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Abstract
Let 𝑓 be a noncommutative polynomial of degree𝑚 ⩾ 1

over an algebraically closed field 𝐹 of characteristic 0. If
𝑛 ⩾ 𝑚 − 1 and 𝛼1, 𝛼2, 𝛼3 are nonzero elements from 𝐹

such that 𝛼1 + 𝛼2 + 𝛼3 = 0, then every trace zero 𝑛 × 𝑛
matrix over 𝐹 can be written as 𝛼1𝐴1 + 𝛼2𝐴2 + 𝛼3𝐴3 for
some 𝐴𝑖 in the image of 𝑓 in𝑀𝑛(𝐹).

MSC 2020
16R10, 16S50 (primary)

1 INTRODUCTION

In 2011, Larsen, Shalev, andTiep [5] proved that given aword𝑤 = 𝑤(𝑥1, … , 𝑥𝑚) ≠ 1, every element
in any finite non-abelian simple group𝐺 of sufficiently high order can be written as the product of
two elements from𝑤(𝐺), the image of the word map induced by𝑤. This is a definitive solution of
the Waring problem for finite simple groups that covers several partial solutions obtained earlier.
In particular, in 2009 Shalev [6] proved that, under the same assumptions, every element in 𝐺 is
the product of three elements from 𝑤(𝐺).
In the recent papers [1, 2], the authors initiated the study of various similar Waring type prob-

lems for algebras. The present short paper is focused on the one that seems particularly close to
the group-theoretic Waring problem. It was stated as [2, Question 4.8] and asks the following:
Given a nonconstant noncommutative polynomial 𝑓 with coefficients from a field 𝐹, is it then
true that, for any sufficiently large 𝑛, every traceless 𝑛 × 𝑛matrix 𝑇 over 𝐹 is the difference of two
elements from 𝑓(𝑀𝑛(𝐹)), the image of 𝑓 in the matrix algebra𝑀𝑛(𝐹)? Unfortunately, we will not
give a definitive answer, but will make a step toward the solution. Namely, under the assump-
tions that 𝐹 is an algebraically closed field of characteristic 0 and the degree of 𝑓 does not exceed
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𝑛 + 1, wewill prove that𝑇 is a linear combination of three elements from𝑓(𝑀𝑛(𝐹)); in fact, for any
nonzero elements𝛼1, 𝛼2, 𝛼3 from𝐹 satisfying𝛼1 + 𝛼2 + 𝛼3 = 0, there exist𝐴1,𝐴2, 𝐴3 ∈ 𝑓(𝑀𝑛(𝐹))

such that

𝑇 = 𝛼1𝐴1 + 𝛼2𝐴2 + 𝛼3𝐴3

(e.g., 𝑇 is equal to 𝐴1 + 𝐴2 − 2𝐴3 for some 𝐴𝑖 ∈ 𝑓(𝑀𝑛(𝐹))).
The proof will be given in Section 3 where we will also provide all the necessary definitions

and other information needed for understanding the problem. Section 2 is devoted to a linear
algebraic result that will be used in the proof, but is of independent interest. The other two ingre-
dients of the proof are a result from [2] on images of polynomials in 𝑀𝑝(𝐹) with 𝑝 prime and
Bertrand’s postulate.

2 A LINEAR ALGEBRAIC RESULT

We denote by𝑀𝑛(𝐹) the algebra of all 𝑛 × 𝑛 matrices over the field 𝐹 and by sl𝑛(𝐹) the subspace
of all trace zero matrices in𝑀𝑛(𝐹). The goal of this section is to prove the following theorem.

