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In the Maker-Breaker domination game played on a graph G, Dominator’s goal is to select a dominating set and

Staller’s goal is to claim a closed neighborhood of some vertex. We study the cases when Staller can win the game. If

Dominator (resp., Staller) starts the game, then γSMB(G) (resp., γ′
SMB(G)) denotes the minimum number of moves

Staller needs to win. For every positive integer k, trees T with γ′
SMB(T ) = k are characterized and a general upper

bound on γ′
SMB is proved. Let S = S(n1, . . . , nℓ) be the subdivided star obtained from the star with ℓ edges by

subdividing its edges n1 − 1, . . . , nℓ − 1 times, respectively. Then γ′
SMB(S) is determined in all the cases except

when ℓ ≥ 4 and each ni is even. The simplest formula is obtained when there are at least two odd nis. If n1 and

n2 are the two smallest such numbers, then γ′
SMB(S(n1, . . . , nℓ)) = ⌈log2(n1 + n2 + 1)⌉. For caterpillars, exact

formulas for γSMB and for γ′
SMB are established.

Keywords: domination game; Maker-Breaker game; Maker-Breaker domination game; hypergraph; tree; subdivided

star; caterpillar

1 Introduction

The Maker-Breaker game was introduced in Erdős and Selfridge (1973). The game is played on an

arbitrary hypergraph by two players who alternately select a non-played vertex of the hypergraph. One

player, named Maker, wants to occupy all the vertices of some hyperedge, while the other player, named

Breaker, tries to prevent him from doing it. If the first situation happens, then Maker is declared as the

winner of the game, otherwise Breaker wins. The game, either in its general form, or in different special

cases, was investigated a lot by now, see the book Hefetz et al. (2014). For related recent developments

see Clemens et al. (2021); Day and Falgas-Ravry (2021); Nicholas Day and Falgas-Ravry (2021); Glazik

and Srivastav (2022); Kang et al. (2021); Stojaković and Trkulja (2021) and references therein. The

Maker-Breaker games have been recently studied also on digraphs in Frieze and Pegden (2021).
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The Maker-Breaker domination game, MBD game for short, was introduced by Duchêne, Gledel, Par-

reau, and Renault in Duchêne et al. (2020). Among other results they proved that deciding the winner of

the MBD game is PSPACE-complete in general, and showed that the problem can be solved efficiently

on trees. Following the tradition of the theory of the domination game, the two players in this version

of the Maker-Breaker game are called Dominator and Staller. This game was introduced in Brešar et al.

(2010), its state of the art till 2021 summarized in Brešar et al. (2021), and is still being investigated,

see e.g. Bujtás et al. (2022). We also add that the Maker-Breaker total domination game was introduced

in Gledel et al. (2020) and further investigated in Forcan and Mikalački (2022).

The MBD game played on a graph G = (V (G), E(G)) can be considered as the Maker-Breaker game

played on the hypergraph DG whose hyperedges are the minimal dominating sets of G. In this case,

Dominator is Maker, and Staller is Breaker. Moreover, this game can also be considered as the Maker-

Breaker game played on the closed neighborhood hypergraph HG of G, where the hyperedges are the

closed neighborhoods of the vertices of G. Now Dominator is Breaker and Staller is Maker.

A MBD game is called D-game (resp., S-game) if Dominator (resp., Staller) is the first to play a vertex.

Suppose that Dominator has a winning strategy in the D-game. Then the Maker-Breaker domination num-

ber, γMB(G), of G is the (minimum) number of moves of Dominator to win the game when both players

play optimally. The corresponding invariant for the S-game is denoted by γ′
MB(G). These concepts were

introduced in Gledel et al. (2019) and further studied on prisms in Forcan and Qi (2023). Clearly, the

problem of determining the Maker-Breaker domination number is interesting when Dominator wins the

game. For the situations in which Staller is the winner, the Staller-Maker-Breaker domination number

(SMBD-number for short), γSMB(G), of G, is the (minimum) number of Staller’s moves she needs to

win the D-game if both players play optimally. If Staller has no winning strategy in the D-game, we

set γSMB(G) = ∞. For the S-game, the corresponding invariant is defined analogously and denoted

by γ′
SMB(G). These two invariants are from Bujtás and Dokyeesun (2022).

In this paper we proceed the investigation of the SMBD-numbers. In Gledel et al. (2019), exact formulas

for γMB(T ) and γ′
MB(T ) were proved if T is a tree. To determine γSMB(T ) and γ′

SMB(T ) turns out to be

much more involved. In the main result of Section 3 we characterize, for every positive integer k, the class

of trees T with γ′
SMB(T ) = k. In the subsequent section we study subdivided stars. Since γSMB(T ) = ∞

holds for each subdivided star T , we focus on γ′
SMB(T ) and determine the exact value in all the cases

except when the star has at least four edges, and each edge is subdivided an odd number of times. For the

latter case we prove a sharp upper bound on γ′
SMB. In Section 5 we determine γSMB(T ) and γ′

SMB(T ) for

an arbitrary caterpillar T .

2 Preliminaries

2.1 Definitions

In a simple graph G = (V (G), E(G)), the open neighborhood NG(v) of a vertex v ∈ V (G) is the

set of vertices being adjacent to v, while NG[v] = NG(v) ∪ {v} is the closed neighborhood of v. If

X ⊆ V (G), then NG[X ] =
⋃

x∈X NG[x]. The degree of v is degG(v) = |NG(v)|. A leaf is a vertex v
with degG(v) = 1. A vertex u ∈ V (G) is a support vertex, if NG(u) contains a leaf. Moreover, u is a

strong support vertex if it is adjacent to more than one leaf. Otherwise, it is a weak support vertex.

A set S ⊆ V (G) is a dominating set in G if NG[S] = V (G). A dominating set S is minimal if there is

no dominating set among the proper subsets of S.
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The residual graph R(G) of a graph G is obtained from G by iteratively removing a pendant path P2

until no such path is present. By a pendant P2 we mean a P2-component or a P2 attached to the graph by

an edge. In the latter case, when a pendant P2 is removed, exactly two vertices and two edges are deleted,

whilst in the former case we obtain the empty graph. If T is a tree, then R(T ) is either the empty graph,

or R(T ) = K1, or each support vertex of R(T ) is of degree at least 3. It was proved in Duchêne et al.

(2020) that the winner is the same in T and in R(T ).
A hypergraph H = (V (H), E(H)) is a set system over the vertex set V (H). The (hyper)edge set

E(H) might contain subsets of V (H) of any cardinality that is, E(H) ⊆ 2V (H). If |e| = 2 holds for

every hyperedge e ∈ E(H), the hypergraphH corresponds to a graph. Thus, most of the basic definitions

related to graphs can be generalized to hypergraphs (see Berge (1989)). For example, if H1 and H2 are

two hypergraphs, we say that H1 is a subhypergraph of H2, if V (H1) ⊆ V (H2) and E(H1) ⊆ E(H2).
While studying Maker-Breaker games, we will refer to two operators on hypergraphs. Given a subset

X of the vertex set V (H), the hypergraph H−X is obtained from H by removing the vertices in X and

all incident edges. That is, V (H−X) = V (H) \X and

E(H−X) = {e : e ∈ E(H) and e ⊆ V (H) \X}.

