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1. Introduction

All matrices considered in this paper are complex unless otherwise stated. We use the nota-
tion C™*" for the set of matrices of size m x n. By S,(C) we denote the vector space of all
n — by—n symmetric matrices; A is symmetric if and only if A = AT. Let further 0,(C)
be the subgroup of orthogonal matrices in the group of nonsingular n—by—n matrices
GL,(C). A matrix Q is orthogonal if and only if Q = (QT)~!. The action of orthogonal
similarity on S, (C) is defined as follows:

®: 04(C) x $,(C) - $4(0), (QA) ~ Q'AQ (1)
The isotropy group at A € S,(C) with respect to action (1) is denoted by
Za=1{Q e 0,(0)|Q"AQ = 4}, (2)
and matrices that are orthogonally similar to A form the orbit of A:
Orb(A) := {Q"4Q| Q € 0x(O)). (3)

Isotropy groups corresponding to the same orbit are conjugated (isomorphic).
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Action (1) describes symmetries of S,(C). Hua’s fundamental results [1-3] on the
geometry of symmetric matrices assure that the study of symmetric matrices under
T-congruence (which includes (1)) is quite general.

An important information concerning a group action is provided by its orbits and the
corresponding isotropy groups (see textbooks [4,5]), and to find these for action (1) is the
main purpose of this paper. In the (generic) case of matrices with all distinct eigenvalues,
the isotropy groups are clearly trivial (Proposition 3.1), while the situation for (especially)
nondiagonalizable matrices is more involved. We find an inductive procedure that enables
the computation and description of the structure of the isotropy subgroups (Theorem 3.2).
A key ingredient in the proof of the theorem is Lemma 4.1. It provides solutions of a certain
rectangular upper triangular Toeplitz matrix equation ; hence, it might be also of indepen-
dent interest in matrix analysis; e.g. in the paper by the author [6] (see Remark 5.1) a similar
equation appeared.

To some extent (in lower dimensions), the isotropy groups are expected to be applied to
tackle the problem of simultaneous reduction under T-congruence of a pair (A, B) with A
arbitrary and B nonsingular symmetric. We first make B into the identity I by applying the
Autonne-Takagi factorization and reduce (A, B) to (A’, I). Next, we write A’ = C + Z with
S symmetric and Z skew-symmetric. By a suitable orthogonal similarity transformation
(keeping I intact), we put C into the symmetric normal form S(C); we obtain (S(C) + Z', 1)
with Z' skew-symmetric. Finally, Z’ is simplified by using the isotropy group of S(C) with
respect to (1) (keeping I, S(C) intact). We add that a reduction of symmetric pairs under
T-congruence was considered in [7].

In connection to isotropy groups, we also mention that the so-called linear isotropy
representation at A € S,,(C) is indeed the restriction of (1):

TaAXxTa— Tay (QA) > QTAQ, Ta:={XTA+AX|X=-XT eC™"}, (4)

a representation of X4 on a complex vector space T4 C S,(C) associated to the tangent
space of Orb(A) C S,(C) at A (see also Section 3). It is closely related to invariant objects
of Orb(A) (see, e.g. [[4, I1.Ch.2.3];[8, Ch. X]]). On the other hand, (1) can be seen as a
representation of O, (C); note that the classification of representations of complex classical
groups along with their invariants is well understood (see [9]). We shall not consider this
matter further here.

2. Preparatory material

In this section, we prepare some preliminary material.
First, let a block upper triangular Toeplitz matrix be

[Ag A1 Ay ... ... Ag]
0 Ay A A, :

Ay A

T(Ap, A1, ..., Ap_1) = (B—by—p),

Ay
Ay
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where T(Ag, A1, Ag—1) = [Tyll,_, with Ty = 0 for j> kand Tj = T1)41)-

The principal object of our investigation will be (up to similarity) the solutions of the
homogeneous linear Sylvester equation AX—XA = 0 with a given square matrix A. Thus,
we recall the following classical result (see, e.g. [10, Ch. VIII]).

Theorem 2.1: Let ] be of form (11). Let us consider the following matrix equation:

JX = X]J. (5)

(1) Assume that ] = EB]rVZI Jr» in which all summands of ] corresponding to the eigenvalue
pr are collected together into J,. Then X is a solution of Equation (5) if and only if it is of
the form X = ®"_ X, with ], X, = X, ;.

2) Let] = @?7:1 ;”:’1 Joy; (1) for x € C and a1 > oz > ... > an, and let X be parti-
tioned conformally into blocks as ]. Then X is a solution of (5) ifand only if X = [er]ﬁ\fszl
is such that every block X, is further an m,—by—my; block matrix with blocks of size
o, X o5 and of the form

|:€| , Oy > W, (6)

T, o = o,

in which T is an bys-by-b,s upper triangular Toeplitz matrix (by,s = min{c,, ors}).

For our developments, it is convenient to work with matrices having fewer Toeplitz
blocks. In the paper by Lin et al. [11, Sec. 3.1], this was achieved by conjugating with a
suitable permutation matrix. Let e}, e, . . ., ey be the standard orthonormal basis in C*™.
We set a permutation matrix formed by these vectors:

Qam = [61 €ytl +-- €(m—T)a+1 €2 €q42 -+ €m—1)at+2 --- €y €2q --- eam] . (7)

Observe that multiplication with €2, from the right puts the 1 st, the (o« + 1) th, ..., the
((m — 1)a + 1)th column together, further the 2 nd, the (o + 2) th, ..., the ((n — D)o +
2)th column together, and so forth. Similarly, multiplying by 2 g)m from the left collects the
1 st, the (@ + 1) th, ..., the ((m — 1) + 1)th row together, further the 2 nd, the (o + 2)
th, ..., the ((m — 1)« + 2)th row together, and so forth.

Suppose X = [er]ﬁ:l is as in Theorem 2.1 (2.1). Next, fix r, s and let b = min{o,, as}.
Denote the block of X, in the jth row and the kth column by

Tix jefl,...m}, ke{l,...mg,
X, )i = J , , . . .
( rs)]k |: i| oy > O Tjk — T(a’k, ajlk’ o >albk_1)-
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By setting A, := [a’;qk];",(”zr'}s e Cm>*mr forn e {0,...,b—1}and 7 = T(Ayp,...,Ap_1), it
gives a rectangular block upper triangular Toeplitz matrix of size a; X «:

[0 T]) Oy < O,

T
Qg,,m,erQas,ms = |:0:| > Oy > U,
T) Oy = .
By defining
X = Q'XQ =[Q] , X Quum Mo, (2= &N Qi) (8)

we obtain an N—by—N block matrix such that its block X, is a rectangular o, —by—o;
block upper triangular Toeplitz matrix with blocks of size m, x my:

[0 IZ;S]’ oy < Qs

7, .
X = [er]ff\,]s:p Xis = |: Ors:| » Oy > O, bys := min{as, oy}, )
Trss Or = U,

in which 7;; = T(Ag’, ..., A} ;) with A7® € C""" is a block upper triangular Toeplitz
matrix of size b,s X bys.

