
This is the Author-Accepted Version of the paper:

 J. Vreča and A. Biasizzo, "Towards Deploying Highly Quantized Neural Networks

on FPGA Using Chisel," 2023 26th Euromicro Conference on Digital System Design

(DSD), Golem, Albania, 2023, pp. 161-167, doi: 10.1109/DSD60849.2023.00032.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE

must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes,

creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Towards Deploying Highly Quantized Neural
Networks on FPGA Using Chisel

1st Jure Vreča
Computer Systems Department

Jožef Stefan Institute
Ljubljana, Slovenia

jure.vreca@ijs.si

2nd Anton Biasizzo
Computer Systems Department

Jožef Stefan Institute
Ljubljana, Slovenia
anton.biasizzo@ijs.si

Abstract—We present chisel4ml, a Chisel-based tool that gener-
ates hardware for highly quantized neural networks described in
QKeras. Such networks typically use parameters with bitwidths
less than 8 bits and may have pruned connections. Chisel4ml can
generate the highly quantized neural network as a single combi-
national circuit with pipeline registers in between the different
layers. It supports heterogeneous quantization where each layer
can have a different precision. The full parallelization enables
very low-latency and high throughput inference, that are required
for certain tasks. We illustrate this on the triggering system for
the CERN Large Hadron Collider, which filters out events of
interest and sends them on for further processing. We compare
our tool against hls4ml, a high-level synthesis based approach
for deploying similar neural networks. Chisel4ml is still under
development. However, it already achieves comparable results
to hls4ml for some neural network architectures. Chisel4ml is
available on https://github.com/cs-jsi/chisel4ml.

Index Terms—Chisel, neural networks, quantization, FPGA

I. INTRODUCTION

Artificial neural networks have become a very important
branch of machine learning as they can easily be trained to
handle a variety of problems. The increasing size of neural net-
works has however proven a challenge for deployment of such
neural networks at the edge. Additionally, in some systems
very low latency is required. An example is a data processing
and storage triggering system for a particle accelerator, where
the triggering system must filter out events of interest to avoid
over-loading the computing system. Another example is a
network intrusion detection system at the edge [1]. Network
intrusion detection is the task of scanning network traffic
to detect a potential intrusion. Machine learning approaches
have been applied to this task, however such approaches are
intractable to compute on battery powered edge devices.

The CERN Large Hadron Collider generates a vast amount
of data at rate of several terabytes per second. This presents a
significant computing challenge for both real time and offline
processing of this data [2]. To make the data rate manageable
a processing and storage triggering system was developed
based on neural networks that are deployed on FPGAs. As
the required latency is below few hundreds of nanoseconds

The authors acknowledge the financial support from the Slovenian Research
Agency (research core funding No. P2-0098). This work is also part of a
project that has received funding from the ECSEL Joint Undertaking under
grant agreement No 101007273 (DAIS).

they propose a data flow style accelerator of quantized neural
networks where all the weights of the neural network are
stored on the FPGA [3]. This eliminates the need for high
latency access to DRAM memory, but presents a challenge
in itself because the memory capacity of an FPGA is quite
limited with respect to the sizes of neural networks. This is
where quantization and pruning techniques have proven useful
in significantly reducing the size of neural network models [4,
5].

Quantization of neural networks is the process of reducing
the required precision of parameters and input features. Instead
of the floating-point representation we can use integers of
various bitwidths, even as low as a single bit [6]. Pruning on
the other hand is the process of removing unneeded parameters
(connections) from the neural network, and thus decreasing
the model size. It has been shown that even 90% of neural
network parameters can be removed this way, with minimal
loss of neural network accuracy [7]. Pruning and quantization
can also be combined to further reduce the size of the neural
network.

Typically, digital hardware is designed with hardware de-
scription languages (HDL). Such hardware development, how-
ever, can take a long time, and requires domain knowledge.
This motivates the development of a generator that could take
a high-level description of a neural network, and generate the
hardware automatically. One such generator is hls4ml [3], and
was developed to solve the motivating example given above.
Another generator, FINN [8], was developed by Xilinx. Both
of these tools are based on High-Level Synthesis, which can
lead to sub-optimal results, as shown by an experimental study
conducted by the FINN team [9].