The second operator, named shrinking, creates a hypergraph denoted by H | X . Here, the vertices in

X are deleted again from H but the incident hyperedges are just ‘shrinked’ instead of being deleted.

Formally, V (H | X) = V (H) \X , and

E(H | X) = {e \X : e ∈ E(H)}.

If X = {v}, we may write H− v and H | v instead of H− {v} and H | {v}, respectively.

When a Maker-Breaker game is played on a hypergraph H, we say that the hyperedges of H are the

winning sets and Maker wins the game with his ith move if he claims a winning set with this move. A

winning strategy of Maker is a strategy which ensures that he wins on H no matter what strategy is applied

by Breaker. Assuming that Maker has a winning strategy, we further assume that his goal is to win the

game as soon as possible and that Breaker’s goal is the opposite. We say that the players play optimally, if

they play complying with their goals. The winning number of Maker, denoted by wM
M (H) (resp., wB

M (H)),
is the minimum number of his moves he needs to win the game if both players play optimally and Maker

(resp., Breaker) starts the game Bujtás and Dokyeesun (2022). If Maker has no winning strategy as a

first (resp., second) player, we set wM
M (H) = ∞ (resp., wB

M (H) = ∞). These general winning numbers

were introduced in Bujtás and Dokyeesun (2022), but the problem of how fast Maker can win was studied

earlier in several papers including Beck (1981); Clemens et al. (2012); Clemens and Mikalački (2018);

Hefetz et al. (2009). Note that γSMB(G) = wB
M (HG) and γ′

SMB(G) = wM
M (HG).

2.2 Known results

In this subsection we collect known results that will be used later.

Proposition 2.1 (Bujtás and Dokyeesun (2022)) Suppose that a Maker-Breaker game is played on a hy-

pergraph H and v ∈ V (H).

(i) If Breaker is the first player and she plays v, the continuation of the game corresponds to a Maker-

start game on H − v. In particular, if v is an optimal first move of Breaker, then wB
M (H) =

wM
M (H− v).
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(ii) If Maker is the first player and he plays v, the continuation of the game corresponds to a Breaker-

start game on H | v. In particular, if v is an optimal first move of Maker, then wM
M (H) = wB

M (H |
v) + 1. Further, Maker wins the game with this move v if and only if H | v contains an empty

hyperedge but H does not.

Proposition 2.2 (Bujtás and Dokyeesun (2022)) Let H1 and H2 be two hypergraphs on the same vertex

set.

(i) If E(H1) ⊆ E(H2), then wM
M (H1) ≥ wM

M (H2) and wB
M (H1) ≥ wB

M (H2) holds.

(ii) Suppose that for each e ∈ E(H1) there exists an edge e′ ∈ E(H2) such that e′ ⊆ e. Then,

wM
M (H1) ≥ wM

M (H2) and wB
M (H1) ≥ wB

M (H2) holds.

Proposition 2.3 (Bujtás and Dokyeesun (2022)) Let H be a disconnected hypergraph that consists of

components H1, . . . ,Hℓ such that wM
M (H1) ≤ · · · ≤ wM

M (Hℓ). Then, the following holds:

wM
M (H) = wM

M (H1) and wM
M (H1) ≤ wB

M (H) ≤ wM
M (H2).

We remark that Proposition 2.3 and its proof in Bujtás and Dokyeesun (2022) directly imply that one of

the optimal strategies of Maker is to play (optimally) on the component H1.

Proposition 2.4 (Bujtás and Dokyeesun (2022)) If a disconnected graphG consists of componentsG1, . . . , Gℓ

and γ′
SMB(G1) ≤ · · · ≤ γ′

SMB(Gℓ), then the following statements hold:

(i) γ′
SMB(G) = γ′

SMB(G1);

(ii) γ′
SMB(G1) ≤ γSMB(G) ≤ γ′

SMB(G2).

Proposition 2.5 (Bujtás and Dokyeesun (2022)) (i) Let G′ be a graph obtained from G by removing

a weak support vertex and the adjacent leaf. Then, the following inequalities hold:

γ′
SMB(G) − 1 ≤ γ′

SMB(G
′) ≤ γ′

SMB(G) and γSMB(G
′) ≤ γSMB(G).

(ii) Let G′ be a graph obtained from G by removing a weak support vertex of degree 2 and the adjacent

leaf. Then, γSMB(G)− 1 ≤ γSMB(G
′) holds.

(iii) Let v be a cut vertex in a connected graph G. If G1, . . . , Gℓ are the components of G − v indexed

so that γ′
SMB(G1) ≤ · · · ≤ γ′

SMB(Gℓ), then

γ′
SMB(G) ≤ γ′

SMB(G2) + 1.

The proof of (Duchêne et al., 2020, Theorem 22) yields the following statement that can also be deduced

from (Gledel et al., 2019, Theorem 4.5).

Theorem 2.6 (Duchêne et al. (2020); Gledel et al. (2019)) For a tree T ,

(i) γSMB(T ) < ∞ if and only if R(T ) contains at least two strong support vertices;

(ii) γ′
SMB(T ) < ∞ if and only if T does not admit a perfect matching.
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Note that, by Theorem 2.6(ii), γ′
SMB(Pn) = ∞ if n is even.

Applying the “pairing strategy” from Hefetz et al. (2014), Dominator has a winning strategy in both the

D-game and S-game if the graph has a perfect matching. This fact can be extended as follows.

Lemma 2.7 (Bujtás and Dokyeesun (2022)) Consider an MBD game on G and let X and Y be the sets

of vertices played by Dominator and Staller, respectively, until a moment during the game. If there exists

a matching M in G− (X ∪ Y ) such that V (G) \V (M) ⊆ NG[X ], then Dominator has a strategy to win

the continuation of the game, no matter who plays the next vertex.

Theorem 2.8 (Bujtás and Dokyeesun (2022)) If n is an odd positive integer, then

γ′
SMB(Pn) = ⌊log2 n⌋+ 1.

Moreover, Staller has an optimal strategy in the S-game on Pn such that she wins on the closed neighbor-

hood of a vertex v that is at an even distance from the ends of the path.

If n ≥ 3 and n is odd, we may use the formula ⌈log2 n⌉ instead of ⌊log2 n⌋ + 1. In later sections we

also frequently write ⌈log2 n⌉ instead of ⌊log2(n− 1)⌋+ 1 if n ≥ 2 is even.

3 Characterizing trees with γ ′
SMB = k

In Gledel et al. (2019), exact formulas for γMB(T ) and γ′
MB(T ) were proved if T is a tree. These values

and the corresponding optimal strategies of Dominator are not difficult to determine by iteratively remov-

ing a pendant path P2 and constructing the residual graph R(T ). On the other hand, as Theorem 2.8

and its proof given in Bujtás and Dokyeesun (2022) indicate, determining γSMB(T ) and γ′
SMB(T ) for an

arbitrary tree T turns out to be a much more difficult problem.