Theorem 2.1. Let 𝐹 be a field of characteristic 0, let 𝑛 and 𝑞 be positive integers such that 𝑛 ⩾ 2

and 𝑛

2
⩽ 𝑞 ⩽ 𝑛, let 𝜆1, … , 𝜆𝑞 be distinct nonzero elements from 𝐹, and let 𝐷 ∈ 𝑀𝑛(𝐹) be the diago-

nal matrix whose first 𝑞 diagonal entries are 𝜆1, … , 𝜆𝑞 and all other diagonal entries are zero. Let
𝛼1, 𝛼2, 𝛼3 be nonzero elements from 𝐹 such that 𝛼1 + 𝛼2 + 𝛼3 = 0. Then every 𝑇 ∈ sl𝑛(𝐹) can be
written as

𝑇 = 𝛼1𝐴1 + 𝛼2𝐴2 + 𝛼3𝐴3

for some matrices 𝐴1,𝐴2, 𝐴3 that are similar to 𝐷.

For the proof, we need several lemmas. In what follows, 𝐹, 𝑛, 𝑞, 𝜆1, … , 𝜆𝑞, and 𝐷 will be as
in Theorem 2.1. We further denote by 𝐷𝑞 the 𝑞 × 𝑞 diagonal matrix with the diagonal entries
𝜆1, … , 𝜆𝑞 . As usual, 𝐼𝑚 stands for the identity𝑚 ×𝑚matrix.
The first two lemmas follow easily from the fact that triangular matrices with distinct diagonal

entries are diagonalizable, so we omit the proofs.

Lemma 2.2. Let 𝐿 be a lower triangular 𝑞 × 𝑞matrix with the diagonal entries 𝜆1, … , 𝜆𝑞 and𝑊 any
(𝑛 − 𝑞) × 𝑞 matrix. Then the matrix [

𝐿 0

𝑊 0

]
is similar to 𝐷.

Lemma 2.3. Let𝑀 be an upper triangular 𝑞 × 𝑞 matrix with the diagonal entries 𝜆1, … , 𝜆𝑞 and 𝑉
any 𝑞 × (𝑛 − 𝑞)matrix. Then the matrix [

𝑀 𝑉

0 0

]
is similar to 𝐷.
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1882 BREŠAR and ŠEMRL

Lemma 2.4. Let 𝑘 ⩾ 2 and let 𝑍 be a nonscalar 𝑘 × 𝑘 matrix. Then there exist 𝑘 × 𝑘 matrices𝑊
and 𝑋 such that𝑊𝑋 = 𝑍 and 𝑋𝑊 is not a diagonal matrix.

Proof. All we need to do is to find an invertible matrix𝑋 such that𝑋𝑍𝑋−1 is not diagonal. Indeed,
take any invertible 𝑘 × 𝑘 matrix 𝑋 and set𝑊 = 𝑍𝑋−1. Then𝑊𝑋 = 𝑍 and 𝑋𝑊 = 𝑋𝑍𝑋−1.
We may assume that 𝑍 is diagonal. As 𝑍 is nonscalar, we may also assume with no loss of

generality that the first and the second diagonal entry of 𝑍 are not equal. Considering invertible
matrices 𝑋 of the form

𝑋 =

[
𝑋1 0

0 𝐼𝑘−2

]
and the upper-left 2 × 2 corner of the matrix 𝑋𝑍𝑋−1 we reduce the problem to the case where 𝑍
is a 2 × 2 nonscalar diagonal matrix, which is an easy exercise. □

Lemma 2.5. Let 𝑘, 𝑙 be positive integers with 𝑙 > 𝑘 and 𝑍 any 𝑘 × 𝑘 matrix. Then there exist a 𝑘 × 𝑙
matrix𝑊 and an 𝑙 × 𝑘 matrix 𝑋 such that𝑊𝑋 = 𝑍 and the 𝑙 × 𝑙 matrix 𝑋𝑊 is not diagonal.

Proof. Take any nonzero 𝑘 × (𝑙 − 𝑘)matrix 𝑌 and set

𝑊 =
[
𝑍 𝑌

]
and 𝑋 =

[
𝐼𝑘
0

]
.

Then clearly,𝑊𝑋 = 𝑍 and 𝑋𝑊 is not diagonal. □

Lemma 2.6. Let 𝑛 > 2 and let 𝑍 be an (𝑛 − 𝑞) × (𝑛 − 𝑞)matrix. If 𝑛 is even and 𝑞 = 𝑛

2
we addition-

ally assume that 𝑍 is not a scalar matrix. Then there exist a nonscalar 𝑞 × 𝑞matrix𝑈, a 𝑞 × (𝑛 − 𝑞)

matrix 𝑉, and an (𝑛 − 𝑞) × 𝑞 matrix𝑊 such that[
𝑈 𝑉

𝑊 𝑍

]
is similar to 𝐷.