We have decided to tackle the problem with the Chisel
Hardware Construction Language (HCL). It is implemented as
a framework within the Scala programming language, which
gives it many advanced features; such as object orientation
and functional programming. In Chisel you write a software
program, that when executed constructs the hardware, and
exports it as Verilog. Neural networks are good candidates
for such an approach since their high-level description can be
easily translated by the Scala code into Chisel hardware rep-
resentation. Chisel4ml tool is a Chisel hardware generator that
implements quantized feed-forward neural networks. It is still

Fig. 1: A schematic representation of a fully-connected layer.

under development. However, it already achieves comparable
results to hls4ml for some neural network architectures.

The remainder of this article is organized as follows.
In Section II we provide background information on quantized
neural networks, in Section III we detail how chisel4ml is
implemented, in Section IV we compare the results of the
tools, and finally we conclude the paper with Section V.

II. QUANTIZED NEURAL NETWORKS

Artificial neural networks are computational models that are
loosely inspired by biological neurons. They are constructed
from a set of layers, which can contain many neurons.

A. Artificial Neural Networks

A single neuron of an artificial neural network can be
computed as shown in Eq. (1):

y = f(b+

N∑
i

wi · xi), (1)

where the vector of weights w and the bias b are constant
parameters, xi are the inputs to the neuron, f is the non-linear
function, and y is the (scalar) output. The Rectified Linear
Unit (ReLU) is a common non-linear function used in deep
learning:

f(x) = ReLU(x) = max(0, x). (2)

A single neuron however, has a limited learning ability.
So we typically combine them in groups called layers, which
contain many neurons. A basic type of neural network layer
is a fully-connected or dense layer, where all inputs are
connected to all neurons. Fig. 1 shows an example fully-
connected layer with three neurons and two inputs. Fully-
connected layers can be concisely expressed as matrix-vector
multiplication, as shown in Eq. (3):

y⃗ = f(W · x⃗+ b⃗) = d(x⃗), (3)

where W is the matrix of weights, x⃗ is the input vector, b⃗ is
the vector of constant bias values, and y⃗ is the output vector.
Several such layers can be sequentially connected to form a
feed forward neural network:

y⃗ = d1(d2(...(dn(x⃗)))) = d1 ◦d2 ◦ ...◦dn(x⃗) = D(x⃗; θ). (4)

Where x⃗ is again the input vector, y⃗ is the output vector,
functions di represent the various layers, θ represents the
parameters of the entire neural network, and function D

represents the whole neural network. For classification tasks,
the final layer typically uses the softmax activation function,
as defined in Eq. (5):

σ(xi) =
exi∑K
j=1 e

xj

for i = 1, 2, . . . ,K, (5)

however, at inference the winning class can simply be selected
by choosing the largest output value. Therefore computing the
softmax is unnecessary for applications which only care about
the winning class.

B. Quantization
Function D (the neural network) in Eq. (4) would typically

be computed using either standard 32-bit floating-point num-
bers, or some variant of 16-bit floating-point numbers [10]. It
has been shown that neural networks can be accurate also with
fixed-point arithmetic, but special consideration is needed.

In general there are two methods of quantization of neural
networks:

• Post-Training Quantization (PTQ), and
• Quantization-Aware Training (QAT).
With PTQ methods we first train the neural network using

the floating-point representation, and then convert trained
parameters into the fixed-point representation after training.
This is the most straightforward method, however it can
cause severe degradation in neural network accuracy when
quantizing bellow 8 bits.

The main idea of QAT is to use the full-precision represen-
tation of parameters and input features in the back-propagation
step, however quantize them at the forward-propagation step.
This is achieved by inserting fake quantization functions1

into the neural networks computational graph. This is shown
in Fig. 2. The left part of Fig. 2 shows the computational
graph of Eq. (3), and the right part shows a graph for
quantization aware training with fake quantization functions q
inserted. Fake quantization functions are called fake, because
they don’t actually change the datatype of the computation.
Instead they take floating-point inputs, and produce floating-
point outputs; however, they limit the output values to a set
that is representable with fixed-point numbers. After training is
completed, the floating-point parameters can be replaced with
fixed-point parameters, and the fake-quantization functions
removed.