Example 2.1: N = 2,01 =3, m =2, a2 =2, my = 3

ap bl ap bz as 193 T B ay d; as bl bz b3 ]
0 ay 0 a 0 as a4 ds dg b4 b5 bé
QT 0 0 0 0 0 0 Q _ 0 0 0 ay dpy a4s
3.2 as by | as bs | ag bg 23 = 0 0 0 |ag as ag
0 a4 0 as 0 de 0 0 0 0 0 0

. 0 00 0|0 O | L 0 0 0/0 0 0 |

Next, we show that the set of nonsingular matrices of form (9) has a group structure
similar to the structure of the group of all nonsingular upper triangular matrices. We use
ideas from the proof of a somewhat stronger result for upper unitriangular matrices [[12,
Lecture 21];[5, Example 6.49]].

Lemma 2.2: Let T be the set of all nonsingular matrices of form (9). Then T is a subgroup
of the group of all nonsingular matrices. Furthermore, T = ID x U is a semidirect product of
subgroups, where D C T contains all nonsingular block-diagonal matrices, and U C T is a
normal subgroup that consists of matrices whose diagonal blocks are block upper triangular
Toeplitz matrices with identity as the diagonal block. Further, U is unipotent of order at most
o1 — 1 and it has nilpotency class at most o;.

Proof: First, we examine the set U of all nonsingular matrices of form (9) such that their

diagonal blocks are block upper triangular Toeplitz matrices with identities as the diagonal
blocks.
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Fork € {1,...,a; — 1}, let 91 be the set of nonsingular matrices of form (9) with 7, =
T(0,...,0,AF AL |, ... ,AZSS_I) (le. Af = ... = A | =0) for byy > kand 7,5 = 0 for

k > bys, and such that A} =0 for all . Thus
U-Z="%D9MD--- Dmm,l = {0}.

Sums and products of rectangular upper triangular Toeplitz matrices of the appropriate
size are again rectangular upper triangular Toeplitz matrices. Moreover,

mk + mk C mk’ s-‘TIOCJ‘I]( C mk-ﬁ-l) mk‘ﬁo C mk_;,_l.
In particular, 9! "%~ = {0}; thus matrices in 9% are nilpotent. For A" € N, we have
P “ b
T+MN ' =T - N+N2— . 4 (ke

Hence Uy := 7 + N is a unipotent group. Taking Z + N € Uy (with N € 9) and Z +
N’ € U (with N7 € 9), we get their conjugate and their commutator of the form:

T+NYTT+NT+N) =T+ (T -N'+ N2 = . IONT +N)) e Uy,
Z+NI+N=CT+N) ' T+N)Y ' T+MT+N)
=(T-N+N? . DT -N+N)-..))
X (ZT+ M T +N)
=T -N-N+M)T+N+N'+My)
=7+ Mj € Ugyy,

where M1, M3, M3 € N, 1. Therefore,
U=0UyDU; D DUy -1 =1{7} (10)

is a central series of normal subgroups, i.e. [U, U;] is a commutator group of Ujy;.

Any X e T (nonsingular and of form (9)) can be written as X = DU, where!d € U and
D € D is a nonsingular block-diagonal matrix of form (9). For D1, D; € D and U, U, €
U, we get that (D1Uy) (Do)~ = Dy (lell/{z_l)Dz_l is of the form (9), thus T is a group.
Next, conjugating Z + N € Z + 9y = U by DU gives

UTDTNT+NYDU =T +U'D'NDU € U.

This proves the normality of U and concludes the proof. |

Remark 2.1: It would be interesting to know whether (10) is a lower central sequence or
not. Note that the situation seems more involved than in the case of upper unitriangular
matrices, in which the commutators of suitably chosen generators are again generators ([12,
Proposition 3.31]).
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3. Isotropy groups

To be able to compute the isotropy groups under (1), it is important to have simple
representatives of orbits. Given a matrix A with its Jordan canonical form:

JA) = @1y, 2 eC,
j

A1l 0
. (11)
W= * 7 |, xieC (n-by-n),
S
0 A
the symmetric canonical form under similarity is
S(A) = P Ky (1), (12)
j
in which
261 0 0 -1 0
1 1 , |
K,(A) == = + i , ~€C (n—by—n).
. B | -1 . .
0 1 2x 0 1 0
(13)

It is uniquely determined up to a permutation of its direct summands; recall that symmet-
ric matrices are similar if and only if they are orthogonally similar (see the textbook by
Gantmacher [10, Ch. XI]). For tridiagonal normal forms check [13].

Since QTAQ = A is equivalent to (J(A))X = X(J(A)) with J(A) = PAP~!,X = PQP~,
the following fact on isotropy groups follows immediately from Theorem 2.1 (2.1).

Proposition 3.1: If A1, ..., A are distinct eigenvalues of A = @]]-(:1 Sj, where each S; is a
direct sum whose summands are of form (13) and correspond to the eigenvalue 1;, it then
followsthat ¥4 = @;‘:1 Zs; Furthermore, if S; = Ajlnjforsome index j, then g = Onj (©).
(We denote the n x n identity matrix by I,.)

It implies that the isotropy groups under (1) are trivial on a complement of a complex
analytic subset of codimension 1 in S,(C) (having nonvanishing discriminants of their
characteristic polynomials).

Our major goal is to inspect the isotropy groups of nongeneric matrices (especially non-
diagonalizable). We shall see later on that these are related to matrices of form (9) such that
the following conditions are satisfied:

(I) Forr,s € {1,...,N}thenonzero entries of X, with r > s can be taken as free variables,
and (Xr)11 = Aj € Oy, (C) can be any orthogonal matrix.
(II) Forre{l,...,N} with o, > 2 let er, = —(Z].r,)T for j € {1,...,a, — 1} be a freely

chosen skew-symmetric matrix of size m, x m,. The entries of A}S for either r = s,
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ar>2,je{l,...,a, — 1} or s>r, N > 2 are determined uniquely by the entries of
all A;TS withj=0,s =1 ors <r,je|{0,...,ay — 1} (chosen in (I)), by the entries

of all z; withTe {1,...,j— 1} (ifj > 2) orj = j, r = ¥, and when s>, N > 2 also
by the entries onjr, forall ¥; herer/,s’ € {1,...,N}.

