terms of conformal minimal
discs D → D. The definition is modeled on Kobayashi’s definition of his pseudometric on complex
manifolds, which uses holomorphic discs. The pseudometric gD and the associated pseudodistance
ρD : D × D → R+ are the largest ones having the property that any conformal harmonic map M → D
from a hyperbolic conformal surface with the Poincaré metric is metric and distance decreasing. On the
ball Bn, we have that gBn coincides with the Cayley–Klein metric; see Theorem 6.2. The same definition
of gD applies in any Riemannian manifold of dimension at least three; see Remark 6.6. This provides
the basis for hyperbolicity theory of domains in Euclidean spaces and, more generally, of Riemannian
manifolds, in terms of minimal surfaces.

We begin by introducing a Finsler pseudometric on the bundle of two-planes over a domain D ⊂ Rn,
analogous to the metric M on the ball; see (2-8). A conformal frame in Rn is a pair (u, v) ∈ Rn

×Rn such
that |u| = |v| and u · v = 0. We denote by CFn the space of all conformal frames on Rn, including (0, 0).
Given a domain D ⊂ Rn, let CH(D, D) denote the space of conformal harmonic maps D → D (i.e., such
that (2-1) holds at every point of D). Define the function MD : D × CFn → R+ by

MD(x, (u, v)) = inf
{1

r
: ∃ f ∈ CH(D, D), f (0) = x, fx(0) = r u, fy(0) = rv

}
. (6-1)

Clearly, MD is homogeneous and rotation-invariant, in the sense that for any c ∈ R and orthogonal
rotation R in the two-plane 3 = span{u, v} we have for every x ∈ D that

MD(x, (cu, cv)) = |c|MD(x, (u, v)), MD(x, (Ru, Rv)) = MD(x, (u, v)). (6-2)

Thus, MD is determined by its values on unitary conformal frames (u, v) with |u| = |v| = 1 and hence on
D × G2(R

n), where G2(R
n) is the Grassmann manifold of two-planes in Rn. Precisely, for a two-plane

3∈ G2(R
n) we set MD(x, 3)=MD(x, (u, v)), where (u, v) is any unitary conformal frame spanning 3.

Note that

MD(x, 3) = inf
{

1
∥d f0∥

: f ∈ CH(D, D), f (0) = x, d f0(R
2) = 3

}
. (6-3)

By shrinking the disc D and using rotations and translations on Rn, we see that the function MD is upper
semicontinuous on D × CFn . Obviously, MRn ≡ 0. On the ball Bn, we have that MBn (x, 3) is given
by (2-8) according to Theorem 2.1.
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We also introduce a Finsler pseudometric gD : D × Rn
→ R+, called the minimal metric on D, whose

value at a point x ∈ D on a tangent vector u ∈ Tx D = Rn is given by

gD(x, u) = inf
{1

r
> 0 : ∃ f ∈ CH(D, D), f (0) = x, fx(0) = r u

}
= |u| · inf{MD(x, 3) : 3 ∈ G2(R

n), u ∈ 3}. (6-4)

It follows that every conformal harmonic map f : D → D satisfies

gD( f (z), d fz(ξ)) ≤ P(z, ξ) =
|ξ |

1 − |z|2
, z ∈ D, ξ ∈ R2, (6-5)

and gD is the biggest pseudometric on D with this property. For z = 0 this follows directly from the
definition, and for any other point z ∈ D we precompose f by a conformal automorphism of D mapping 0
to z. The same holds if D is replaced by any hyperbolic conformal surface; see the proof of Theorem 2.6.

By integrating gD we get the minimal pseudodistance ρD : � × � → R+:

ρD(x, y) = inf
γ

∫ 1

0
gD(γ (t), γ̇ (t)) dt, x, y ∈ �. (6-6)

The infimum is over all piecewise smooth paths γ : [0, 1] → � with γ (0) = x and γ (1) = y. Obviously,
ρ� satisfies the triangle inequality, but it need not be a distance function. In particular, ρRn vanishes
identically.