As the parameters values range can differ significantly
between layers, a scaling parameter can be introduced to
improve results:

W ≈ Wq

S
(6)

Where W is the floating-point weight tensor, Wq is a quantized
integer weight tensor, and S is a constant scaling factor. The
granularity of scaling is either the entire weight tensor, or
per neuron scaling can also be performed. Inserting Eq. (6)
into Eq. (3) we get:

y⃗ = f(W · x⃗+ b⃗) ≈ f(
Wq · x⃗

S
+ b⃗). (7)

1Fake quantization is also sometimes called simulated quantization.

Fig. 2: A Regular neural network computational graph on the
left, and a graph for quantization aware training on the right.

If we assume x⃗ and b⃗ are quantized, and that the scaling factor
S is a power of two constant, this leaves us with only integer
operations, that can efficiently be performed in hardware.

An extreme case of quantization are binarized neural net-
works (BNN) [6]. In BNN the input features, weights, and
output features are restricted to two values -1, +1 and are
represented by a binary variable. By mapping them to binary
values 0, 1 the multiplication operation translates to an XNOR
operation as depicted in Fig. 3. Similarly the dot product,
which is an important part of an artificial neuron model Eq. (1),
translates to a population count of products (XNOR opera-
tions). Because the output is binarized as well, the activation
function is a sign function. All aforementioned operations can
be implemented very efficiently in hardware: multiplication
are implemented by a single gate or a lookup table (LUT),
population count operation is simpler than addition operation,
and sign function is implemented by a comparator. The uses
of binarized neural networks are, however, limited to simplier
problems.

Fig. 3: The mapping of values (-1,+1) to (0,1), where the ⊙
symbol means the XNOR operation.

C. QKeras

QKeras is a python library for quantization aware train-
ing [11]. It offers a user friendly way to define and train such
neural networks. An example of a neural network definition
is given in Listing 1. It defines a 4-layer neural network with
16 inputs, 5 outputs, and 64, 32, 32, and 5 neurons in each
layer. The weights of all layers are quantized to 6-bit signed
integer numbers and scaling factors are constrained to a power
of two. The function quantized bits in Listing 1 represents
the quantization operator q in Fig. 2. Additionally a quantizer
was introduced at the input of the neural network, to define
how the input is quantized. This is required to define the neural
network input data type for chisel4ml.

1 nn = S e q u e n t i a l () # nn = n e u r a l ne twork model
2 nn . add (I n p u t (shape = (1 6 ,)))
3 nn . add (Q A c t i v a t i o n (q u a n t i z e d b i t s (b i t s =11 , i n t e g e r =10 ,
4 a l p h a =1 ,
5 k e e p n e g a t i v e =True)))
6 nn . add (QDense (6 4 ,
7 k e r n e l q u a n t i z e r = q u a n t i z e d b i t s (b i t s =6 ,
8 i n t e g e r =5 ,
9 a l p h a = ’ au to po2 ’ ,