Two significant examples of matrices of form (9) satisfying (I) and (II) are:

Example 3.1: Given skew-symmetric Z] forr € {1,...,N},n € {1,...,a, — 1}, we set

N
W = T, Wi,..., W, ),
r=1

(14)

1 1 - -
W= EZ; nil = 5 i1~ Z(er) Wy i), nzL
j=1
Example 3.2: The following matrix contains the identity matrix as a principal submatrix,

formed by all blocks except those at the pth and the tth columns and rows, while blocks in
the pth and the tth columns and rows are as follows:

[0 urs] > Oy < U,

U,
gg};(F) = [(g‘g,t(F))rs]Ir\,]szp (g;;(,t(F))rs = |: Ors:| > Oy > U, p <t (15)
Uss, Qr = U,
where
& I,, r=s,
U= {1 T2 ) Uy = T AT AT, TE IR,
AP an_1(FTH", j=nQk+a— p), 1 1 (2n
77 o, otherwise, "Tontly 1\ )

At [an 1 FFDY" = nQk+o = ),
70, otherwise,

Up = N, (F), Up=N§ (=F"), 0<k<a—1,

in which N}; (F) is a B—by—p block matrix with F € C"*"™ on the kth diagonal above
the main diagonal for k > 1 (on the main diagonal for k = 0) and zeros otherwise.
IfN=30,=40,=2,a03=1,m =2,my =3,m3 =1, F € C**3, we have

- 1 -

L 0 —EFTF 0 —FT 0 |0
1 T T
0 L 0 —SF'EL 0 —FT o
0, _ | 0 0 L 0 0 0 |0
G1aB) = 0 0 0 L 0 0 |0
0 0 F 0 I 0 |0
0 0 0 F 0 I |0
[0 0 0 0 0 0 |1 |




LINEAR AND MULTILINEAR ALGEBRA e 849

The following theorem is our main result; we prove it in Section 5.

Theorem 3.2: If A = @Ir\]:l(@ 1 Ko, (1)) for & € C, then its isotropy group Yo with
respect to (1) has the following propertzes

(1) It is isomorphic to the subgroup of the group of all invertible matrices of form (9)
and such that its elements satzsfy conditions (1) and (II). In particular, dim(Xg) =
er\]_l O57””'1r( (m, — 1) + Zs—l ms).

(2) Itis zsomorphlc to a semidirect product ofgroups, ie. ES = O x V, in which the sub-
group Q consists of all matrices of the form Q = &N 1( ~1Qr) with Q; € Oy (C), and
a unipotent normal subgroup V (of order at most a1 — 1 and nilpotency class at most
a1) generated by the set of matrices of form (14) and (15).

We refer to [5, Chs. 6 and 14] for a comprehensive introduction to the theory of nilpotent
and unipotent algebraic groups.

Remark 3.1: An algorithm to compute the isotropy groups is provided as (the essential)
part of the proof of Theorem 3.2, more precisely, by Lemma 4.1. Due to technical reasons,
the lemma is stated and proved in Section 4.

Basic properties of an action of a Lie group on a manifold (check, e.g. [4, Ch. II.1])
imply that orbits of action (1) are immersed homogeneous submanifolds in S,(C) and
the isotropy group X4 for any A € S,(C) is a Lie subgroup of O, (C). Moreover, the orbit
Orb(A) is biholomorphic to the quotient O, (C)/ X4, and the codimension of £ 4 in O, (C)
is equal to the codimension of Orb(A) C S,(C).

Corollary 3.3: If Ay,..., A, are distinct eigenvalues of S = @]];1 Sj, where each S; is a
direct sum whose summands are of form (13) and correspond to the eigenvalue Aj, then
codim(Orb(S)) = Zk 1 codim(Orb(S;)). Moreover, if S = @fl_l(@ "1 So, (V) for k€ C,
it then follows that codim(Orb(S)) = Z 1Otrmr( (m,+ 1)+ ZS 1 My).

Although the above corollary is an immediate consequence of Theorem 3.2, we also
give a direct simple proof, since the tangent space of Orb(A) at A (see T4 in (4)) is easily
computed. Indeed, if Q(¢) is a complex-differentiable path of orthogonal matrices with
Q(0) = I, then

d T / T /
a‘tzo((Q(f)) AQ(1) = (Q(0))" A+ AQ (0),
and differentiation of (Q(t)) Q(t) =T att=0yields (Q (0))T + Q'(0) = 0; conversely,
for any X = —XT, we have X orthogonal with e*X = I and dtlf 0(e®) =X

The dimension of T4 in (4) is precisely the codimension of the solution space of XTA +
AX = 0 with X = —XT (with respect to the space of skew-symmetric matrices). If ] is the
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Jordan form of a symmetric matrix A with A = P~!JP, we get
JY=Y], Y=pPxP!, x=-XxT.

ThusY = [ij]]z,i:1 has rectangular upper triangular Toeplitz blocks Yjx (see Theorem 2.1),
and Y = —PXTp~! = —p2yTp—2 Note that (see, e.g. [14, Theorem 4.4.24]):

0 1
_ 1 .
Ko(W) = PoJa(MP,', Py := —=(y +iEy), Eo = o (@—by—a),
V2

1 0
(16)
in which E,, is the backward identity matrix (with ones on the anti-diagonal); sz =E,.IfA
is of form (12), then Y = —EYTE, in which E is a direct sum of backward identity matrices

and it is partitioned conformally to Y. We further obtain that all Yi=0 and Yik = [ Ték ],

Yij = [0 T ] with both T, Ty; upper triangular Toeplitz and related by Tjx = —Tj; (see
also (25) and (26)). This proves Corollary 3.3.

Note that codim(Orb(A)) in C"*" with respect to similarity is equal to the dimension
of the set of solutions of AX—XA = 0 (e.g. [15, Section 30]), while to get codim(Orb(A))
under T-congruence De Teran and Dopico [16] solved XA + AX T=o.

4, Certain block upper triangular Toeplitz matrix equation

In this section, we consider a certain block upper triangular Toeplitz matrix equation. Its
solution (Lemma 4.1) is the key ingredient in the proof of Theorem 3.2.
Leta; > ay > ... > ayand my,...,my € N. Suppose

N N
B=@T(ByB;,....B, ), C=@PT(CsCi....Chy), F =P Ea,UIm,)

r=1 r=1 r=1

B}, Ch € GLy,(C) N S, (C), B, C,....B, _,Cl | €S, (C),

oa,—1°
(17)
0 Iy

where E, (I,;;)) = |: ] is an @ —by—a block matrix with I, on the anti-diagonal and

In 0
zero-matrices otherwise. We shall solve a matrix equation

C=FXTFBx, (18)

in which X = [XVS]]r\,]s:l isas in (9).
We first observe a few simple facts.