Thus, the aim of this section is, for a given integer k, to characterize the trees T with γ′
SMB(T ) = k.

Combining this result with properties of closed neighborhood hypergraphs, we also establish a sufficient

condition under which γ′
SMB(G) ≤ k holds for an arbitrary graph G.

First, we state a lemma that will be used in the proof of the main theorem.

Lemma 3.1 Let T be a tree with 2 ≤ γ′
SMB(T ) < ∞ and suppose that s1 is an optimal first move of

Staller in the S-game on T .

(i) If Dominator’s response is playing a vertex d1 which is a neighbor of s1, then Staller’s optimal next

move s2 and d1 belong to different components of T − s1.

(ii) After Staller’s optimal move s1, there exists an optimal response d′1 of Dominator such that d′1 ∈
NT (s1).

Proof: Let T1, . . . , Tℓ be the components of T − s1.

(i) Suppose for a contradiction that d1 and s2 belong to the same component, say T1. Proposition 2.1

implies that, after the moves s1 and d1, the game continues as a Maker-start game with the winning sets

in H′ = (HT | s1) − d1. As s1 is an optimal start vertex for Staller, γ′
SMB(T ) ≥ 1 + wM

M (H′). Further,

since by our assumption, s1 and d1 are adjacent vertices in T , the hypergraphH′ contains the components

HT2
, . . . ,HTℓ

and all components of H1 = HT1
− d1. By Proposition 2.3, wM

M (H′) equals the minimum

of the values wM
M (H1),w

M
M (HT2

), . . . ,wM
M (HTℓ

), and one the optimal strategies of Staller (Maker) is to



6 Csilla Bujtás et al.

play in the same (appropriate) component of H′ starting with her move s2. As s2 ∈ V (H1) is supposed

to be an optimal move, wM
M (H′) = wM

M (H1). On the other hand, H1 is a subhypergraph of HT and

Proposition 2.2 thus implies wM
M (H1) ≥ wM

M (HT ). This gives the following contradiction:

γ′
SMB(T ) = wM

M (HT ) ≥ 1 + wM
M (H′) = 1 + wM

M (H1) ≥ 1 + γ′
SMB(T ).

(ii) Suppose d1 is an optimal response of Dominator to the move s1 and d1 /∈ NT (s1). We may also

suppose, without loss of generality, that d1 ∈ V (T1). Let d′1 be the neighbor of s1 from the subtree T1.

We will show, by using imagination strategy, that d′1 is also an optimal response of Dominator. Let Game

1 be an S-game on T and let Staller start by playing s1 and Dominator’s response is d′1. After that, Staller

plays optimally as follows:

(*) Staller selects a component of (HT |s1) − d′1 with the possible smallest winning number and plays

optimally all of her moves in this component.

Note that by Proposition 2.3 the strategy (*) is indeed an optimal one for Staller from the second move.

Let Game 2 be an S-game on T in which Dominator plays optimally and his response to the move s1
is d1. In the continuation, Staller always selects an optimal move si in Game 1 and copies her move to

Game 2 if possible, while Dominator selects an optimal move di in Game 2 and copies it to Game 1 if

possible. Let tk be the number of moves Staller needs to win in Game k for k ∈ [2].
By (i), the optimal second move s2 of Staller in Game 1 cannot belong to T1. Let us assume s2 ∈ V (Tj)

with j 6= 1. Then according to (*), all the remaining moves of Staller will be in Tj . In particular, Staller

never plays the vertex d1. On the other hand, if Dominator plays di = d′1 in Game 2, then we replace this

move by d1 in Game 1. Otherwise Dominator’s move can always be copied into Game 1.

At the end, Staller wins Game 1 with her (t1)
st move by claiming a winning set from HTj

. As this

winning set is also claimed in Game 2 (or Staller has already won in Game 2), Staller wins Game 2 in

t2 ≤ t1 moves. Since Staller plays optimally throughout Game 1, we infer γ′
SMB(T ) ≥ t1. Similarly,

t2 ≥ γ′
SMB(T ) holds because Dominator plays optimally in Game 2. Therefore, γ′

SMB(T ) ≥ t1 ≥ t2 ≥
γ′
SMB(T ) that implies γ′

SMB(T ) = t1. We may conclude that d′1 ∈ NT (s1) is also an optimal move for

Dominator after s1. ✷

Definition 3.2 We define a family Sk of graphs for each positive integer k, and for each S ∈ Sk a subset

of vertices X(S), as follows.

• Let S1 = {P1} and let X(P1) contain the only vertex of P1.

• For k ≥ 2, let S∗
k be the set of graphs that can be obtained in the following way. Take two vertex

disjoint graphs S1 ∈ Sk−1, S2 ∈ ∪k−1
i=1 Si, and a new vertex zk. Choose a vertex xj from X(Sj),

for each j ∈ [2]. Then, a graph S from S∗
k is obtained by making adjacent the origin vertex zk with

x1 and x2. We define X(S) = X(S1) ∪X(S2).

• The family Sk is obtained as S∗
k \ ∪k−1

i=1 Si.

We also introduce the notation S =
⋃∞

k=1 Sk and say that S ∈ S is a substructure in the graph G if S is a

subgraph of G and degG(x) = degS(x) holds for each x ∈ X(S). We further say that the vertices from

X(S) have fixed degrees.
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In Fig. 1, families S1, S2, S3, and S4, are presented, where the black vertices are the vertices with fixed

degrees. Note that the vertices in V (S) \ X(S) may be incident with any number of additional edges

in G. Due to the recursive definition of Sk, each of the following statements can be easily verified by

proceeding with induction on k, cf. Fig. 1 again.

S1 : S2 :

S3 :

S4 :

P1 P3

P5 P7

P9

P11

P13

P15

Fig. 1: Families S1, S2, S3, and S4, where the black vertices are the vertices with fixed degrees.
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Observation 3.3 Let S ∈ Sk for an integer k ≥ 1.

(i) S is a tree in which all leaves belong to the same partite class. Moreover, this partite class corre-

sponds to X(S).

(ii) If v ∈ V (S) \X(S), then degS(v) = 2. In particular, degS(u) = 2 holds for every support vertex

u of S.

(iii) If a tree T contains a substructure S, then every leaf of S is a leaf in T and every support vertex of

S is a support vertex in T .

(iv) |V (S)| is odd and |V (S)| ≤ 2k − 1.

(v) Let P = {P1, P2, . . . }. Then P ∩ Sk = {P2k−1+1, P2k−1+3, . . . , P2k−1}.

Observation 3.3(i) shows that, for each k, the family Sk can be considered simply as a family of graphs,

without associating each S ∈ Sk with a set X(S) ⊆ V (S). The fixed vertex degrees are easy to identify

by considering degS(v) for every vertex v which is in the same partite class as the leaves of S.

In the following proposition, we state a simple characterization for the family S. For it recall that the

subdivision graph, S(G), of a graph G is the graph obtained from G by subdividing each edge exactly

once, cf. Burzio and Ferrarese (1998).