Proof. The statement is trivial when 𝑛 = 𝑞, so assume that 𝑞 < 𝑛.
If 𝑞 > 𝑛 − 𝑞we can apply Lemma 2.5 to find an (𝑛 − 𝑞) × 𝑞matrix𝑊 and a 𝑞 × (𝑛 − 𝑞)matrix𝑋

such that𝑊𝑋 = 𝑍 and 𝑋𝑊 is not diagonal. In the remaining case where 𝑞 = 𝑛 − 𝑞 the existence
of such matrices𝑊 and 𝑋 follows from Lemma 2.4.
Set

𝑈 = 𝐷𝑞 − 𝑋𝑊 and 𝑉 = 𝑈𝑋 + 𝑋𝑊𝑋 − 𝑋𝑍.

It follows that 𝑈 is not diagonal, and hence 𝑈 is not a scalar matrix. Moreover,[
𝐼𝑞 𝑋

0 𝐼𝑛−𝑞

] [
𝑈 𝑉

𝑊 𝑍

] [
𝐼𝑞 −𝑋

0 𝐼𝑛−𝑞

]
=

[
𝐷𝑞 0

𝑊 0

]
,

which together with Lemma 2.2 completes the proof. □
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THEWARING PROBLEM FORMATRIX ALGEBRAS, II 1883

Lemma 2.7. If a 𝑞 × 𝑞 matrix 𝑇 is not a scalar matrix, then there exists an invertible 𝑞 × 𝑞 matrix
𝑅 such that 𝑅𝑇𝑅−1 − 𝑇 is not diagonal.

Proof. Observe first that if 𝑃 is a 𝑞 × 𝑞 permutation matrix then a 𝑞 × 𝑞 matrix𝑊 is diagonal if
and only if 𝑃𝑊𝑃−1 is diagonal. As

𝑃(𝑅𝑇𝑅−1 − 𝑇)𝑃−1 = (𝑃𝑅𝑃−1)𝑃𝑇𝑃−1(𝑃𝑅𝑃−1)−1 − 𝑃𝑇𝑃−1

we may replace 𝑇 by 𝑃𝑇𝑃−1, where 𝑃 is any permutation matrix. As 𝑇 is not a scalar matrix, the
upper-left 2 × 2 corner of 𝑃𝑇𝑃−1 is not scalar for some permutation matrix 𝑃. Then considering
invertible matrices

𝑅 =

[
𝑅1 0

0 𝐼𝑞−2

]
,

we reduce the general problem to the 2 × 2 case, which is an easy exercise. □

The next lemma may be interesting in its own right.

Lemma 2.8. Let 𝑘 be a positive integer, 𝐵 any nonscalar 𝑘 × 𝑘matrix, and 𝜇1, … , 𝜇𝑘 elements from
𝐹 such that

tr 𝐵 = 𝜇1 +⋯ + 𝜇𝑘.

Then 𝐵 is similar to a 𝑘 × 𝑘 matrix whose diagonal entries are 𝜇1, … , 𝜇𝑘 .

Proof. Throughout the proof, we identify 𝑘 × 𝑘 matrices with linear operators on 𝐹𝑘.
In the first step, we will show that there exists a 𝑘 × 𝑘 matrix 𝐶 similar to 𝐵 such that its (1,1)-

entry is equal to 𝜇1. As 𝐵 is not a scalar matrix there exists a vector 𝑥 ∈ 𝐹𝑘 such that 𝐵𝑥 and 𝑥
are linearly independent. It follows that we can find a linear functional 𝑓 ∶ 𝐹𝑘 → 𝐹 such that
𝑓(𝑥) = 1 and 𝑓(𝐵𝑥) = 𝜇1. We apply the fact that the kernel of 𝑓 is of codimension one to see that
there exists a nonzero vector 𝑦 ∈ Ker 𝑓 ∩ span {𝑥, 𝐵𝑥}. From 𝑓(𝑥) = 1 and 𝑓(𝑦) = 0 we infer that
𝑥 and 𝑦 are linearly independent. Therefore,