10 k e e p n e g a t i v e =True) ,
11 u s e b i a s = F a l s e))
12 nn . add (Q A c t i v a t i o n (a c t i v a t i o n = q u a n t i z e d r e l u (b i t s =5 ,
13 i n t e g e r = 5)))
14 nn . add (QDense (3 2 ,
15 k e r n e l q u a n t i z e r = q u a n t i z e d b i t s (b i t s =6 ,
16 i n t e g e r =5 ,
17 a l p h a = ’ au to po2 ’ ,
18 k e e p n e g a t i v e =True) ,
19 u s e b i a s = F a l s e))
20 nn . add (Q A c t i v a t i o n (a c t i v a t i o n = q u a n t i z e d r e l u (b i t s =5 ,
21 i n t e g e r = 5)))
22 nn . add (QDense (3 2 ,
23 k e r n e l q u a n t i z e r = q u a n t i z e d b i t s (b i t s =6 ,
24 i n t e g e r =5 ,
25 a l p h a = ’ au to po2 ’ ,
26 k e e p n e g a t i v e =True) ,
27 u s e b i a s = F a l s e))
28 nn . add (Q A c t i v a t i o n (a c t i v a t i o n = q u a n t i z e d r e l u (b i t s =5 ,
29 i n t e g e r = 5)))
30 nn . add (QDense (5 ,
31 k e r n e l q u a n t i z e r = q u a n t i z e d b i t s (b i t s =6 ,
32 i n t e g e r =5 ,
33 a l p h a = ’ au to po2 ’ ,
34 k e e p n e g a t i v e =True) ,
35 u s e b i a s = F a l s e))
36 nn . add (A c t i v a t i o n (a c t i v a t i o n = t f . k e r a s . a c t i v a t i o n s . so f tmax))

Listing 1: An example neural network in QKeras.

Fig. 4: High-level software architecture of chisel4ml.

III. CHISEL4ML

Chisel4ml converts QKeras neural network models to a
Verilog hardware description. It supports heterogeneous quan-
tization where each layer can have different precision. To make
chisel4ml more user friendly we added a Python frontend to it.
The software architecture of chisel4ml is shown in Fig. 4. It is
divided into the Python frontend, and the Chisel backend. The
Chisel backend is implemented as a server. Communication in
between the frontend and the backend is handled by gRPC:
a Remote Procedure Call library from Google, and protocol
buffers, a binary serialization format.

A custom quantized neural network format, called Low-
Bitwidth Intermediate Representation, was developed to pro-
vide a unique representation of such networks for chisel4ml.
We use protocol buffers to encode quantized neural network
models in LBIR format and service requests and responses
to and from the server. The backend serves two types of

requests: generate circuit from the model and simulate the
circuit. Listing 2 shows the protocol buffers definition file
that defines the communication between the frontend and the
backend. Both of these remote procedure calls are hidden to
the user by the python frontend.

1 s e r v i c e C h i s e l 4 m l S e r v i c e {
2 r p c G e n e r a t e C i r c u i t (G e n e r a t e C i r c u i t P a r a m s) r e t u r n s (

G e n e r a t e C i r c u i t R e t u r n) {}
3 r p c RunS imu la t i on (RunSimula t ionParams) r e t u r n s (

R u n S i m u l a t i o n R e t u r n) {}
4 }
5 message G e n e r a t e C i r c u i t P a r a m s {
6 message O p t i o n s {
7 boo l i s S i m p l e = 1 ;
8 boo l p i p e l i n e C i r c u i t = 2 ;
9 }

10 l b i r . Model model = 1 ;
11 O p t i o n s o p t i o n s = 2 ;
12 boo l u s e V e r i l a t o r = 3 ;
13 boo l genVcd = 4 ;
14 u i n t 3 2 g e n e r a t i o n T i m e o u t S e c = 5 ;
15 }
16 message G e n e r a t e C i r c u i t R e t u r n {
17 message ErrorMsg {
18 enum E r r o r I d {
19 SUCCESS = 0 ;
20 FAIL = 1 ;
21 }
22 E r r o r I d e r r I d = 1 ;
23 s t r i n g msg = 2 ;
24 }
25 u i n t 3 2 c i r c u i t I d = 1 ;
26 ErrorMsg e r r = 2 ;
27 }
28 message RunSimula t ionParams {
29 u i n t 3 2 c i r c u i t I d = 1 ;
30 r e p e a t e d l b i r . QTensor i n p u t s = 2 ;
31 }
32 message R u n S i m u l a t i o n R e t u r n {
33 r e p e a t e d l b i r . QTensor v a l u e s = 1 ;
34 }

Listing 2: Protocol buffers definition file of the Chisel backend
services.