Proposition 3.4 S = {S(G) : G is a tree}.

Proof: Set S ′ = {S(G) : G is a tree}. We are going to prove that S = S ′.

Clearly, the elements of S ′ are trees. Moreover, if T is an arbitrary tree with partite classes A1 and

A2 such that A1 contains at least one leaf or an isolated vertex, then it is straightforward to observe that

T ∈ S ′ if and only if

(∗) degT (v) = 2 holds for every v ∈ A2.

If T ∈ S, Observation 3.3(i) and (ii) yield the desired property (∗) with A1 = X(T ) and A2 =
V (T ) \X(T ). Hence S ⊆ S ′.

To prove that S ′ ⊆ S also holds, suppose that T ∈ S ′. Then T fulfils (∗). We proceed by induction to

conclude T ∈ S. This clearly holds if the order of T is at most 3. Let |V (T )| > 3. Then, A2 6= ∅, and

we fix an arbitrarily chosen vertex z from A2. By our condition, degT (z) = 2 and hence T − z consists

of two components, say T1 and T2. Observe that degT1
(v) = degT (v) holds for every v ∈ V (T1) except

for the neighbor of z from T1. Since z ∈ A2, this neighbor is from A1, and therefore, we infer that

degT1
(v) = degT (v) = 2 remains true for all vertices v contained in the partite class V (T1) ∩ A2 of T1.

Applying the induction hypothesis to T1, we conclude T1 ∈ S. In the same way, we may obtain T2 ∈ S.

Definition 3.2 then shows that T can be constructed from T1, T2, and the origin vertex z, and therefore

T ∈ Sk for an appropriate integer k. ✷

Theorem 3.5 Let T be a tree and k a positive integer. Then, γ′
SMB(T ) = k if and only if T contains a

substructure S from Sk, and no substructure from ∪k−1
i=1 Si.
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Proof: The statement holds for k = 1 as Staller can win the S-game with her first move if and only if

there exists a winning set NT [v] of cardinality one. It clearly means that T is just an isolated vertex P1 or,

equivalently, there is a substructure P1 ∈ S1 in T . From now on, we may proceed by induction on k.

First, assume that T contains a substructure S from Sk, where k ≥ 2, but contains no substructure from

Sj if j < k. The latter condition implies, by the induction hypothesis, that γ′
SMB(T ) ≥ k. Now consider

the substructure S ∈ Sk in T and its origin vertex zk. By the construction of the graphs belonging to Sk,

the forest T − zk contains one component T1 with a substructure S1 ∈ Sk−1 and another component, say

T2, with a substructure S2 ∈ ∪k−1
p=1Sp. Then, γ′

SMB(T2) ≤ γ′
SMB(T1) ≤ k − 1 and Proposition 2.5(iii)

implies

γ′
SMB(T ) ≤ γ′

SMB(T1) + 1 ≤ k.

Therefore, γ′
SMB(T ) = k follows that completes the proof of one direction of the statement.

Now, assume that γ′
SMB(T ) = k. By the hypothesis, T contains no substructure from ∪k−1

p=1Sp. Let

s1 be an optimal first move of Staller in the S-game and d1 an optimal response of Dominator. By

Lemma 3.1(ii), we may suppose that d1 is a neighbor of s1. Let T1, . . . , Tℓ be the components of T − s1
such that d1 ∈ V (T1). After the move d1, by Proposition 2.1, the game continues on H′ = (HT | s1)−d1
with Staller’s next optimal move s2. By Lemma 3.1(i), s2 /∈ V (T1). By our supposition, the moves s1
and d1 were optimal and therefore, wM

M (H′) = k − 1.

Observe that H′ consists of several components and ℓ − 1 of them exactly correspond to the closed

neighborhood hypergraphs HT2
, . . . ,HTℓ

. If d1 is a leaf in T , then there is no further component in H′.

Otherwise, the further components of H′ are contained in H1 = HT1
− d1. Proposition 2.3 implies that

wM
M (H′), that is k − 1, equals the minimum of the values wM

M (H1),w
M
M (HT2

), . . . ,wM
M (HTℓ

). It also

follows that Staller’s (Maker’s) optimal strategy is to play in the same (appropriate) component of H′

starting with her move s2. As s2 /∈ V (H1), there exists a tree Tj , 2 ≤ j ≤ ℓ, such that γ′
SMB(Tj) = k−1.

By our hypothesis, Tj contains a substructure S1 from Sk−1. As S1 is a subgraph but not a substructure

in T , the vertex s1 must be adjacent to a vertex tj from X(S1). Note that, as T is a tree, s1 is adjacent to

exactly one vertex ti from each Ti, i ∈ [ℓ]. Consequently, no component Ti can contain two vertex disjoint

substructures from ∪k−1
p=1Sp and, if Ti contains a substructure S from ∪k−1

p=1Sp, then ti, the neighbor of s1
in Ti, belongs to X(S).

We will show that T −s1 contains a substructure S2 from ∪k−1
p=1Sp that is vertex disjoint to S1. Assume

for a contradiction that it is not true. Thus, by the hypothesis, γ′
SMB(Ti) ≥ k holds for every i 6= j. In this

situation, suppose that Dominator plays d′1 = tj instead of d1 = t1. By Lemma 3.1(i), each remaining

move of Staller belongs to a a subtree Ti, i 6= j, and she needs at least k further moves to win the game.

This contradicts the condition γ′
SMB(T ) = k and the assumption that Staller plays optimally.

To conclude the proof, we infer that T − s1 contains two different components, Tj and Ts, j 6= s,

such that an S1 ∈ Sk−1 is a substructure in Tj and an S2 ∈ ∪k−1
p=1Sp is a substructure in Ts. Further,

s1 is adjacent to tj and ts which belong to X(S1) and X(S2) respectively. By the definition of Sk, the

subgraph induced by V (S1) ∪ V (S2) ∪ {s1} is included in Sk and, as the subgraph complies with the

fixed vertex degrees, it is a substructure from Sk in T . ✷

Remark 3.6 Observation 3.3(v) shows that Pn ∈ S⌊log
2
n⌋+1 for every odd integer n. Then, by Theo-

rem 3.5, we may conclude γ′
SMB(Pn) = ⌊log2 n⌋ + 1. This provides an alternative shorter proof for the

formula in Theorem 2.8.
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For any graph G and a subset A ⊆ V (G), the hypergraph H−A
G is obtained from the closed neighhbor-

hood hypergraph HG by deleting the hyperedges corresponding to the closed neighborhoods of vertices

in A.

To state an upper bound on the winning numbers of hypergraphs, we define a family Fk for every

positive integer k as follows:

Fk = {H
−(V (S)\X(S))
S : S ∈ Sk}.