There is another natural procedure to obtain the pseudodistance ρD in (6-6), which is motivated by
Kobayashi’s definition of his pseudodistance on complex manifolds [1967]. Fix a pair of points x, y ∈ D.
To any finite chain of conformal harmonic discs fi : D → D and points ai ∈ D (i = 1, . . . , k) such that

f1(0) = x, fi+1(0) = fi (ai ) for i = 1, . . . , k − 1, fk(ak) = y, (6-7)

we associate the number
k∑

i=1

1
2

log
1 + |ai |

1 − |ai |
≥ 0.

The i-th term in the sum is the Poincaré distance from 0 to ai in D. The pseudodistance ρD(x, y) is
defined to be the infimum of the numbers obtained in this way. The proof that the two definitions yield the
same result is similar to the one given for the Kobayashi pseudodistance by Royden [1971, Theorem 1];
see [Drinovec Drnovšek and Forstnerič 2023, Theorem 3.1] for the details.

The following proposition says that the minimal pseudodistance ρD gives an upper bound for growth
of conformal minimal surfaces in the domain D.

Proposition 6.1. Every conformal harmonic map M → D from a hyperbolic conformal surface is
distance decreasing in the Poincaré distance on M and the pseudodistance ρD , and ρD is the biggest
pseudodistance on D for which this holds.

Proof. Let M be a hyperbolic conformal surface and h : D → M be a conformal universal covering.
Choose a conformal harmonic map f : M → D and a pair of points p, q ∈ M. Let a, b ∈ D be such that
h(a) = p and h(b) = q. Precomposing h by an automorphism of the disc, we may assume that a = 0.
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Then, g := f ◦h : D → D is a conformal harmonic disc with g(0) = f (p) and g(b) = f (q), and it follows
from the definition of ρD that

ρD( f (p), f (q)) = ρD(g(0), g(b)) ≤
1
2

log
1 + |b|

1 − |b|
.

The infimum of the right-hand side over all points b ∈ D with h(b) = q equals the Poincaré distance
between p and q in M, so we see that f is distance decreasing.

Suppose now that τ is a pseudodistance on D such that every conformal harmonic map D → D is
distance decreasing with the Poincaré metric on D. Let fi : D → D and ai ∈ D for i = 1, . . . , k be a
chain as in (6-7) connecting the points x, y ∈ D. Then,

τ(x, y) ≤

k∑
i=1

τ( fi (0), fi (ai )) ≤

k∑
i=1

1
2

log
1 + |ai |

1 − |ai |
.

Taking the infimum over all such chains gives τ(x, y) ≤ ρD(x, y). □

We have already observed that, on the ball Bn (n ≥ 3), the Finsler metric MBn is given by (2-8). From
(2-9) and (6-4) it follows that gBn equals the Cayley–Klein metric CK (2-6):

Theorem 6.2. On the ball Bn, n ≥ 3, we have

gBn = CK, ρBn = distCK .

Hilbert [1895] defined a metric on any convex domain in RPn that generalizes the Cayley–Klein metric
on the ball. Hilbert metrics are examples of projectively invariant metrics which have been studied by many
authors; see the surveys by Kobayashi [1977; 1984] and Goldman [2019]. Kobayashi [1977] discussed
the analogy between his metric and Hilbert’s metric. Lempert [1987] established an explicit connection,
and then in [Lempert 1993, Theorem 3.1] proved that the Hilbert metric HD on any bounded convex
domain D ⊂ Rn is the restriction to D of the Kobayashi metric on the elliptic tube D∗

⊂ D × iRn
⊂ Cn

obtained as follows; see [Lempert 1993, p. 441]. Every affine line segment L ⊂ D with endpoints on bD
is the diameter of a unique complex disc in D × iRn, and D∗ is the union of all such discs. The elliptic
tube over the ball Bn is the complex ball Bn

C
, and the metric gBn agrees with the Hilbert metric HBn = CK

according to Theorem 6.2.
While Hilbert’s metric is invariant under projective linear transformations, the minimal metric is

invariant (at least in an obvious way) only under the conformal group (see Proposition 6.5); hence it is
expected that the two metrics differ on most convex domains. We give an explicit example on ellipsoids.

Example 6.3. Let (x, y, z) be coordinates on R3. Consider the ellipsoid

Da =

{
(x, y, z) ∈ R3

: x2
+

1
a2 (y2

+ z2) < 1
}
, a > 0.