A. Chisel backend

The Chisel backend is implemented as a server that accepts
LBIR neural network description, generates the neural network
hardware description (structure), stores it into internal storage,
and returns the hardware description ID to the frontend for
further tests and simulations. Optionally, the user can specify
that the backend stores the hardware simulation waveforms
(vcd files) into local storage, which can be manually inspected
with a waveform viewing tool, such as GTKWave.

The core of the chisel4ml backend are Neuron object,
ProcessingElement class, and ProcessingP ipeline class.
These represent the neurons, layers, and the entire neural
network, respectively.

1 o b j e c t Neuron {
2 d e f a p p l y [I <: B i t s ,
3 W <: B i t s : W e i g h t s P r o v i d e r ,
4 M <: B i t s ,
5 A <: B i t s : T h r e s h P r o v i d e r ,
6 O <: B i t s] (i n : Seq [I] ,
7 w e i g h t s : Seq [W] ,
8 t h r e s h : A,
9 mul : (I , W) => M,

10 add : Vec [M] => A,
11 a c t F n : (A, A) => O,
12 s h i f t : I n t) : O = {
13 v a l muls = V e c I n i t ((i n z i p w e i g h t s) . map{
14 c a s e (a , b) => mul (a , b)
15 })
16 v a l pAct = add (muls)
17 v a l sAct = (pAct << s h i f t . abs) . asTypeOf (pAct)
18 a c t F n (sAct , t h r e s h)
19 }
20 }

Listing 3: An abridged version of a neuron in Chisel.

Listing 3 shows an abridged version of neuron object in
Chisel. We use Scalas parameterizability extensively, to pro-
duce a completely generic neuron. The neuron object takes
a sequence of inputs in, sequence of weights weights, a
threshold value (inverse of a bias value) thresh, a multipli-
cation function mul, an addition function add, a activation
function actFn, and a shift value shift. All the inputs are
also parameterized by type. This allows us to implement
several different types of quantization easily. For instance a
multiplication function for signed integers looks like this:

1 d e f mul (i : S In t , w: S I n t) : S I n t = {
2 i f (w. l i t V a l u e == 0 . S . l i t V a l u e) {
3 0 . S
4 } e l s e {
5 i * w
6 }
7 }

While a multiplication for binarized neural networks looks like
this:

1 d e f mul (i : Bool , w: Bool) : Bool = ∼ (i ˆ w)

Combining the neurons in fully-connected layers is simple
in Chisel. Listing 4 shows an abridged version of an processing
element in Chisel. It defines inputs and outputs that are a single
unified wire, but internally they get broken apart into seperate
inputs and outputs by constructing a vector from them. The
Neuron object, defined in Listing 3 is then used to construct
the individual neurons, and connect them to an appropriate
output. Finally, we concatenate the output vector back into
a single large wire, that forms the output of the processing
element.

1 c l a s s P r o c e s s i n g E l e m e n t [. . .] (l a y e r : l b i r . Layer , . . .)
2 e x t e n d s Module{
3 v a l i o = IO (new Bundle {
4 v a l i n = I n p u t (UIn t (i n p u t L a y e r B i t w i d t h .W))
5 v a l o u t = Outpu t (UIn t (o u t p u t L a y e r B i t w i d t h .W))
6 })
7
8 v a l i n i n t = Wire (Vec (i n p u t S i z e , t y p e I))
9 v a l o u t i n t = Wire (Vec (o u t p u t S i z e , typeO))

10 i n i n t : = i o . i n . asTypeOf (i n i n t)
11 f o r (i <− 0 u n t i l o u t p u t S i z e) {
12 o u t i n t (i) : = Neuron [I , W, M, A, O] (i n i n t ,
13 w e i g h t s (i) ,
14 t h r e s h (i) ,
15 mul ,
16 add ,
17 ac tFn ,
18 s h i f t (i))
19 }
20 i o . o u t : = Cat (o u t i n t . r e v e r s e)
21 }

Listing 4: An abridged version of a processing element (or
layer) in Chisel.

The processing pipeline is the highest level
hardware module in chisel4ml. It represents the
entire neural network. Listing 5 shows an abridged
version of the processing pipeline implementation.