𝐵𝑥 = 𝛼𝑥 + 𝛽𝑦

for some 𝛼, 𝛽 ∈ 𝐹. Applying 𝑓 to the above equality we arrive at

𝛼 = 𝑓(𝐵𝑥) = 𝜇1.

Hence, if we extend the linearly independent pair of vectors 𝑥, 𝑦 to a basis of 𝐹𝑘 and represent the
operator 𝐵 in this basis, then the first diagonal entry of the obtained matrix is equal to 𝜇1.
We are now ready to prove the statement of the lemma. There are no nonscalar matrices if

𝑘 = 1. The first step implies that our statement is true for 𝑘 = 2.
We proceed by induction. Let 𝑘 ⩾ 3 and assume that the statement is true for all matrices

of the size (𝑘 − 1) × (𝑘 − 1). Let 𝐵 be a 𝑘 × 𝑘 matrix and 𝜇1, … , 𝜇𝑘 elements from 𝐹 such that
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1884 BREŠAR and ŠEMRL

tr 𝐵 = 𝜇1 +⋯ + 𝜇𝑘. We already know that 𝐵 is similar to the matrix

𝐶 =

[
𝜇1 𝑢

𝑣 𝐶1

]
,

where 𝐶1 is a (𝑘 − 1) × (𝑘 − 1)matrix. Clearly,

tr 𝐶1 = 𝜇2 +⋯ + 𝜇𝑘.

We distinguish two possibilities. The easier one is when 𝐶1 is not a scalar matrix. Then by the
induction hypothesis there exists an invertible (𝑘 − 1) × (𝑘 − 1) matrix 𝑆 such that 𝑆𝐶1𝑆−1 is a
matrix whose diagonal entries are 𝜇2, … , 𝜇𝑘. Therefore,[

1 0

0 𝑆

] [
𝜇1 𝑢

𝑣 𝐶1

] [
1 0

0 𝑆−1

]
=

[
𝜇1 𝑢𝑆−1

𝑆𝑣 𝑆𝐶1𝑆
−1

]
,

which gives the desired conclusion.
It remains to consider the case when 𝐵 is similar to the matrix

𝐶 =

[
𝜇1 𝑢

𝑣 𝜆𝐼𝑘−1

]
,

where

𝜆 = (𝑘 − 1)−1(𝜇2 +⋯ + 𝜇𝑘).

We again distinguish two cases. Let us first assume that 𝑢 ≠ 0 or 𝑣 ≠ 0. We will consider just the
case when 𝑣 ≠ 0 because the proof in the case when 𝑢 ≠ 0 goes through in an almost the same
way. As 𝑣 is a nonzero (𝑘 − 1) × 1 column vector and 𝑘 − 1 ⩾ 2 we can find an 1 × (𝑘 − 1) vector
𝑎 such that

𝑎𝑣 = 0 and 𝑣𝑎 ≠ 0.

We have [
1 𝑎

0 𝐼𝑘−1

] [
𝜇1 𝑢

𝑣 𝜆𝐼𝑘−1

] [
1 −𝑎

0 𝐼𝑘−1

]
=

[
𝜇1 𝑢 + (𝜆 − 𝜇1)𝑎

𝑣 𝜆𝐼𝑘−1 − 𝑣𝑎

]
.