Note that Da ⊂ B3 if and only if 0 < a ≤ 1, and D1 = B3. We will show that for 0 < a < 1 the
Hilbert metric on Da does not agree with the minimal metric at the origin 0 ∈ R3. Since the x-axis
intersects Da in the interval (−1, 1), the Hilbert length of the vector e1 = (1, 0, 0) equals 1. Pick a
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two-plane 3 ⊂ R3 containing the vector e1. Due to rotational symmetry of Da in the (y, z)-coordinates
the value of MDa (0, 3) (6-3) does not depend on the choice of 3, so we may take 3 = {z = 0}. Let
f = ( f1, f2, f3) : D → Da be a conformal harmonic disc with f (0) = 0 and d f0(R

2) = {z = 0}. Replacing
f by f (eit z) for a suitable t ∈ R gives fx(0) = r e1 and fy(0) = ±r e2 with r = ∥d f0∥ > 0. The projection
h = ( f1, f2) : D → R2 maps D into the ellipse Ea = {x2

+ y2/a2 < 1}, h(0) = 0, and h is conformal at 0.
For 0 < a < 1 we have Ea ⊊ D. Theorem 1.1 implies that r = ∥dh0∥ < 1; equality is excluded since in
that case we would have h(D) = D. By a normal families argument we also have that sup f ∥d f0∥ < 1. It
follows that MDa (0, 3) > 1 for every such 3, and hence

gDa (0, e1) = MDa (0, 3) > 1 = HDa (0, e1) if 0 < a < 1.

Problem 6.4. On which bounded convex domains D ⊂ Rn, n ≥ 3 (besides the ball) does the Hilbert
metric coincide with the minimal metric gD? Is the ball the only such domain?

Denote by Rn the Lie group of transformations Rn
→ Rn generated by the orthogonal group On ,

translations, and dilations by positive numbers. Elements of Rn are called rigid transformations of Rn.
Postcomposition of any conformal harmonic map f : M → Rn by a rigid transformation of Rn is again a
conformal harmonic map, and it is well known that Rn is the largest group of diffeomorphisms of Rn

having this property. This gives the following.

Proposition 6.5. Given a domain D ⊂Rn, n ≥3, and a map R ∈Rn , the restriction R|D : D → D′
= R(D)

is an isometry of pseudometric spaces (D, ρD) → (D′, ρD′).

Remark 6.6. The intrinsic pseudometric gD and the associated pseudodistance ρD can be defined in the
very same way on an arbitrary Riemannian manifold (D, g̃) of dimension at least three. The Riemannian
metric g̃ determines the class of conformal harmonic maps D → D, which coincide with conformal
minimal discs in D.

Hyperbolic domains in Rn. We now introduce the notion of (complete) hyperbolic domains in Rn, in
analogy with Kobayashi hyperbolic complex manifolds.

Definition 6.7. A domain D ⊂ Rn (n ≥ 3) is hyperbolic if the pseudodistance ρD is a distance function
on D, and is complete hyperbolic if (D, ρD) is a complete metric space.

Example 6.8. (a) The ball Bn
⊂ Rn (n ≥ 3) is complete hyperbolic. Indeed, the Cayley–Klein metric

(2-6) is complete, so the conclusion follows from Theorem 6.2.

(b) Every bounded domain D ⊂ Rn is hyperbolic. Indeed, if B is a ball containing D then ρD(x, y) ≥

ρB(x, y) for any pair x, y ∈ D, and B is complete hyperbolic by (a). However, a bounded domain need
not be complete hyperbolic. For example, if bD is strongly concave at p ∈ bD, there is a conformal
linear disc 6 ⊂ D ∪ { p} containing p, and it is easily seen that p is at finite ρ-distance from D.

(c) The half-space Hn
= {x = (x1, . . . , xn) ∈ Rn

: xn > 0} is not hyperbolic, and the pseudodistance ρHn

vanishes on all planes xn = const. However, every point on bHn
= {xn = 0} is at infinite minimal distance

from points in Hn [Drinovec Drnovšek and Forstnerič 2023, Lemma 5.2].