1 c l a s s P r o c e s s i n g P i p e l i n e (model : l b i r . Model , . . .)
2 e x t e n d s Module {
3 v a l i o = IO (new Bundle {
4 v a l i n = I n p u t (UIn t (i n p u t B i t w i d t h .W))
5 v a l o u t = Outpu t (UIn t (o u t p u t B i t w i d t h .W))
6 })
7
8 / / C o n s t r u c t t h e l a y e r s
9 v a l p e L i s t = new L i s t B u f f e r [P r o c e s s i n g E l e m e n t S i m p l e] ()

10 f o r (l a y e r <− model . l a y e r s) {
11 p e L i s t += Module (P r o c e s s i n g E l e m e n t (l a y e r))
12 }
13
14 / / Connect t h e i n p u t s and o u t p u t s o f t h e l a y e r s
15 p e L i s t (0) . i o . i n : = i o . i n
16 f o r (i <− 1 u n t i l model . l a y e r s . l e n g t h) {
17 p e L i s t (i) . i o . i n : = RegNext (p e L i s t (i − 1) . i o . o u t)
18 }
19 i o . o u t : = p e L i s t . l a s t . i o . o u t
20 }

Listing 5: An abridged version of a processing pipeline in
Chisel.

B. Python frontend

The input to the python frontend is a model defined in
QKeras. The frontend transforms it into LBIR and hands it
to the Chisel backend which then generates the hardware.

The main operations of the python frontend are:
1) Optimization of the QKeras neural network model

This optional operation performs folding of batch-
normalization layers.

2) Generation of hardware description
In this operation (step) the QKeras neural network
model is translated into LBIR which is sent to the
Chisel backend. The returned hardware description ID
is recorded for future simulations, tests, and packaging
of the generated hardware description.

3) Simulation of generated hardware description
It performs the RTL simulation of the neural network
hardware description on the Chisel backend and returns
simulation results in numpy arrray format. Simulated
results can be easily compared to expected results in
order to verify the correct operation of the generated
neural network hardware.

4) Packaging the hardware description.
The generated hardware description is exported to a
verilog file in a local storage.

Listing 6 demonstrates the main functionality of the chisel4ml
frontend as a python code snippet.

1 from c h i s e l 4 m l i m p o r t o p t i m i z e , g e n e r a t e
2
3 opt model = o p t i m i z e . qke ra s mode l (model)
4 c i r c u i t = g e n e r a t e . c i r c u i t (op t model)
5 r e s = c i r c u i t . p r e d i c t (X data)
6 c i r c u i t . package (d i r e c t o r y =” / my / pkg / d i r ”)

Listing 6: The chisel4ml python frontend.

IV. RESULTS

In the paper a 4-layer neural network with 16 input and
5 outputs was studied. The network has 64, 32, 32 and 5
neurons in each of the layers, and every layer uses the ReLU
activation, with the exception of the last layer, that uses
the softmax activation. The layers do not use biases. In all
cases the inputs are quantized to 11 bits, but all other layer
parameters are quantized to n-bits; where n varies from 2 to 8

bits. Listing 1 shows such a model definition for n = 6.
Additionally, all models use prunning, where around 75%
of the parameters are removed. Note that the definition of
the hls4ml model differs slightly, because of the way hls4ml
interprets the models, but the number and size of all parameters
and input features are equal. The hls4ml tool allows the user
to select a ”reuse” factor, which controls the unrolling of the
computation. We set this factor to 1, which means it will
generate a fully parallel circuit in a same way chisel4ml does.
For more details please refer to our code on git repository:
https://github.com/jurevreca12/qat lhc jets hlf.