The calculation
(FXTFBX)T = XTBTFXF = FFXTF(FB " F)XF = F(FXTFBX)F

shows that for r # s we have (FXTFBX),; = 0ifand only if (FXTFBX), = 0. When
comparing the left-hand side with the right-hand side of (18) blockwise, it thus suffices to
observe only blocks in the upper triangular parts of X T FBX and C. Since (FXTFBX),s
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and Cy; are rectangular block upper triangular Toeplitz and of the same form for each , s,
it is enough to compare the first rows of these blocks.

The following lemma explains the process of computing solutions of (18). Note that in
the proof of Theorem 3.2 we shall consider (18) for B and C equal to the identity matrix.
However, due to a possible application when computing isotropy groups of actions similar
to (1) (see Remark 5.1) and since it makes no serious difference to the proof, we prove a
little more general result.

Lemma 4.1: Let B, C as in (17) be given. Then the dimension of the space of solutions of
(18) that are of the form X = [‘XT’S]?,]S:I (partitioned conformally to B3, C) with

[0 Tl o <as
pe T o] >ay > ...>aN, by = min{a, o)
*Tllol T Tu=T(AfAR. A7 ), ApeCro
rs .]

Trs, Oy = U,

(19)

is Zﬁil ot,m,(% (m, — 1)+ Zs_l ms). In particular, the general solution satisfies the follow-
ing properties:

(a) The entries of Ay for r € {1,...,N} can be taken so that Ay is any solution of the
equation Cj = (A”)TB’A" IfN > 2 the entries of AP for r,s € {1,...,N} withr>s
andj € {0,...,a, — 1} can be taken as free variables.

(b) Assuming (a) and choosing the entries of matrices Z; = —Z; € C™™ for r €
{1,...,N}, ar — 1 > j > 1 as free variables, the remaining entries of X are computed
by the following algorithm:

q,l};rs — ZJ 0 ZI_J(Akr)TBk_] IAkS
forj=0:a; —1do
ifref{l,...,N}L,1<j<a,— 1then
A7 = A7 = AT (C)7 ] 4 Xy Dol AN By A
+ erc;ll qjjyiozk+a, + Zk:r-‘rl ]7a,+ak)
end if
forp=1:N—1do
ifre{l,...,NL,j<arp—1r+p =N then

A’f(”"’P) — _AS(H‘P) (C{))_I(Z{:1 Z:;] (Arr)TBk

¥ Ak(r+p) + Z r(r+p)

] agtar
r+p r(r+p) r(r+p)
+ Zk r+1 + Zk r+p+1 \Iljfar+},+ak)’

n—j—m

end if
end for
end for

For simplicity, in this algorithm, we define Z] 1aj = 0 if > n, and it is understood

that the inner loop (i.e. for p = 1: N—1) is not performed for N = 1.

Furthermore, assume that I3 and C are real. Then the solution X is real if and only if the
following statements hold:

(i) Matrices B, and Cfj in (17) have the same inertia for all r € {1,...,N}.
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(ii) Matrices A7® with r>s, j € {0,...,ar — 1}, N > 2, matrices Ay, and matrices Z; for
l1<j<oa—1(r,se{l,...,N})in (a)and (b) are chosen real.

For the sake of clarity, we point out the importance of the correct order of calculating
the entries of X' in Lemma 4.1. It is essential for the proof of the lemma.

Recall first that by (a) (when N > 2) all entries of the blocks below the main diagonal of
X = [er]ffszl can be chosen freely. Next, we compute the diagonal entries of the blocks
in the upper triangular part of X'. We first obtain the diagonal entries of the main diago-
nal blocks X, for r € {1,..., N} (see (a) again). Secondly, stepj = 0,p = 1 (if N > 2) of
the algorithm in (b) yields the diagonal entries of the first upper off-diagonal blocks of X
(ie. (X411 = Ag(ﬂrl) ). Further, step j = 0, p = 2 gives the diagonal entries of the sec-
ond upper oft-diagonal blocks of X’ (i.e. (X;(r42))11 = A(r)(rH)), stepj = 0, p = 3 gives the
diagonal entries of the third upper off-diagonal blocks of X (i.e. (Xy43))11 = A(r)(r+3)),
and so forth. In the same fashion, the step for fixed j € {1,...,0; — 1}, p € {0,..., N}

yields the entries on the jth upper off-diagonals of the pth upper off-diagonal blocks of X,
ie. (Xrrap)iG+1) = A;J(:r P with r +p < N, provided that j < a,1, — 1. Finally, when
j=oa; — 1, p=0, we compute (X11)1, = Aélﬁl. Note that we add %m,(m, — 1) free
variables when calculating each entry A;" € C™r>.

Proof of Lemma 4.1: The idea is to write Equation (18) entrywise as a system of several
simpler matrix equations and then consider them in an appropriate order.

First, we analyse the right-hand side of Equation (18) for BB, F of form (17) and
X = [X,s]f’jszl with blocks as in (19). To simplify the notation we set ) := BX and
X := FXTF. The entries in the jth colun}vn and inNthe first row of (/? Y),s are obtained
by multiplying the first rows of the blocks A}, . . ., X with the jth columns of the blocks

WM1s> - - - » (V)Ns> respectively, and then adding them:

N
((AV)j =D Xy V)P, rsefl,... N}, jefl,..,a).  (20)
k=1

As mentioned in the discussion at the beginning of this section, it suffices to analyse the
upper triangular blocks of X' }:

N
(XD rrp)ij = Y (X Qkrap)?s 1<j<aryp, 0<p<N-r.
k=1
When N = 1 (hencer = 1, p = 0), we have
(X)) = (XD (O)in)?, (21)
while for N > 2 we obtain

N
(XM1ap)y = @D Qrap)? + )Xo QVeasp)? =1,  (22)
k=2
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N
(XWrirap)ti = X)) Prirap)? + Y X)) Q)P

k=r+1
r—1
+ Z(frk)(l)(yk(rqtp))(i), l1<r<N, (23)
k=1
(X)) = (X)) + Y (X @y V) (r=N). (24)
k=1

Foranyr,k € {1,...,N}, we get
T
Ea (In)(T(A0 AL ., Apy—1)) Eay(Im,) = T(AQ, Al,.. ., Ap ), (25)
and it further implies