SCHWARZ–PICK LEMMA FOR HARMONIC MAPS WHICH ARE CONFORMAL AT A POINT 999

By using the expression for the metric (2-8) on the ball we can determine the asymptotic rate of growth
of the Finsler metric MD , and hence of the distance function ρD , on any bounded strongly convex domain
D ⊂ Rn with C 2 boundary. Let δ = δ(x) = 1 − |x| denote the distance from a point x ∈ Bn

\ {0} to the
sphere bBn, and let 3 ⊂ Rn be a 2-plane forming an angle θ with x. As x approaches the sphere radially,
we have

MBn (x, θ) := MBn (x, 3) ≈

√
cos2 θ + 2δ sin2 θ

2δ
,

in the sense that the quotient of the two sides converges to 1 as δ → 0. In particular,

MBn

(
x,

π

2

)
≈

1
√

2δ
and MBn (x, θ) ≈

cos θ

2δ
for θ ∈

[
0,

π

2

)
.

Assume now that D ⊂ Rn is a bounded strongly convex domain with C 2 boundary. There is a collar
U ⊂ Rn around bD such that every point x ∈ U ∩ D has a unique closest point π(x) ∈ bD. Comparison
with inscribed and circumscribed balls to D passing through the point π(x) shows that there are constants
0 < c < C such that

c

√
cos2 θ + 2δ sin2 θ

2δ
≤ MD(x, 3) ≤ C

√
cos2 θ + 2δ sin2 θ

2δ
(6-8)

for x ∈ U ∩ D, where δ = |x − π(x)| = dist(x, bD) and θ is the angle between the 2-plane 3 and
the normal vector Nx = δ−1(π(x) − x) to bD at π(x) ∈ bD. The upper bound uses comparison with
inscribed balls, so it holds on any domain with C 2 boundary, while the lower bound uses comparison
with circumscribed ball, and hence it depends on strong convexity of D. These estimates are analogous to
the asymptotic boundary estimates of the Kobayashi metric in bounded strongly pseudoconvex domains
in Cn and are due to Graham [1975]. (There is a large subsequent literature on this subject.) These
estimates show in particular that the distance function ρD induced by MD is complete, thereby giving
the following.

Theorem 6.9. Every bounded strongly convex domain in Rn, n ≥ 3, with C 2 boundary is complete
hyperbolic in the minimal metric.

Remark 6.10. Since the first version of this paper was posted on arXiv in February 2021, progress on
the subject of minimal hyperbolicity was made by Drinovec Drnovšek and Forstnerič [2023], whose
paper we will henceforth abbreviate as [DDF 2023]. Besides establishing basic characterizations of
(complete) hyperbolicity, they proved that a convex domain in Rn is hyperbolic if and only if it is complete
hyperbolic if and only if it does not contain any affine 2-plane [DDF 2023, Theorem 5.1]. They also
showed that every bounded strongly minimally convex domain in Rn, n ≥ 3, is complete hyperbolic
[DDF 2023, Theorem 9.2]. This is a considerable generalization of Theorem 6.9, whose proof relies on
the lower bound for M� (and hence g�) given by another Finsler pseudometric F� : �× G2(R

n) → R+

defined in terms of minimal plurisubharmonic functions; see [DDF 2023, Section 7]. A discussion of
this class of domains and functions can be found in [Alarcón et al. 2019; 2021, Chapter 8]. Finally,
they established a localization theorem for the minimal pseudometric analogous to the results for the
Kobayashi pseudometric; see [DDF 2023, Section 8].
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The following problem remains open; an affirmative answer is known for the case when M is a plane;
see [DDF 2023, Lemma 5.2].

Problem 6.11. Let M be an embedded minimal surface in R3. Is the minimal distance from R3
\ M to M

infinite? Is the complement of a catenoid in R3 complete hyperbolic?

Extremal minimal discs. Another important and natural question is the following.

Problem 6.12. Let D ⊂ Rn be a bounded strongly convex domain with smooth boundary. Is there a
unique (up to a conformal reparametrization) extremal conformal harmonic disc through any given point
x ∈ D tangent to a given two-plane 3 ∈ G2(R

n) at x?

Theorem 2.1 gives an affirmative answer on the ball, and this is the only domain for which the answer
seems to be known. By the seminal result of Lempert [1981; 1987], the analogous result holds for the
extremal holomorphic discs for the Kobayashi metric in any smoothly bounded strongly convex domain
D ⊂ Cn.