Alternatively, Fk can be defined recursively starting with F1 = {B} where B is the hypergraph that

consists of one vertex x and one edge {x}. Then, for every k ≥ 2, the family F∗
k contains a hypergraphA

if A can be obtained in the following way. Choose two hypergraphs A1 ∈ Fk−1 and A2 ∈ ∪k−1
i=1 Fi and

select two edges e1 ∈ E(A1) and e2 ∈ E(A2). To finish the construction, we take a new (origin) vertex

u, define e′i = ei ∪ {u} for i ∈ [2] and set

V (A) = V (A1) ∪ V (A2) ∪ {u}, E(A) = E(A1) ∪ E(A2) ∪ {e′1, e
′
2} \ {e1, e2}.

After having the family F∗
k in hand, we set Fk = F∗

k \ ∪k−1
i=1 Fi.

Proposition 3.7 If a hypergraph H contains a subhypergraph H′ from Fk, then wM
M (H) ≤ k.

Proof: The statement is clearly true for k = 1 as only a presence of a one-element winning set ensures

that Maker can win with his first move in a Maker-start game. If k ≥ 2, we refer to the notation used in

the recursive definition of Fk and show that Maker has a strategy to win in at most k moves. Consider the

subhypergraphH′ ∈ Fk and suppose that Maker first plays the origin vertex u. That leaves the hypergraph

H | u with a subhypergraph H′ | u for the continuation of the game. H | u therefore contains two vertex

disjoint subhypergraphs A1 ∈ Fk−1 and A2 ∈ ∪k−1
i=1 Fi. After Breaker’s move v, at least one of these

subhypergraphs remains untouched and (H | u) − v contains a subhypergraph from ∪k−1
i=1 Fi. By the

induction hypothesis, Maker can win the game in at most k − 1 further moves. As follows, wM
M (H) ≤ k

that concludes the proof. ✷

The following consequence of Proposition 3.7 gives an upper bound for the SMBD-numbers of graphs

in general. Note that the corollary can also be obtained by analyzing the proof of Theorem 3.5.

Corollary 3.8 If a graph G contains a substructure S ∈ Sk , then γ′
SMB(G) ≤ k.

Proof: Observe that the closed neighborhood hypergraph HG contains a subhypergraph H′ isomorphic

to H
−(V (S)\X(S))
S . As S ∈ Sk, we have H′ ∈ Fk and Proposition 3.7 implies wM

M (HG) ≤ k. Since

γ′
SMB(G) = wM

M (HG), this proves the statement. ✷

In view of Theorem 3.5, we pose:

Open Problem 3.9 Determine the computational complexity of the decision problem whether γ′
SMB(G) ≤

k holds for a graph G and a positive integer k, where k is part of the input. In particular, what about the

same question restricted to the class of trees?



Maker-Breaker domination game on trees when Staller wins 11

4 Subdivided stars

In this section we consider the SMBD-numbers of subdivided stars. Let S(n1, . . . , nℓ) be the tree obtained

from the paths Pn1
, . . . , Pnℓ

and a central vertex x by making x adjacent to one end of each path. The

paths Pn1
, . . . , Pnℓ

obtained after the deletion of the central vertex are called branches. Throughout, we

assume that ℓ ≥ 2 and n1, . . . , nℓ are positive integers.

For a subdivided star T = S(n1, . . . , nℓ), the residual graph R(T ), which is obtained by iteratively

removing pendant edges, clearly contains at most one strong support vertex. Therefore, by Theorem 2.6(i),

γSMB(T ) = ∞ always holds. Concerning the S-game on T , we consider three cases according to the

parities of n1, . . . , nℓ. If there is exactly one odd number among n1, . . . , nℓ, then T has a perfect matching

and γ′
SMB(T ) = ∞ follows from Theorem 2.6(ii). If there are at least two odd numbers among n1, . . . , nℓ,

Theorem 4.1 will establish the explicit formula. The last case is when T is an all-even subdivided star that

is, ni is even for each i ∈ [ℓ]. If ℓ = 2, T is a path and Theorem 2.8 establishes the formula for γ′
SMB(T ).

If ℓ = 3, our Theorem 4.3 will answer the question. For larger values of ℓ, we provide a sharp upper

bound, but the exact formula for SMBD-numbers of all-even subdivided stars with at least four branches

remains an open problem.

4.1 Not-all-even subdivided stars

As Staller cannot win the S-game on T = S(n1, . . . , nℓ) if T contains exactly one odd branch, we

concentrate on the case when there exist at least two odd branches.

Theorem 4.1 If S(n1, . . . , nℓ) is a subdivided star and n1, n2 are the two smallest odd numbers among

n1, . . . , nℓ, then

γ′
SMB(S(n1, . . . , nℓ)) = ⌈log2(n1 + n2 + 1)⌉.

Proof: If ℓ = 2, the subdivided star is an odd path of order n1 + n2 + 1 and, by Theorem 2.8,

γ′
SMB(S(n1, n2)) = ⌈log2(n1 + n2 + 1)⌉ is true. From now on we assume ℓ ≥ 3.

Let T = S(n1, . . . , nℓ) and k = ⌈log2(n1 + n2 + 1)⌉. By Theorem 3.5, it suffices to show that T
contains a substructure from Sk and contains no substructure from ∪k−1

i=1 Si. The first part of the statement

clearly holds because the paths Pn1
and Pn2

together with the central vertex x form a subgraph Pn1+n2+1

in T . By Observation 3.3(v), Pn1+n2+1 ∈ Sk. Further, by Observation 3.3(i), since n1 and n2 are odd

numbers, x does not belong to X(Pn1+n2+1). We infer that Pn1+n2+1 is a substructure in T .

Assume that T contains a substructure S ∈ Si. By Observation 3.3(i) and (ii), S is a tree where

X(S) corresponds to the partite class containing all leaves of S, while all vertices in the partite class

V (S) \X(S) are of degree 2 in S. As at least two leaves of T together with the path between them are

present in S, the central vertex x also belongs to S.

• Suppose that x ∈ X(S). Then NT [x] ⊆ V (S) and hence S ∼= T . However, as some odd numbers

are present among n1, . . . , nℓ, Observation 3.3(i) implies x /∈ X(S) that contradicts the supposition

x ∈ S.

• Suppose that x /∈ X(S). By Observation 3.3(i) and (ii), degS(x) = 2 and x is at an odd distance

from each leaf of S. We infer that the substructure S is a path induced by {x}∪ V (Pna
)∪V (Pnb

),
where na and nb are odd integers. By our condition, na+nb+1 ≥ n1+n2+1 and, consequently,

i ≥ k whenever S ∈ Si holds.
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By Theorem 3.5 we conclude that γ′
SMB(S(n1, . . . , nℓ)) = k = ⌈log2(n1 + n2 + 1)⌉. ✷

4.2 All-even subdivided stars

Suppose that T = S(n1, n2, n3) is an all-even subdivided star and n1 ≤ n2 ≤ n3. We say that T is

reducible, if ⌈log2(n3)⌉ = ⌈log2(n1 + n2 + n3 + 1)⌉. Then we define the reduced graph of T as

T ′ = S(n1, n2, n3 − 2⌈log2(n1+n2+n3+1)⌉−1).