Tk
0] T kT kr \T
T = T((A",.... (A5 )"),

Xk = Ea,(In,) X By, (In,) = [0 Tu], o <
71 ) r >

,]; > aV = ak)
kr\T kr\T k T
0 ... 0 4N’ ... A DT, a>a.
(26)
We define <I>§5 = Z?:o BﬁfjA]'.“ and observe that
T
- . [ (’)‘5] , ok > o [S(;“} , ok > o,
yks - T(BO’BI, o )Bakil) [0 77(5] b ak < a5 - [0 Sks] > O[k < s,
77(5) O = O Sks’ U = O,
Sk = T(BG, B, By, ) T(AGLAY, .., AR ) = T(®F, ..., ).
(27)
We begin with the calculation of matrices A for r € {1,...,N}. Since
BEAY
[ kr\T ] k 0 k
> (A) * *1, Zr, (1) . > Sr)
X = 0 = .
( rk)(l) :[0 x ... *] ; k < r, (ykr) :
0
0, k>r,

we deduce from (20) for r = 5,j = 1 that

N
(X1 =Y (X)) Vi)V = (X @y V™ = WNTBHAY, re(l,...,N}
k=1
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Together with (C,+)11 = Cjj Equation (18) yields an equation that gives Aj:
Ch = (ANTBLAY, refl,...,Nk (28)

it adds YN | w to the dimension of the solution. Next, if N > 2, we fix arbitrarily
the blocks below the main diagonal of [.?\,’,5]1,\,2:1 (the blocks above the main diagonal of
[frs]f)]s:l), with Z]Ll ZZ;% o,m,m; entries altogether. This corresponds to (a).

Proceed with the key step in the proof: an inductive procedure that enables us to com-
pute the remaining entries (the algorithm in (b)). Wefixr € {1,...,N},p € {0,...,N — r}
andj < a, — 1,butnotp = j = 0. Assuming that we have already determined the matrices
AL (with 1 < 7/,5" < N) for

i>1, 76{0,...,j—1}, s>7 or p>1, 7=j, r<sd<r+p-1
or s <7, je{0,...,bpg—1}, N=>2, (29)

we shall compute A;(HP ) (step j, p of the algorithm in (b)). Essentially, we shall solve the

equation (Cy(r4p))1j = ((/1~’ Mr(r+p))1j (see (18)). By a careful analysis of the structures of
(/Ek)(l) and (yk(,+p))<i> in formulas (22), (23), and (24), we shall reduce this equation to
a simple linear matrix equation in A]((r+p ) (and possibly in (A;(r+p ))T) with coefficients
depending only on A]~T/S, for (29).

For the sake of clarity, we set the notation (n € Z, k,1,s € {1,...,N}):

Pk "

whs o [T @t @an™| | nzo | [ @nTel, nxo,
no q)las j=0

0, n<0 0, n < 0.

(30)
Note that
n noj n o on
= YA = 3 Y Al = Y3 b )T

=0 =0 1=0 1=0 j=I

n n—I n

kr\T T sk kr\T 3,k ksr\T

= E E (Alr) (BJr/) Ans_[_j/ = E (Aly) q)ns_I: (v, n=>0. (31)
=0 j/=0 1=0

Since (X)) = [ AT . 47 "] and

[ 4 7 (r+p) ]
ol
J
) f
_ r . r(r+p) )
V)@V = : v Ve = q)oo , j<as—1 orp>1,
o

— 0 =
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the first term of (21), (22), (23), and (24) is equal to
(X)) = Wi = (ANTBLAT + (AN TBYAY + E(ir,0),  (p = 0)

Xy Wrany = ¥ = AN BA P + EGorp),  p=1,
j—1
ZA{’@}LI, ji=1, p=0,

EGrp) =15 (32)

r(r+p) .
YA, jz0 p=1.

(For simplicity, we have defined Y )., a; = 0 forn<1.)
_When N > 2 thesecond term in (22) and (23) forj + linstead of j consists of summands
(X 1) V)9V with k > 7+ 1,and such that (X)) = [AEHT ... @k _)7],

B (Df(r+p) 7
j

r(r+p)
@, , r+p >k

<I)‘r(rer)
]

. - 0
RARUES v Qo) =1

Yir+p)(r+p) :
oI e

, k>r+p.

Hencefor N >r+1 > 2:

N
OGP = Y (X)) Vktrep) ™

k=r+1
k .
Z \IJJ rz{r"'ak j=1, p= 0,
k=r+1
kr(r+p) kr(r+p) )
Z \IJ] + Z \IJ] aH—p‘ka ] > 0; p > 1.

(For simplicity, we defined ZkN:r +pt1 \Iljrfgjz 2_% =0forr+p+1>N.)

Finally, the third term in (23) and the second term in (24) (with N > 2) consist of
summands which are products of matrices

Eom=[0 .. 0 @’ .. @),
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'q){c(r+p)‘
j
‘ k()
Dkrp) T = P , 1<k<r-—1,
0
— O —
hence
r—1 r—1 kr( )
; v j r(r+
AGyrp) =Y (X)) Verp) 0 =D w70 (34)
k=1 k=1

We extend E, ® and A by 0:

EGirp) = {E("”’P)’ 22020 5 p) = {@U’T’P)’ Nzr+lz2,

0, otherwise, 0, otherwise
~ . A(j,?’,p), NZ”ZZ)
A b bl == .
(7> p) {0, otherwise,
and define
D" = E(j,r,p) + 8G, 1, p) + K (o1 ). (35)

The equation (Cr(rp))1j = ((?’Ey),(,ﬂ,))lj combined with (21), (22), (23), (24) and
with (32), (33), (34), (35) yields

(36
(A BRAT" + (A BiAy = Cf —DJ', p=0.

Moreover, from (31) it follows that WX and r = s are symmetric, thus E(j, r, 0), ®(j, r, 0),
A(j,r,0) (and hence er - D]”) are symmetric, too.

r(r+p)
To get A;

for p > 1, we solve a simple equation of the form ATX = B with given
nonsingular A and arbitrary B, while to get A7" we solve the equation of the form ATX +
XTA = B with known nonsingular A and symmetric B; the solution is X = %(AT)_lB +
(AT)~1Z with Z skew-symmetric. We have A = (A}")T B} with (AT) ™! = ((A))TBy)~! =

A(’)(C{))_1 (see (28)) and B = C} — Dj” (forp =0)orB = —D;(Hrp) for p > 1. By recalling

the definition of D;(r+p ) in (35), we deduce the algorithm in (b).
Furthermore, E(j, 1, p), O(, 1, p), A, 1, p) (thus also D;(Hp " and A;(Hrp )) depend on
the entries of Ayfls/ with (29). It is thus straightforward to see that the algorithm in (b) allows

us to compute each entry from the entries that are already known.