We now describe a condition which implies an affirmative answer to this problem. It explores a
comparison between the Finsler pseudometric MD (6-1) on a domain D ⊂ Rn and a Kobayashi-type
pseudometric on the tube TD = D × iRn

⊂ Cn. To this end, we recall a few basic facts from the theory of
minimal surfaces; see [Alarcón et al. 2021, Chapter 2] or [Osserman 1969].

A holomorphic map F = (F1, . . . , Fn) : D → Cn satisfying∑
i=1

F ′

i (z)
2
= 0 for all z ∈ D

is called a holomorphic null map. The analogous definition applies with the disc replaced by any open
Riemann surface, considering the above equation in local holomorphic coordinates. (The map F need not
be an immersion.) The complex cone

An−1
=

{
z = (z1, . . . , zn) ∈ Cn

:

n∑
i=1

z2
i = 0

}
(6-9)

is called the null cone, and its elements are null vectors. Hence, a holomorphic map F is null if and only
if the complex derivative F ′(z) lies in An−1 for every z. It is a basic fact that the real and imaginary
parts of a holomorphic null map M → Cn are conformal harmonic maps M → Rn; conversely, every
conformal harmonic map D → Rn from the disc is the real part of a holomorphic null map D → Cn; see
[Alarcón et al. 2021, Theorem 2.3.4]. Given a domain D ⊂ Rn, we denote by HN(D, TD) the space of all
holomorphic null maps F = (F1, . . . , Fn) : D → TD . Define a pseudometric on (z, w) ∈ TD × An−1 by

ND(z, w) = inf
{

1
|a|

: ∃F ∈ HN(D, TD), F(0) = z, F ′(0) = aw

}
. (6-10)

Here, a may be a complex number. Clearly, ND(z, w) is bigger than or equal to the Kobayashi pseudonorm
of the vector w ∈ Tz(TD), since in the definition of the latter one uses all holomorphic discs as opposed to
just null discs. Note that for each conformal frame (u, v) ∈ CFn the vectors u ± iv ∈ Cn are null vectors;
conversely, the real and imaginary component of a null vector w ∈ An−1 form a conformal frame. The
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aforementioned correspondence between conformal harmonic discs in D and holomorphic null discs
in TD shows that for all x ∈ D, y ∈ Rn, and (u, v) ∈ CFn we have

ND(x + i y, u ± iv) = MD(x, (u, v)). (6-11)

This shows in particular that every extremal conformal harmonic disc in D is the real part of an extremal
holomorphic null disc in the tube TD. Therefore, the correspondence between the extremal conformal
minimal discs in the ball Bn

⊂ Rn and the Kobayashi geodesics in the tube TBn , used in the proof of
Lemma 3.1, extends to any bounded strongly convex domain D ⊂ Rn with C 2 boundary satisfying the
following condition. The notion of a stationary holomorphic disc was explained in Remark 3.2.

Definition 6.13. A domain D ⊂ Rn satisfies Condition N if for every point x ∈ D and null vector
0 ̸= w ∈ An−1 there is a stationary holomorphic null disc in the tube TD through the point x + i0 in the
direction w.

Our proof of Theorem 2.1 implies the following.

Theorem 6.14. If D is a bounded strongly convex domain in Rn, n ≥ 3, with smooth boundary and
satisfying Condition N, then for every point x ∈ D and two-plane 3 ∈ G2(R

n) there exists an extremal
conformal harmonic disc f : D → D with f (0) = x and d f0(R

2) = 3. Such an f is unique up to a
rotation of D.

Proof. Let 0 ̸= w = u − iv ∈ An−1 be such that 3 = span{u, v}. By Condition N there is a stationary
holomorphic null disc F : D → TD with F(0) = x + i0 and F ′(0) = αw for α ∈ C, and F is unique up
to rotations of D by Lempert’s theorem [1981, Theorem 2]. The real part f = ℜF : D → D is then a
conformal harmonic disc as in the theorem. □

Problem 6.15. Which bounded strongly convex domains in Rn, besides the ball, satisfy Condition N?

Complex geodesics of the Kobayashi metric in tubes over convex domains D ⊂ Rn were studied by
Zając [2015; 2016], Pflug and Zwonek [2018], and Zwonek [2022]. It would be of interest to see whether
these works can be used to give information on the validity of Condition N. The fact that Condition N
holds on the ball Bn may simply be a lucky coincidence which makes our analysis work on this most
symmetric domain.
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