By the condition on n3 and as ⌈log2(n1 + n2 + n3 + 1)⌉ ≥ 3, T ′ is also an all-even subdivided star with

three branches. We say that T is non-reducible, if for every i ∈ [3],

⌈log2(ni)⌉ < ⌈log2(n1 + n2 + n3 + 1)⌉ . (1)

Using this terminology, we give a recursive definition for two types of subdivided stars.

Definition 4.2 Let T = S(n1, n2, n3) be a subdivided star such that n1, n2, n3 are positive even integers

and n1 ≤ n2 ≤ n3 holds. Let us set n = n1 + n2 + n3 + 1.

(i) If T is non-reducible, then

– T ∈ T1, if ⌈log2(n1 + n2 + 1)⌉ = ⌈log2 n⌉;

– T ∈ T0, if ⌈log2(n1 + n2 + 1)⌉ < ⌈log2 n⌉.

(ii) If T is reducible and T ′ is its reduced graph, then

– T ∈ T1, if T ′ ∈ T1 and ⌈log2(n− 2⌈log2 n⌉−2)⌉ = ⌈log2 n⌉;

– otherwise T ∈ T0.

By (1) and Definition 4.2(i), T is non-reducible and T ∈ T1 if and only if

⌈log2 n3⌉ < ⌈log2(n1 + n2 + 1)⌉ = ⌈log2(n)⌉ . (2)

Similarly, T is non-reducible and T ∈ T0 if and only if

max{⌈log2 n3⌉, ⌈log2(n1 + n2 + 1)⌉} < ⌈log2(n)⌉ . (3)

Theorem 4.3 If T = S(n1, n2, n3) is a subdivided star of order n = n1 + n2 + n3 + 1, and n1, n2, n3

are positive even integers, then

γ′
SMB(T ) =

{

⌈log2 n⌉; T ∈ T0,

⌈log2 n⌉+ 1; T ∈ T1.
(4)

Proof: We use the notation given in the theorem and assume without loss of generality that n1 ≤ n2 ≤ n3

holds. Let x be the center of T while P 1, P 2, P 3 denote the branches of order n1, n2, n3, respectively.

First we show that T ∈ S. As n is odd, there is no perfect matching in T and Theorem 2.6(ii) implies

γ′
SMB(T ) < ∞. Thus, by Theorem 3.5, there exists a substructure S ∈ S in T . By Observation 3.3(i), S
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is a tree and the set X(S) contains all leaves of S and the vertices being at an even distance from a leaf.

By Observation 3.3(iii), every leaf of S is a leaf in T and therefore, x ∈ X(S). Hence, NS(x) = NT (x)
and all leaves of T are present in S. Consequently, S = T and T ∈ S hold.

Second, we prove that γ′
SMB(T ) equals either ⌈log2 n⌉ or ⌈log2 n⌉+1. As T ∈ S, Observation 3.3(iv)

and Theorem 3.5 immediately give n ≤ 2γ
′

SMB
(T ) − 1. This proves ⌈log2 n⌉ ≤ γ′

SMB(T ). For the upper

bound, we consider the cut vertex t3 that is the neighbor of x from the branch P 3. The graph T − t3
contains two components one of which is a path of order n3 − 1 and the other one is a path of order

n1 + n2 + 1. Recall that if m is a positive even integer, then ⌈logm⌉ = ⌊log(m − 1)⌋ + 1. Using this

fact, Proposition 2.5(iii), Theorem 2.8, and inequalities n3 < n and n1 + n2 + 1 < n, we can estimate

γ′
SMB(T ) as follows:

γ′
SMB(T ) ≤ max{γ′

SMB(Pn3−1), γ
′
SMB(Pn1+n2+1)}+ 1

= max{⌊log2(n3 − 1)⌋+ 1, ⌊log2(n1 + n2 + 1)⌋+ 1}+ 1

= max{⌈log2 n3⌉, ⌈log2(n1 + n2 + 1)⌉}+ 1

≤ ⌈log2 n⌉+ 1 .

We have just proved that γ′
SMB(T ) ∈ {⌈log2 n⌉, ⌈log2 n⌉+1}. To decide which of the two possibilities

holds and to prove the theorem, we first consider all non-reducible graphs and then proceed by induction

on the number of vertices when dealing with reducible graphs. Let k = ⌈log2 n⌉.

Case 1: T is a non-reducible graph.

By the definition of non-reducibility, ⌈log2(n3)⌉ < k. We consider two cases.

Case 1.1: T is non-reducible and T ∈ T0.

By (3),

M = max{⌈log2 n3⌉, ⌈log2(n1 + n2 + 1)⌉} ≤ k − 1.

Considering the cut vertex t3 ∈ NT (x) ∩ V (P 3) again, Proposition 2.5(iii) and Theorem 2.8 imply

γ′
SMB(T ) ≤ M + 1 ≤ k for this case. Together with the lower bound k ≤ γ′

SMB(T ), this proves

γ′
SMB(T ) = k for every non-reducible T from T0.

Case 1.2: T is non-reducible and T ∈ T1.

Since Staller can win the S-game on T , there is an optimal first move s1 for her. Note first that s1 6= x.

Indeed, if s1 = x, then Dominator plays any neighbor of x and the undominated vertices can be covered

by a matching, hence Dominator will win the game according to Lemma 2.7. We may claim the same if

all components of T − s1 are even. To see it, observe that Dominator can always play a neighbor of s1
such that the undominated vertices can be covered by a matching. We have thus demonstrated that s1 6= x
and that not all components of T − s1 are even.

If s1 is fromP 3, let T 1 and T 2 be the two components of T−s1 such that V (T 1) ⊆ V (P 3). Dominator

may play the neighbor of s1 that belongs to T 1. Then, by Lemma 3.1, Staller’s optimal response is a vertex

from T 2 and, under optimal strategies, the game continues on T 2 and finishes with the (γ′
SMB(T

2) + 1)st

move of Staller. As T 2 is an all-even subdivided star or an odd path, T 2 ∈ S. Then, by (2), Observa-

tion 3.3(iv), and by our condition, we get

γ′
SMB(T

2) + 1 ≥ ⌈log2 |V (T 2)|⌉+ 1 ≥ ⌈log2(n1 + n2 + 1)⌉+ 1 = k + 1.
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This proves that after Staller’s move s1 ∈ V (P 3), Dominator has a strategy which ensures that Staller

cannot win before her (k + 1)st move. The proof is similar, if s1 is from P 1 or P 2. We conclude

γ′
SMB(T ) ≥ k + 1, which in turn results in the desired equality γ′

SMB(T ) = k + 1.

Case 2: T is a reducible graph.

The reduced graph of T is T ′ = S(n1, n2, n3 − 2k−1) and n′ = |V (T ′)| = n− 2k−1 ≤ 2k−1. From now

on, we proceed by induction.

Case 2.1: T is reducible and T ∈ T0.

Definition 4.2(ii) allows two possibilities for T belonging to T0. We first show that γ′
SMB(T

′) ≤ k − 1
holds in both cases.

• If T ∈ T0 and T ′ ∈ T0, the induction hypothesis implies γ′
SMB(T

′) = ⌈log2 n
′⌉ ≤ k − 1.