If Bj, G, are real, then by Sylvester’s theorem Equation (28) has a real solution Aj" pre-
cisely when By, Gj, are of the same inertia. The equivalence at the end of the lemma is then
apparent. |

Remark 4.1: (1) The equation in (a) is of the form C = XTBX with given nonsingular
symmetric matrices B, C. By the Autonne-Takagi factorization (see, e.g. [14, Corollary
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4.4.4]) B = RTIR, C = STIS for some nonsingular R, S and the identity matrix I. The
above equation thus reduces to I = YTY with Y = RXS™!. When B and C are real
with the same inertia matrix T, i.e. B= RTTR and C = STTS for some real orthogonal
Rand S, we getT = YTTY with Y = RXS™! (real pseudo-orthogonal).

(2) One could consider the Equation (18) even when the diagonal blocks of B, C are non-
singular. In this more general setting, the equation C = ATBA is more involved, while
the solution of the equation ATX + XTA = Bis known (see [17]).

Example 4.1: Wesolve (18) for F = Es(I) @ E(D® L B=C=Z =L d LI S L
Set

Ay By C Dy |H G| i

0 A Bl C |0 H |0
0 0 A B |0 0 0
Y=| 0 0 0 A |0 0]0
0 0 N Py |As B3| J3
0 0 0 N |0 A 0
L 0 0 0 R |0 Rs|Ag |
We compute
AT T T T T T T ]
AT Bl cI' pI' | NI PI'|R!
T T T T
o AT Bl ¢cl'l o NI|o
o o AT BI'l o o0 o0
FY'FYy=YY=| 0o o o Al|lo o o0
T T T T T
0 o HI' GI'|al BRI
0 0 o0 HI| o 45| o0
Lo o o Jr|o JI|As
Ay By Ci Dy |Hi G| 1]
0 Ai Bi C |0 H |0
0 0 A B |0 0 0
x| 0 0 0o A0 o0]o0
0 0 N P |As B3| J3
0 0 Ny | 0 As] 0
Y 0 Ry 0 R3 | Ay
m ATA; ATBy +BTA,  ATC + CTA, %
+BIB; + NI N
AT A, ATB, +BTA,  ATC +CTA
+BIB, + NIN,
= ATA, ATB; + Bl A

AT A,
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ATH, + N[A; ATG, +BTH, + NIB; | N]J3 + RT A4 7
+P{A; + R[R; +AT]
0 ATH; + NTA; 0
0 0 0
0 0 0
AT A3 ATBy + BTA; + RIR;s | ATJ5 + RTA,

AlA; 0

AfAy

By comparing the diagonal of the diagonal blocks of the left-hand side and the right-hand
side of Y = 7, we deduce that Ay, . . ., A4 are any orthogonal matrices. Next, we choose
N1, P1, Ry, R arbitrarily. The diagonal blocks on the first upper diagonal yield equations
AlTHl + N1TA3 =0 and A3T]3 + R§A4 = 0, which further implies H; = —A1N1TA3, =
—A3R§A4; note that (AIT)_1 =A, (A3T)_1 = As. The last upper diagonal gives NIT]3 +
AT+ RTAy = 0, thus J; = A{(NTAsRT Ay — RTAY). B

By inspecting the first upper diagonal of the main diagonal blocks in VY =7, we
obtain AITBI + BITAI =0 and A3TB3 + B3TA3 + R3TR3 = 0, so we deduce Bj, Bs. Further,
AlTGl + BlTHl + N1TB3 + PlTAg + RITR3 = 0 (observe the first upper diagonal of the first
upper diagonal) yields G;.

The third and the fourth upper diagonal block of the first principal diago-
nal block give ATC, + CI'A; + BIB; + N[Ny =0, ATD, + BI'C, + CI'B, + DT A, +
N IT P + PITN 1+ R{Rl = 0 (see *), therefore C;, D follow, respectively.

The solutions of Equation (18) with a block diagonal matrix C = B form a group with
relatively simple generators. Recall that U is the set of matrices of form (9) with identities
on the diagonals of the main diagonal blocks (Lemma 2.2).

Lemma4.2: The set Xg of solutions of Equation (18) forC = B = Galr\]:l(@;‘:’lB,) with B, €
GLy, (C) N Sy, (C) is a semidirect product Xg = Op X Vp, in which the group Op consists
of all matrices of the form Q = @f;l(@;’;lQr) with Q, € C"r>™r sych that B, = Q,TB,Qr,
and Vg := U N X (hence unipotent of order at most oy — 1 and in nilpotency class at most
o1). Moreover, V3 is generated by matrices of the following two forms:

N
V= TUn,Vi,.... Vi, )
r=1

ro_ 1 —1pr roo_ 1 el y "nTB, V! e
V= E(Br) Zy n+l "= E(Br) Zny1 ~ Z(V}) BTV"_j"‘l ’
j=1

Zy =2, nx1l,
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and

[0 sl O < s,
Z/lrs
Hp (F) = [(Hy (P)islYoeys P <t (Hy(F))rs = [0] o > o,

U, Oy = O,

1 =,
um:{@Fl me TS s CApth Uy = TUmp Al AT, T {pt),

0, r#s
AP an,lBP_l(FTBtFBp_l)”BP, j=nRk+a—B) o 1 1 [2n
7 7o, otherwise T ity 4 1\
Al — an,lBt—l(BtFBglFT)nBt, j=nCk+ o —p)  Fecmem,
] 0, otherwise
Up = Ni (F), Uiy = Ng (=B, 'F"By).
(38)

Proof: For any &, X, € Xp, we have

FXXHIFBx XY = F YT Fral FBx X = F YT FBAS!
= F(X Y FBB ' FXIFB) = B.

Thus Xle_l € Xp, so Xp is a group.

We describe the structure of Xg. Lemma 4.1 forC = B = @ﬁvzl(@fz’lBS) implies that
X € Xpis of form (9) such that its main diagonal blocks have Q;, on the diagonal (satisfy-
ing B, = (Q(’))TB(’J Qp)- Therefore X’ can be writtenas X = Q)Y with Q € Ogand Y € U.
ClearlyOp C Xp(hence Y € Xg),thusXp = Op X Vi, where Vg = X N U. Since Vg
is a subgroup of U, it is a normal subgroup in Xp, unipotent of order at most @; — 1, and
nilpotent of class at most o1 (see Lemma 2.2).