As 𝑘 − 1 ⩾ 2 and 𝑣𝑎 is a nonzero rank one matrix, the matrix 𝜆𝐼𝑘−1 − 𝑣𝑎 is nonscalar and we can
complete the induction step exactly in the same way as in the previous case.
It remains to consider the case when 𝐵 is similar to the matrix

𝐶 =

[
𝜇1 0

0 𝜆𝐼𝑘−1

]
,

where

𝜆 = (𝑘 − 1)−1(𝜇2 +⋯ + 𝜇𝑘) ≠ 𝜇1.
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THEWARING PROBLEM FORMATRIX ALGEBRAS, II 1885

If 𝜇2 = ⋯ = 𝜇𝑘 = 𝜆, then we are done. So, assume this is not true. Then clearly, at least one of the
elements 𝜇2, … , 𝜇𝑘 is not contained in the set {𝜇1, 𝜆}. Wewill consider just one of the cases, say the
case when 𝜇2 ∉ {𝜇1, 𝜆}. Then by the first step of the proof the matrix 𝐶 is similar to the matrix

𝐷 =

[
𝜇2 𝑢

𝑣 𝐷1

]
,

where 𝐷1 is a (𝑘 − 1) × (𝑘 − 1)matrix. Obviously,

tr 𝐷1 = 𝜇1 + 𝜇3 +⋯ + 𝜇𝑘.

It is clear that the possibility that 𝐷1 is a scalar matrix and 𝑢 = 0 and 𝑣 = 0 cannot occur because
𝜇2 would then be an eigenvalue of 𝐶, a contradiction. Hence, either 𝐷1 is not a scalar matrix
or 𝐷1 is a scalar matrix and not both of 𝑢 and 𝑣 are zero. In either case we apply the induction
hypothesis in the same way as above to conclude that 𝐵 is similar to a matrix whose diagonal
entries are 𝜇2, 𝜇1, 𝜇3, … , 𝜇𝑘. Applying a suitable permutation similarity we finally conclude that
𝐵 is similar to a 𝑘 × 𝑘 matrix whose diagonal entries are 𝜇1, 𝜇2, … , 𝜇𝑘. □

Proof of Theorem 2.1. Let 𝑇 be an 𝑛 × 𝑛 trace zero matrix. The result is trivial if 𝑇 = 0, so we
assume that 𝑇 ≠ 0. In particular, 𝑇 is not a scalar matrix and 𝑛 ⩾ 2. The special case when 𝑛 =
2 will be treated at the end of the proof. So, assume that 𝑛 ⩾ 3. It is also clear that the desired
conclusion holds for a given 𝑇 if and only it holds for any matrix that is similar to 𝑇. Clearly, the
fact that 𝑇 is nonscalar implies that 𝑇 is similar to a matrix whose bottom-right 2 × 2 corner is
not scalar. Therefore, there is no loss of generality in assuming that 𝑇 is represented in a block
form

𝑇 =

[
𝑇1 𝑇2
𝑇3 𝑇4

]
,

where the sizes of 𝑇1 and 𝑇4 are 𝑞 × 𝑞 and (𝑛 − 𝑞) × (𝑛 − 𝑞), respectively, and either 𝑛 − 𝑞 < 𝑞

or 𝑛 = 2𝑞 and 𝑇4 is not a scalar matrix. By Lemma 2.6, there exist matrices 𝑈′, 𝑉′,𝑊′ of the
appropriate sizes such that 𝑈′ is not a scalar matrix and

𝐴′
1 =

[
𝑈′ 𝑉′

𝑊′ 𝛼−1
1
𝑇4

]
is similar to 𝐷. If 𝑇1 − 𝛼1𝑈

′ is not a scalar matrix set

𝐴1 = 𝐴′
1, 𝑈 = 𝑈′, 𝑉 = 𝑉′, and 𝑊 = 𝑊′.

If 𝑇1 − 𝛼1𝑈
′ is a scalar matrix then, because 𝑈′ is not a scalar matrix, we can use Lemma 2.7 to

find an invertible 𝑞 × 𝑞 matrix 𝑅 such that 𝑇1 − 𝛼1𝑅𝑈
′𝑅−1 is not a scalar matrix. In this case, we

set

𝑈 = 𝑅𝑈′𝑅−1, 𝑉 = 𝑅𝑉′, and 𝑊 = 𝑊′𝑅−1,
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1886 BREŠAR and ŠEMRL

and

𝐴1 =

[
𝑈 𝑉

𝑊 𝛼−1
1
𝑇4

]
=

[
𝑅𝑈′𝑅−1 𝑅𝑉′

𝑊′𝑅−1 𝛼−1
1
𝑇4

]

=

[
𝑅 0

0 𝐼𝑛−𝑞

]
⋅ 𝐴′

1 ⋅
[
𝑅−1 0

0 𝐼𝑛−𝑞

]
.