• If T ∈ T0 and T ′ ∈ T1, then also ⌈log2(n− 2k−2)⌉ ≤ ⌈log2 n⌉− 1 = k− 1 must hold which gives

n− 2k−2 ≤ 2k−1. This in turn implies

n′ = n− 2k−1 ≤ 2k−2.

From this inequality, we may infer ⌈log2 n
′⌉+ 1 ≤ k − 1 and conclude γ′

SMB(T
′) ≤ k − 1 again.

Let w be the (unique) vertex of P 3 such that T − w consists of a component isomorphic to T ′ and a path

component of order 2k−1 − 1. We have already seen that γ′
SMB(T

′) ≤ k − 1 and the path component

clearly satisfies γ′
SMB = k − 1. Applying Proposition 2.5(iii), we get

γ′
SMB(T ) ≤ max{γ′

SMB(T
′), k − 1}+ 1 ≤ (k − 1) + 1 = k.

Since γ′
SMB(T ) ≥ k also holds, we conclude γ′

SMB(T ) = k as stated in the theorem.

Case 2.2: T is reducible and T ∈ T1.

We are going to prove that γ′
SMB(T ) = k+1. As γ′

SMB(T ) ≤ k+1 always holds, it suffices to show that

there is no optimal first move s1 for Staller that allows her to win within k (or less) moves.

• If T − s1 contains no component of odd order, then Staller cannot win in the continuation of the

game.

• If Staller plays a vertex s1 ∈ V (P 1) ∪ V (P 2), then Dominator responds by choosing the neighbor

of s1 which is not incident to the (s1, x)-path. Then, by Lemma 3.1, Staller’s optimal strategy is

playing on the componentT 2 of T−s1 which contains x. As T 2 ∈ S and |V (T 2)| ≥ n3+n1+1 ≥
2k−1 + 3, Observation 3.3(iv) implies γ′

SMB(T
2) ≥ k. This shows that if Staller chooses her first

vertex from P 1 or P 2, she cannot win with k moves.

• If s1 ∈ V (P 3) such that T − s1 contains a path component of order at least 2k−1 + 1, then we can

handle it as in the previous paragraph.

• Let w be the vertex from P 3 such that T − w contains a component isomorphic to T ′ and a path

of order 2k−1 − 1. If s1 = w, Dominator may reply by playing the neighbor of w from the path

and then, by Lemma 3.1, Staller’s optimal strategy is to play (optimally) on T ′ in the continuation.
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Hence, she needs at least γ′
SMB(T

′) + 1 moves to win the game. By Definition 4.2, T ∈ T1 only if

T ′ ∈ T1 and n− 2k−2 > 2k−1. It follows that

n′ = n− 2k−1 > 2k−2 ,

and hence ⌈log2 n
′⌉ ≥ k − 1. By hypothesis, T ′ ∈ T1 implies γ′

SMB(T
′) = ⌈log2 n

′⌉ + 1 and

therefore, we have γ′
SMB(T

′) ≥ k by the above inequality. We may conclude again that Staller

needs at least k + 1 moves to win the game.

• The last case is when s1 is a vertex from P 3 the removal of which results in a path component of

order 2k−1−1−2a (for a positive integer a) and an all-even subdivided star T ′′. In this case, again,

Dominator can play the neighbor of s1 from the path and Staller needs at least further γ′
SMB(T

′′)
moves to win. Observe that T ′ can be obtained from T ′′ by iteratively (a times) removing weak

support vertices of degree 2 and the attached leaves. It follows then from Proposition 2.5(i) that

γ′
SMB(T

′) ≤ γ′
SMB(T

′′). We conclude that Staller needs at least γ′
SMB(T

′′)+1 ≥ γ′
SMB(T

′)+1 ≥
k + 1 moves to win.

The discussed cases show that γ′
SMB(T ) ≥ k + 1, if T is reducible and contained in T1. It settles the last

inductive case. ✷

Corollary 4.4 If k ≥ 1 is an integer, then

γ′
SMB(S(2k, 2k, 2k)) = ⌈log2(4k + 1)⌉+ 1 .

Proof: Let k ≥ 1 and set T = S(2k, 2k, 2k). Then T is non-reducible because ⌈log2(2k)⌉ < ⌈log2(6k+
1)⌉. Assume first that T ∈ T1. Then, by definition, ⌈log2(4k + 1)⌉ = ⌈log2(6k + 1)⌉. Moreover, by

Theorem 4.3,

γ′
SMB(T ) = ⌈log2(6k + 1)⌉+ 1 = ⌈log2(4k + 1)⌉+ 1 .

Assume second that T ∈ T0. By definition, ⌈log2(4k + 1)⌉ < ⌈log2(6k + 1)⌉. Since | log2(6k + 1) −
log2(4k+1)| < 1, it follows that ⌈log2(6k+1)⌉−⌈log2(4k+1)⌉ ≤ 1. Consequently, ⌈log2(4k+1)⌉+1 =
⌈log2(6k + 1)⌉. Applying Theorem 4.3 again, we get that also in this case

γ′
SMB(T ) = ⌈log2(6k + 1)⌉ = ⌈log2(4k + 1)⌉+ 1 ,

and we are done. ✷

The missing case for subdivided stars is the determination of γ′
SMB(S(n1, . . . , nℓ)), where ℓ ≥ 4 and

each ni is even. We leave it as an open problem, but provide a sharp upper bound on the parameter.

Open Problem 4.5 Determine the value of γ′
SMB(S(n1, . . . , nℓ)) for the cases when ℓ ≥ 4 and ni is a

positive even number for each i ∈ [ℓ].

Proposition 4.6 Let T = S(n1, . . . , nℓ) be a subdivided star such that ℓ ≥ 3, n1 ≥ · · · ≥ nℓ, and ni is

a positive even integer for each i ∈ [ℓ]. Then,

γ′
SMB(T ) ≤ max({i+ ⌈log2 ni⌉ : i ∈ [ℓ− 2]} ∪ {ℓ− 2 + ⌈log2(nℓ−1 + nℓ + 1)⌉}),

and the bound is sharp for every ℓ ≥ 3.
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Proof: Let x be the center of T , and P 1, . . . , P ℓ be the branches of order n1, . . . , nℓ respectively. The

neighbor of x from P i will be denoted by ti for i ∈ [ℓ].
To prove the upper bound, we describe a strategy for Staller. In her first move, Staller plays t1. We

have two cases.

• If Dominator replies with a move d1 from the component of T − t1 which contains x, Staller

continues the game by playing (optimally) on the path P 1 − t1. After the moves t1, d1, the Maker-

Breaker game continues on the hypergraphH′ = (HT − t1) | d1 with Staller’s (Maker’s) move. As

H′′ = HP 1−t1 is a subhypergraph in H′, Proposition 2.2(i) implies

wM
M (H′) ≤ wM

M (H′′) = γ′
SMB(P

1 − t1) = ⌈log2 n1⌉.