Next, we find matrices in X that are of a simple form. First, set

D5,5=[A“ A“], a>p, 0<k=<p-1,

Ay Ap
A = TUmAr .5 Ag—1), Az =Ty, Dy, .., Dg_1), (39)
T(Gg, Gy,...,Gpg—
Azlz[o N,’;(F)], AlZZ[(O 10 ’31)},

in which N ’ﬁf (F) is a B—by—p block matrix with F € C"™>*™2 on the kth diagonal above
the main diagonal and zeros otherwise, A; € C™ >, D; € C™>*™2,and G; € C™>*™ for

all j. Further, suppose th g is a solution of the matrix equation

Bup = Fap(Dk ) FapBupDl g» Bap = Iu(B) & I5(O),
fa,ﬂ = Ea(Iml) @b Eﬂ(Imz)a
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where B € C™*" and C € C™2*™2_ Blockwise we have

Iu(B) = T, AL, ..., AL DI, (B)T(In, Ay .. Ag—1)

N (FT) )
p
+[ 0 ]I,s(C) [0 Nﬂ(F)], w0)
0= T(Im»AL,...,AT )I,(B) |:T(G0)G1,(.). .,Gﬂl)]
a7k (T

+ NﬂE)F )] Iﬂ(C)T(ImZ,Dl, - ’Dﬂ—l), (41)
I4(C) = T(Iy, DY, ., Df_)Ig(C)T(Iyy, D1, . .., Dp_y)

o TGheh.. 6] L) |:T(G0,G1,(.). .,Gﬁ_l)] | )

To determine Dz’ p we basically follow the algorithm in Lemma 4.1(b).
We first simplify the notation by defining A¢ := I,;,, and D := I,,;,. By comparing the
first row of the left-hand and the right-hand side of (40), we get

n 2k+a—p
0= ZAJTBAn,j, l<n#2k+a-p, 0= ) AlBAjkya—p—j+ F'CF.
j=0 j=0
If o —B+k>2 we choose A} =... = Ayiq—p—1 =0 to satisfy the first equation

for 1 <n <2k+a — B — 1. The second equation then yields —FTCF = A2Tk+a_ﬂB +

BAjkyo—p (inthe case @ — B + k = 1 as well) and we take Ay pg = —%B_IFTCF. The
first equation for 2k + o — B + 1 < n < 2(2k + a — B) further reduces to

0=AJ-TB+BAJ-T, 2k+a—B+1<j<2Qk+a—p)—1 (fa—p+k=>2),

T T
0=As0k+a—p)B + Askra—pBArkta—p + BAr0kta—p)-

Hence we can take Aj =0 for2k+a — f+1<j<2Qk+a—p) —1(fa —B+k>
2) and Ay(2k+a—p) = —3 (B"'FT CF)2. By continuing in this manner, we obtain

—1gT n N _
A= {an—l(B F'CH)", j=nk+a—p), neN, (43)

0, otherwise,

where ag = —% and a, = —% ;’;01 ajap—j—1 for n € N. The generating function asso-

ciated with the sequence a, is f(t) := Zfio ajtj. Observe that f(¢) = —%l‘(f(t))2 - %,

thus f(¢) = —%(1 + (1 - t)%) and we obtain a, = —zznﬁﬁ(i’"). For the basic theory
of generating functions, see, e.g. [18, Chapter 2].
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We now compare the entries in the first row of the left-hand and right-hand side of (41)
and get the following equations:

n
0= ZAJ-TBGn_j, 0<n<k—1 (ifk>1),
j=0
k
0= ZA].TBGk,j +FTc, (44)
j=0

n
0= ZAJTBGn_j +F'cp,k, n>k+1,
j:O

The first two equations immediately imply
Go=...=Gr1 =0 (ifk>1), Gr=-B'FIC. (45)

By comparing the entries in the first row of the left-hand and right-hand side of (42), we
obtain
n

n
0= D/CDyj+ > Gl ( pBGu1, n>1. (46)
j=0 J
Using (45) we deduce that the second summand on the right-hand side of (46) vanishes
forl<n<a—B+2k—1,0a—8+k=>2,thus
n
0= DfCDpj l1<n<a—p+2k—1 (ffa—p+k=>2),
j=0
2k+a—p
0= Y D/CDyiap—j+ G{BGk.
j=0

Therefore, we choose
Di=...=Dyyyp_1=0 (fax—p~+k>2),
1 iar L, (47)
Daya—p = —5C ' G{BGy = — FB'F'C.
Using (43) and (47) for @ — B + k > 2, the last equation of (44) reduces to 0 = BG,, for
a—pB+2k—1>n>k+ 1;hence
Giy1=...= G2k+a—/3—1 =0 (fa—pB+k=2). (48)

Further, we apply (43), (45), (47), (48) to the last equation of (44) for n = o — B + 2k. If
k > 1 we obtain BGygiq—pg = 0, while fora@ — g > 2, k = 0 we get

0 =BGy p+ A yBGo+ F'CDy_p = BGy_pg — 3F CFGy — 3F' G{ BGy = BGq_p.
Similarly for k = 0, « — B = 1 we deduce BG; = 0. In any case, we have

G2k+a_’3 =0. (49)
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If « — B+ k > 2 we use (45), (47), (48) and (49) to see that the second summand on the
right-hand side of (46) for« — 8 + 2k + 1 < n < 2(a — B) + 3k vanishes, while the first
summand is equal to DI'C + CD!; thus,

0=DJC+CDI, a«—p+2k+1<n<2(-p)+3k
We take
D,=0, a—B+2k+1<n<2—pB)+3k (fa—B+k>2). (50

Using (43), (47), (50), the third equation of (44) forae — B +2k+1 <n <2(x — B) + 3k
reduces to BG,, = 0; it is clear for n # o — 8 + 3k, while forn = o — 8 + 3k

0 = BGy—p+3k + Ag_ﬁukBGk + F'CDy—p42k» (51)
0 = BGy_p3k + SFTCFB™'FTC — 1FTCFB™'F'C = BGy_p 13-
It yields
G,=0, a—B+2k+1<n<2a-pB)+3k (52)
Equation (46) for (45),(47),(48),(52),(50) then gives
0=CDj—|-DjTC, 20@—B)+3k+1<j<2a—-p+2k—1,
0 = CDsa—p+2k) + Dy_p ot CDa—p42k + Doty C-

We take
D,=0, 2a—pB)+3k+1<n<2a-pB+2k —1,
1 L 17 2 (53)
Da@—p+ak) = =5 Do pyokCDu—p+2k = —g(C G BGy)”~.
From (44) for (43), (47), (50), we further deduce
G,=0, 2(@—pB)+3k+1<n<2a-pB+2k). (54)
Ifa — B =1, k =0 then (46) yields 0 = CD;, + (D)TCD; + DZTC and we choose D, =
—%(C‘ng BGy)?. Further, similarly as in (51), we apply (44) to get G, = 0 from 0 =

BG; + AITBGO + FTCD,. Thus (53) and (54) are valid in this case as well.
By continuing this process, we eventually obtain

—15T H—
Gj:{B FI'C, j=k

0, otherwise,
(55)
b — [ (FBTIFTO), j=n(k+a—B), 1 1 (2
77 o, otherwise, Tty 1\ n )

We easily compute
k - -1 k Ay A
(DX 4 (B~ = By s Fop (D 4 (F) FarpBp = [ A AR
with

an_1B Y (FTCFB~Y)"B, j=nQk+a—p),

!/ — / ! /:
Ay =T AL Ay ), A 0, otherwise,
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a —1C_1(CFB_1FT)"C, i =nk + o — B),
Ay =Ty D;,..., Dy ), D) :{ n j

0, otherwise,
k —1gT
. i , _[NE-B'FTO) 1 1 (m
A21—[0 Nﬁ(F)]’ 12—[ P 0 = o\ )

Set IC’;J (F) € Vptobean N—by—N block matrix such that its principal submatrix formed
(I;P’at (F), while the submatrix
formed by all other blocks is the identity matrix. Clearly ng’t(F) = (/Cf;,t(F))’1 is of the
same form as IC’;J(F), only with (D,

by blocks in the pth and the tth columns and rows is equal to D

gp’at (F))~! as a principal submatrix formed by blocks
in the pth and the tth columns and rows.