As tr 𝐴1 = tr𝐷 = 𝜆1 +⋯ + 𝜆𝑞 and tr 𝑇 = 0, we have

𝑇 − 𝛼1𝐴1 =

[
𝑇1 − 𝛼1𝑈 𝑇2 − 𝛼1𝑉

𝑇3 − 𝛼1𝑊 0

]
=

[
𝑆1 𝑆2
𝑆3 0

]
with

tr 𝑆1 = −𝛼1𝜆1 −⋯ − 𝛼1𝜆𝑞.

Moreover, 𝑆1 is not a scalar matrix.
We need to show that there exist 𝑛 × 𝑛 matrices 𝐴2,𝐴3 similar to 𝐷 such that 𝑇 − 𝛼1𝐴1 =

𝛼2𝐴2 + 𝛼3𝐴3. By Lemma 2.8, we see that after applying an appropriate similarity transformation
we may assume with no loss of generality that the diagonal entries of 𝑆1 are −𝛼1𝜆1, … ,−𝛼1𝜆𝑞.
Let 𝐿 be the lower triangular 𝑞 × 𝑞 matrix with diagonal entries 𝜆1, … , 𝜆𝑞 whose strictly lower
triangular part coincides with the strictly lower triangular part of 𝛼−1

2
𝑆1. Let further 𝑀 be the

upper triangular 𝑞 × 𝑞matrix with diagonal entries 𝜆1, … , 𝜆𝑞 whose strictly upper triangular part
coincides with the strictly upper triangular part of 𝛼−1

3
𝑆1. Set

𝐴2 =

[
𝐿 0

𝛼−1
2
𝑆3 0

]
and 𝐴3 =

[
𝑀 𝛼−1

3
𝑆2

0 0

]
.

Then𝐴2 is similar to𝐷 by Lemma 2.2,𝐴3 is similar to𝐷 by Lemma 2.3, and using𝛼1 + 𝛼2 + 𝛼3 = 0

we see that 𝑇 − 𝛼1𝐴1 = 𝛼2𝐴2 + 𝛼3𝐴3.
It remains to consider the case when 𝑛 = 2. Then

𝐷 =

[
𝜆1 0

0 𝜆2

]
= (𝜆1 − 𝜆2)

[
1 0

0 0

]
+ 𝜆2𝐼2

with 𝜆1 ≠ 0 and 𝜆1 ≠ 𝜆2. Clearly, a matrix 𝑇 ∈ sl2(𝐹) can be written as

𝑇 = 𝛼1𝐴1 + 𝛼2𝐴2 + 𝛼3𝐴3

for some matrices 𝐴1,𝐴2, 𝐴3 that are similar to 𝐷 if and only if 𝑇 can be written as

𝑇 = 𝛼1(𝜆1 − 𝜆2)𝐵1 + 𝛼2(𝜆1 − 𝜆2)𝐵2 + 𝛼3(𝜆1 − 𝜆2)𝐵3

for some matrices 𝐵1, 𝐵2, 𝐵3 that are similar to
[ 1 0
0 0

]
. Hence, with no loss of generality we can

assume that 𝐷 =
[ 1 0
0 0

]
.
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THEWARING PROBLEM FORMATRIX ALGEBRAS, II 1887

Let 𝛼1, 𝛼2, 𝛼3 be nonzero elements from 𝐹 such that 𝛼1 + 𝛼2 + 𝛼3 = 0 and 𝑇 ∈ sl2(𝐹) a
nonscalar matrix. By Lemma 2.8, 𝑇 is similar to[𝛼1−𝛼2

2
𝛾

𝛿
𝛼2−𝛼1
2

]

for some 𝛾, 𝛿 ∈ 𝐹. It is easy to determine 𝑎, 𝑏 ∈ 𝐹 such that[𝛼1−𝛼2
2

𝛾

𝛿
𝛼2−𝛼1
2

]
= 𝛼1

[
1 𝑎

0 0

]
+ 𝛼2

[
0 0

𝑏 1

]
− (𝛼1 + 𝛼2)

[ 1

2

1

2

1

2

1

2

]
.