Table I shows the synthesis results of the models generated
by chisel4ml 0.1.4 and hls4ml 0.6.0. The synthesis was per-
formed using Xilinx Vivado 2019.2. In each case we targeted a
high-end Xiliinx FPGA: xcvu9p-flga2104-2L-e. The columns
in the table are:

• the Bitwidth column signifies the number of bits the
parameters and the input features were quantized to,

• LUT column gives the number of lookup tables used by
the design,

• FF the number of flip-flops,
• DSP the number of digital-signal processing blocks

used,
• BRAM18 the number of 18-kbit block rams used,
• CLOCK[ns] specifies the maximum path delay in

nanoseconds,
• CLOCK[cycles] column specifies number of pipeline

stages and thus the number of cycles it takes to compute
any single input,

• DELAY [ns] is the number of nanoseconds to com-
pute one inference (DELAY [ns] = CLOCK[ns] ·
CLOCK[cycles]), and finally

• the FREQ[MHz] column specifies the maximum
achievable frequency, but also, since the designs can
compute a result each cycle, the maximum throughput.

We also provide the information in graph form. Fig. 5
and Fig. 6 plot the number of lookup tables and fliip-flops used
by chisel4ml and hls4ml for the various bitwidths. Chisel4ml
designs use similar amount of lookup tables as hls4ml for
lower bitwidths. For larger bitwidths, however, chisel4ml uses
more lookup tables. However, chisel4ml uses less flip-flops
then hls4ml for equal bitwidth designs.

Fig. 7 and Fig. 8 show the total delay and the maximum
frequency of the circuits, respectively. In general, chisel4ml
circuits have a lower delay then comparable hls4ml designs.
Conversely, the maximum achievable frequency is higher in
most hls4ml designs, since they focus on adding additional
pipeline stages. It would be possible to improve the timing
performance of chisel4ml generated circuits by adding addi-
tional pipeline registers.

Table II shows the accuracy achieved by the various models
we trained on the hls4ml lhc jets hlf dataset [2]. We list both
the accuracy achieved in the QKeras framework, as well as the
accuracy achieved by RTL simulation. The discrepancies in
QKeras and RTL accuracy stem from the slight differences
in approximating fixed-point arithmetic with floating-point

TABLE I: Synthesis results.

Bitwidth Tool LUT FF DSP BRAM18 CLOCK [ns] CLOCK [cycles] DELAY [ns] FREQ [MHz]

2 chisel4ml 3062 127 0 0 2.478 4 9.912 403.55
hls4ml 2132 379 5 3 3.591 5 17.955 278.47

3 chisel4ml 6005 267 0 0 2.822 4 11.288 354.36
hls4ml 4934 535 5 3 3.694 5 18.47 270.71

4 chisel4ml 10164 362 0 0 5.324 4 21.296 187.83
hls4ml 7392 656 5 3 3.694 5 18.47 270.71

5 chisel4ml 14522 485 0 0 5.46 4 21.84 183.15
hls4ml 8848 1034 5 3 3.694 6 22.164 270.71

6 chisel4ml 13674 581 210 0 5.901 4 23.604 169.46
hls4ml 9840 1633 44 3 3.694 7 25.858 270.71

7 chisel4ml 18648 916 260 0 5.75 4 23.0 173.91
hls4ml 11783 1945 81 3 4.112 8 32.896 243.19

8 chisel4ml 23881 801 281 0 6.368 4 25.472 157.04
hls4ml 13915 2058 125 3 4.074 8 32.592 245.46

Fig. 5: Number of lookup tables used by bitwidth.

Fig. 6: Number of flip-flops used by bitwidth.

arithmetic. The *-PY columns show the accuracy achieved
in the QKeras framework, and *-RTL the accuracy achieved
by simulating the generated RTL (where C4ML is short for
chisel4ml). The accuracy discrepancy is lower in chisel4ml,
except for the 2 bit case. We also trained a full-precision model
without quantization and pruning. It achieved 0.76 accuracy,
which is only slightly higher then the quantized versions.

Finally, the generation time between the two tools differs
greatly. The average RTL generation time for chisel4ml was

Fig. 7: Total delay of the circuit by bitwidth.

Fig. 8: Maximum achivable frequency by bitwidth.

around 19 seconds, while the average hls4ml generation time
was 7.5 minutes.

TABLE II: Achieved accuracy of the models.