We use the inductive procedure of multiplying ) € V3 by matrices of the form IC’I;t(F)
for the appropriate p, t, k, F. To describe the inductive step, suppose that during the process
we have a matrix that by a slight abuse of notation is still called ), and such that the blocks
under the main diagonal in the first p—1 columns vanish (i.e. Vs vanishes for p, r > s), and

the first @y — ap41 + k columns of V;, for r > p vanish. Let ¢ be the largest index such that
Vi) 1(@p—apir+ht1) # 05 ie. Vip)y = [0 e ORE g Rfi_l] with all R}p € Cmexmp
and RY # 0. We multiply Y with IC];,t(—Rtp ) to get )’ that is of the same

k—opt1tae k—api1tar
form as )/, and (yt/p)(k“‘f_“l’“*'l) = 0. It is apparent for YV} withr,p>sort>r>s = p,
while for r > t, s = p we have

O =[0 o 0 R, o oo RO T, AP A7, a2 )
+ T, A, AY ) [o ijjf‘gj“”“ (—R,?_(%l_at))]
=[o 0 S e RO
(y;p)(l)::o a0 R R;{_I]T(Imp,...,Aﬁi,l)
+[0 * ... % [0 Nf{:f&?ap“(—R,?_(%H_at))]
::0 ... 0 S;p_apﬂ_i_at_i_l Rz_l], r>t,

for some ST e C™*™ with s € {r,t}. This process of choosing the appropriate
{pj> tj kj> Fj};—, eventually yields a block upper triangular matrix V' of form (9), and such
that the blocks on the main diagonal are block upper triangular Toeplitz with identities on
the diagonals:

X =0y =V[[k,, &N = V][ My, E).
j=1

j=1

The inverse of a nonsingular block upper triangular matrix is again block upper tri-
angular, hence V1 is block upper triangular. On the other hand, V is a solution of
Equation (18), so V™! = B"'FVFB which is a block lower triangular matrix. Hence
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V= GBI,VZIT(I,,,,, Voo Vl;r_l); the algorithm that provides the solution of (18) (see
Lemma 4.1) yields equations that give (37):

BTV +(vDHTBy =0,

n
(B(r))TVZH + (V;H)TB(T) = Z(er)TB(r)V;Jrlfj’ nzl
j=1
This concludes the proof of the lemma. |

5. Proof of Theorem 3.2

Proof of Theorem 3.2: Given a symmetric matrix A, we need to solve the equation

AQ = QA, (56)
where Q is an orthogonal matrix and
N my
A= EB @Ka,(x) , reC.
r=1 \ j=1

We shall first use Theorem 2.1 to solve (56) on Q. Taking into account that Q satisfies
QT'Q =1 (I is the identity matrix), it will yield a certain matrix equation and further
restricting the form of Q; at this point, Lemmas 4.1 and 4.2 will be applied.

We have

N my my
A=P P, =P |Prm]|. P=B (PP,
r=1 \ j=1 r=1 \ j=1

where Py; is defined in (16). Equation (56) thus transforms to
JX =XJ, X=PQP L.

From Theorem 2.1 (2.1), we obtain that X = [X,s]Y

rs=
matrix whose blocks of size o, x «; are of the form

1> where X, is an m,—by—m; block

[0 T]) Oy < s,
T
, Oy >, (57)
0
T) Oy = O,

where T € C"™*™, m = min{«a,, «s} is a complex upper triangular Toeplitz matrix.
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_ ) _
Since Py = P, P71 = B,, P2 = —P. = —P;2 = iE,, wededuce P> = P* = —P~2 =

a’> o

iE, where E := EBflzl (EB;":’l (Ea,))- Therefore, I = QTrQis equivalent to
1= P XTeHTy P~ 'xp),
1=PPTXTP~HT(P~'xp)P7!,
1=pP>xTp2x, (58)
I = iEXT(—iB)X,
I = EXTEX.

The trick of the proof is to transform this equation by conjugating the matrices with the
permutation matrix Q = @ﬁ\]:l Qq,,m, from (8):

1= (QTEQ)QTXTQ)(QTEQ)(QTXQ),

(59)
1=FXTFrx,

where F := QTEQ = GBjI\LlEa, (Em,) and X := QTXQ (see (8)) are of form (9) with block
rectangular upper triangular Toeplitz blocks.

We conclude the proof by applying Lemmas 4.1 and 4.2 to Equation (59). Lemma 4.1
for B = C = I clearly implies that X satisfies the conditions (I), (II), while Lemma 4.2 for
B = I'yields that X € O x V; note that V is generated by matrices of forms (14) and (15)
which coincide with (37) and (38) for B = I, respectively. |

Remark 5.1: (1) The Equation (58) is very similar to the equation [6, Equation 2.12]
which was partly studied by the author when proving the uniqueness of Hong’s nor-
mal form under orthogonal xcongruence. Using the solution of the Equation (18)
(Lemma 4.1) and providing a somewhat more detailed analysis, the problem of com-
puting the isotropy groups under orthogonal xcongruence on Hermitian matrices will
be addressed in the subsequent paper.

(2) Applying the same general approach as in this paper, the isotropy groups under
orthogonal similarity on skew-symmetric or orthogonal matrices are described by
matrix equations which involve an important difference in comparison to Equa-
tions (58) and (59). However, we expect that by developing some special techniques,
similar results can be obtained in these cases as well.

(3) A referee of the paper has pointed out to the author that the isotropy groups under
congruence {Q € GL,(Z) | QTGAQ = G} at symmetric Gram matrices Ga of pos-
itive edge-bipartite graphs A with n > 1 vertices were observed in [19,20]. They are
playing a key role in the Coxeter spectral analysis of edge-bipartite graphs and positive
definite quasi-Cartan matrices recently studied by many authors, see [21-23].
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