This completes the proof. □

We conclude this section by showing that Theorem 2.1 cannot be improved to state that 𝑇 is a
linear combination of two matrices similar to 𝐷.

Example 2.9. Let 𝑛 ⩾ 6 and 𝑛

2
⩽ 𝑞 < 𝑛 − 2. Pick an idempotent 𝐸 of rank one and set 𝑇 = 𝐼𝑛 −

𝑛𝐸. Observe that 𝑇 has trace zero. Suppose 𝑇 = 𝛼1𝐴1 + 𝛼2𝐴2 for some scalars 𝛼1, 𝛼2 andmatrices
𝐴1 and 𝐴2 that are similar to 𝐷. Thus,

𝛼2𝐴2 + 𝑛𝐸 = 𝐼𝑛 − 𝛼1𝐴1.

As 𝐼𝑛 − 𝛼1𝐴1 is similar to 𝐼𝑛 − 𝛼1𝐷, it has rank at least 𝑛 − 1. On the other hand, the subadditivity
of rank implies that 𝛼2𝐴2 + 𝑛𝐸 has rank at most 𝑞 + 1 < 𝑛 − 1, a contradiction.

3 MAIN THEOREM

Let 𝐹⟨⟩ denote the free algebra generated by the set  = {𝑋1, 𝑋2, … } over the field 𝐹. The
elements of 𝐹⟨⟩ are called noncommutative polynomials. If 𝑓 = 𝑓(𝑋1, … , 𝑋𝑚) ∈ 𝐹⟨⟩ is a
noncommutative polynomial and is an 𝐹-algebra, we call the set

𝑓() = {𝑓(𝑎1, … , 𝑎𝑚) |𝑎1, … , 𝑎𝑚 ∈ }

the image of 𝑓 in . We refer the reader to the paper [4] that surveys the study of images of
noncommutative polynomials in (mostly matrix) algebras over the recent years.
We will only be interested in the case where = 𝑀𝑛(𝐹). Then it may happen that 𝑓() = {0},

in which case we call 𝑓 a polynomial identity of . It may also happen that 𝑓() consists only
of scalar matrices but 𝑓() ≠ {0}, in which case we call 𝑓 a central polynomial for . Further, if
𝑓 is the sum of commutators in 𝐹⟨⟩ and a polynomial identity, then all matrices in 𝑓() have
trace zero. This explains why the question of representing a matrix 𝑇 as a linear combination of
matrices from 𝑓()with 𝑓 any nonconstant polynomial makes sense only when 𝑇 has trace zero.
In [2] it was shown that if 𝐹 = ℂ and 𝑓 ∈ 𝐹⟨⟩ is neither a polynomial identity nor a cen-

tral polynomial of  = 𝑀𝑛(𝐹), then every trace zero matrix 𝑇 in  can be written as 𝑇 = 𝐴1 +

𝐴2 − 𝐴3 − 𝐴4 for some 𝐴𝑖 ∈ 𝑓(). It was also shown that for certain polynomials 𝑓 satisfying
these assumptions, not every trace zero matrix 𝑇 is the difference of two elements from 𝑓().
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1888 BREŠAR and ŠEMRL

The degrees of such polynomials 𝑓 must be larger than a certain number depending on the size
of the matrices. The same comment can be made for degrees of polynomial identities and central
polynomials (see (I) below). That is why the problem presented in the introduction makes sense
only for sufficiently large 𝑛.
The main goal of this paper is to prove the following theorem.