Bitwidth C4ML-PY C4ML-RTL HLS4ML-Q HLS4ML-RTL
2 0.62 0.42 0.71 0.70
3 0.67 0.67 0.73 0.73
4 0.73 0.72 0.75 0.74
5 0.74 0.73 0.76 0.70
6 0.74 0.73 0.76 0.70
7 0.74 0.73 0.76 0.68
8 0.73 0.72 0.76 0.67

V. CONCLUSION

We presented chisel4ml a framework for generating highly
parallel FPGA implementations of quantized neural networks
defined in QKeras. Chisel and Scala allowed us to write
the generator very concisely, and still achieve comparable
performance with hls4ml, and in some cases, like the total
delay, surpassing the performance of hls4ml. Additionally, the
speed of RTL generation is substantialy greater. This allows
for faster development and debugging. One major drawback
of chisel4ml, however, is that we only support fully paral-
lelized circuits. We plan to address this by adding support for
sequential processing elements, that will be able to compute
the given computation in a sequential manner. We also plan
to add support for other layer types, like convolution, as well
as the softmax activation function.

ACKNOWLEDGMENT

REFERENCES

[1] Nour Moustafa and Jill Slay. “UNSW-NB15: a compre-
hensive data set for network intrusion detection systems
(UNSW-NB15 network data set)”. In: 2015 Military
Communications and Information Systems Conference
(MilCIS). 2015, pp. 1–6. DOI: 10.1109/MilCIS.2015.
7348942.

[2] J. Duarte et al. “Fast inference of deep neural networks
in FPGAs for particle physics”. In: Journal of Instru-
mentation 13.07 (July 2018), P07027. DOI: 10 .1088/
1748-0221/13/07/P07027. URL: https://dx.doi.org/10.
1088/1748-0221/13/07/P07027.

[3] Thea Aarrestad et al. “Fast convolutional neural net-
works on FPGAs with hls4ml”. In: Machine Learning:
Science and Technology 2 (Dec. 2021).

[4] Itay Hubara et al. “Quantized Neural Networks: Train-
ing Neural Networks with Low Precision Weights and
Activations”. In: J. Mach. Learn. Res. 18.1 (Jan. 2017),
pp. 6869–6898. ISSN: 1532-4435.

[5] Yann Lecun, John Denker, and Sara Solla. “Optimal
Brain Damage”. In: vol. 2. Jan. 1989, pp. 598–605.

[6] Itay Hubara et al. “Binarized neural networks”. In:
Advances in Neural Information Processing Systems
(NIPS 2016), pp. 4114–4122. ISSN: 10495258.

[7] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Design-
ing Energy-Efficient Convolutional Neural Networks
using Energy-Aware Pruning. 2017. arXiv: 1611.05128
[cs.CV].

[8] Yaman Umuroglu et al. “FINN: A Framework for Fast,
Scalable Binarized Neural Network Inference”. In: Pro-
ceedings of the 2017 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays. FPGA ’17.
Monterey, California, USA: Association for Computing
Machinery, 2017, pp. 65–74. ISBN: 9781450343541.
DOI: 10.1145/3020078.3021744. URL: https://doi.org/
10.1145/3020078.3021744.

[9] Syed Asad Alam et al. “On the RTL Implementation
of FINN Matrix Vector Unit”. In: ACM Trans. Embed.
Comput. Syst. (July 2022). Just Accepted. ISSN: 1539-
9087. DOI: 10.1145/3547141. URL: https://doi.org/10.
1145/3547141.

[10] Neil Burgess et al. “Bfloat16 Processing for Neural Net-
works”. In: 2019 IEEE 26th Symposium on Computer
Arithmetic (ARITH). 2019, pp. 88–91. DOI: 10.1109/
ARITH.2019.00022.

[11] Claudionor N. Coelho et al. “Automatic heterogeneous
quantization of deep neural networks for low-latency
inference on the edge for particle detectors”. In: Nature
Machine Intelligence 3.8 (Aug. 2021), pp. 675–686.
ISSN: 2522-5839. DOI: 10.1038/s42256-021-00356-5.
URL: https://doi.org/10.1038/s42256-021-00356-5.