Theorem3.1. Let𝐹 be an algebraically closed field of characteristic 0, let𝑓 ∈ 𝐹⟨⟩ be a polynomial
of degree 𝑚 ⩾ 1, and let  = 𝑀𝑛(𝐹) with 𝑛 ⩾ 2 and 𝑛 ⩾ 𝑚 − 1. Further, let 𝛼1, 𝛼2, 𝛼3 be nonzero
elements from 𝐹 such that 𝛼1 + 𝛼2 + 𝛼3 = 0. Then every trace zero matrix 𝑇 in can be written as

𝑇 = 𝛼1𝐴1 + 𝛼2𝐴2 + 𝛼3𝐴3

for some 𝐴1,𝐴2, 𝐴3 ∈ 𝑓().

In the proof, we will need the following three results.

(I) Let 𝑓 be a noncommutative polynomial of degree 𝑚 ⩾ 1. It is a standard fact that if 𝑝 is a
positive integer such that𝑚 < 2𝑝, then 𝑓 cannot be a polynomial identity of𝑀𝑝(𝐹). Using
this fact, it can be easily shown that under the same assumption 𝑓 also cannot be a central
polynomial for𝑀𝑝(𝐹) (see, e.g., [3, Corollary 2.4]).

(II) Let 𝐹 be an algebraically closed field of characteristic 0, let 𝑝 be a prime, and let 𝑓 be a
polynomial that is neither a polynomial identity nor a central polynomial of 𝑀𝑝(𝐹). Then
𝑓(𝑀𝑝(𝐹)) contains a diagonal matrix𝐷 with distinct eigenvalues on the diagonal. Although
not stated as a theorem, this is clearly evident from the proof of [2, Theorem 4.1].

(III) We will also use Bertrand’s postulate which states that for every integer 𝑟 ⩾ 4 there exists a
prime number 𝑝 such that 𝑟 < 𝑝 < 2𝑟 − 2.

Proof of Theorem 3.1. We first claim that there exists a prime number 𝑝 such that

𝑛

2
+ 1 ⩽ 𝑝 ⩽ 𝑛.

If 𝑛 = 2 then we take 𝑝 = 2, and if 𝑛 = 3 or 𝑛 = 4 then we take 𝑝 = 3. If 𝑛 ⩾ 5, then [ 𝑛+1
2
] + 1 ⩾ 4

and so (III) yields the existence of a prime number 𝑝 such that[
𝑛 + 1

2

]
+ 1 < 𝑝 < 2

([
𝑛 + 1

2

]
+ 1

)
− 2 = 2

[
𝑛 + 1

2

]
,

which readily implies that 𝑝 satisfies the desired condition.
As

𝑚 ⩽ 𝑛 + 1 ⩽ 2(𝑝 − 1) + 1 = 2𝑝 − 1,

it follows from (I) that 𝑓 is neither a polynomial identity nor a central polynomial of 𝑀𝑝(𝐹).
Therefore, (II) tells us that 𝑓(𝑀𝑝(𝐹)) contains a diagonal matrix 𝐷 containing 𝑝 distinct diagonal
entries. Identifying every matrix 𝐴 ∈ 𝑀𝑝(𝐹) with the matrix

[𝐴 0
0 0

]
∈ 𝑀𝑛(𝐹), we can consider 𝐷

as a diagonal matrix belonging to 𝑓(). As

𝑆𝑓(𝐴1, … ,𝐴𝑚)𝑆
−1 = 𝑓(𝑆𝐴1𝑆

−1, … , 𝑆𝐴𝑚𝑆
−1)
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THEWARING PROBLEM FORMATRIX ALGEBRAS, II 1889

holds for all 𝐴𝑖, 𝑆 ∈  with 𝑆 invertible, 𝑓() also contains all matrices that are similar to 𝐷.
Observe that 𝐷 has either 𝑝 − 1 or 𝑝 distinct nonzero diagonal entries and all its other diagonal
entries are 0. As

𝑛

2
⩽ 𝑝 − 1 < 𝑝 ⩽ 𝑛,

the desired conclusion follows from Theorem 2.1 (with either 𝑞 = 𝑝 − 1 or 𝑞 = 𝑝). □
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