In this case, Staller can win the S-game on T in 1 + ⌈log2 n1⌉ moves.

• If Dominator replies with a move d1 ∈ V (P 1 − t1), then Staller plays t2 as her next move.

In general, Staller’s strategy is the following. For i ∈ [ℓ − 2], if Staller plays ti ∈ NT (x) ∩ V (P i)
as her ith move and Dominator responds by playing a vertex di /∈ V (P i), then Staller continues playing

(optimally) on P i − ti. It allows her to win the game in i + ⌈log2 ni⌉ moves. If Dominator responds

by choosing a vertex di ∈ V (P i) and i ≤ ℓ − 3, Staller’s next move is ti+1. If Dominator’s reply is

di ∈ V (P i) and i = ℓ− 2, Staller plays on the path P ′ induced by V (P ℓ−1)∪ {x} ∪ V (P ℓ) and can win

the game in ℓ− 2 + ⌈log2(nℓ−1 + nℓ + 1)⌉ moves.

Consequently, either there exists an i ∈ [ℓ − 2] such that Staller plays ti and Dominator replies with

di /∈ V (P i) or Staller, after playing t1, . . . , tℓ−2, can win by playing on P ′. In the former case, Staller

plays at most i+⌈log2 ni⌉ vertices; in the latter case she can win in at most ℓ−2+⌈log2(nℓ−1+nℓ+1)⌉
moves. It verifies the upper bound in the statement.

To prove the sharpness, we define the following infinite class of all-even subdivided stars. If ℓ ≥ 3
and p ≥ 2 are two integers, let Z(ℓ, p) be the all-even subdivided star S(n1, . . . nℓ) where nℓ = 2,

nℓ−1 = 2p − 2, and

ni =

ℓ
∑

j=i+1

nj = 2 ℓ+p−i−2 for every i ∈ [ℓ− 2].

Note that Z(ℓ, p) contains n = 2ℓ+p−2 + 1 vertices. As it is an all-even subdivided star, Z(ℓ, p) ∈ S. By

Observation 3.3(iv),

γ′
SMB(Z(ℓ, p)) ≥ ⌈log2 n⌉ = ℓ+ p− 1.

By determining the upper bound from the current proposition, we find that

i+ ⌈log2 ni⌉ = i+ (ℓ + p− i− 2) = ℓ+ p− 2

for all i ∈ [ℓ − 2], and

ℓ− 2 + ⌈log2(nℓ−1 + nℓ + 1)⌉ = ℓ− 2 + p+ 1 = ℓ+ p− 1 .

Thus the upper bound in the proposition gives γ′
SMB(Z(ℓ, p)) ≤ ℓ + p− 1. As the upper bound matches

the lower bound, the sharpness is true. ✷
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5 Caterpillars

A caterpillar is a tree T on at least three vertices in which a single path is incident to (or contains) every

edge. There is more than one path with this property, but we select the shortest one and call it the spine of

the caterpillar, see West (1996). The vertices of the spine will be denoted by v1, . . . , vℓ according to their

natural order. Before stating the main result of the section, some preparation is needed.

Let T be a caterpillar. Then we set

Po(T ) = {P : P is a maximal path in T and |V (P )| is odd} ,

where maximal is meant maximal w.r.t. inclusion. We say that a path P = u1u2 . . . uk in T is clean if

degT (ui) = 2 for 3 ≤ i ≤ k − 2. Let further

Pco(T ) = {P : P ∈ Po(T ) and P is clean} .

We refer to the members of Pco(T ) as Pco-paths. Note that each such path contains at most two support

vertices from the spine of T . If P is a collection of paths of T , then the smallest carnality of a set

of vertices U such that each path from P has a vertex in U is denoted by tp(P). If T is a caterpillar

containing at least one clean path, then let p(T ) be the minimum order of such a path. If tp(Pco(T )) ≥ 2,

then let p∗(T ) be the smallest integer s such that not all clean paths of order at most s share a vertex, that

is,

p∗(T ) = min{s : tp({P : P ∈ Pco(T ), |V (P )| ≤ s}) ≥ 2} .

For the illustration of the above concepts and notation see Fig. 2. For the caterpillar T from the figure

we have

Po(T ) = {u1v1v2v3u3, u1v1v2v3u
′
3, u3v3u

′
3, u4v4v5v6v7v8u8} .

Clearly, p(T ) = 3. Next, tp(Pco(T )) = 2 because each path from Pco(T ) has a vertex in {v3, v4} and

there is no such set with a single vertex. Finally, p∗(T ) = 7 because each clean path of order smaller than

7 contains the vertex v3.

u1 u3 u′
3 u4 u8

v1 v2 v3 v4 v5 v6 v7 v8

Fig. 2: Caterpillar T .
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Theorem 5.1 If T is a caterpillar, then

γ′
SMB(T ) =

{

∞; Pco(T ) = ∅,

⌈log2 p(T )⌉; otherwise.

γSMB(T ) =

{

∞; tp(Pco(T )) ≤ 1,

⌈log2 p
∗(T )⌉; otherwise.

Proof: Let T be a caterpillar and set p = p(T ) and p∗ = p∗(T ).
Suppose first that Pco(T ) = ∅, which also implies that there are no strong support vertices in T . We

can construct a perfect matching in T as follows. First, delete the support vertices of T from the subgraph

induced by the spine of T . As Pco(T ) = ∅, each component of the obtained linear forest T− is an even

path. Therefore, T− admits a perfect matching. For the remaining vertices of T , we may match every leaf

with its support vertex. As there are no strong support vertices in T we obtain a perfect matching in T .

Therefore, we may conclude by Theorem 2.6 that γ′
SMB(T ) = γSMB(T ) = ∞. In the rest of the proof,

let Pco(T ) 6= ∅.

We now prove the statement for γ′
SMB(T ). Since P1 is not a caterpillar, γ′

SMB(T ) ≥ 2 holds. Let

k = ⌈log2 p⌉. By Theorem 3.5, γ′
SMB(T ) = 2 if and only if T contains a strong support vertex, that is,

p = 3. Hence, our statement holds for p = 3. From now on, we may suppose that p ≥ 5 which means

that there is no strong support vertex in T .

Assume that Pp : xvi . . . vi+p−3y is a shortest path in Pco(T ). It follows from Theorem 3.5 and

Observation 3.3(v) that Pp ∈ Sk is a substructure in T , as the vertices vi and vi+p−3, which may have

higher degree in T than in Pp, do not belong to X(Pp). By Theorem 3.5, we may infer γ′
SMB(T ) ≤ k.

Now, suppose for a contradiction that T contains a substructure S ∈ Sℓ so that ℓ ≤ k − 1. Observe

first that S contains no vertex u with degS(u) ≥ 3. Indeed, as T is a caterpillar, such a vertex u would

be a support vertex in both T and S by Observation 3.3(iii). Then, degS(u) > 2 contradicts Observa-

tion 3.3(ii). Therefore, S is an odd path. We next show that S cannot be a clean path in T . Indeed,

S ∈ Pco(T ) implies |V (S)| ≥ p and ℓ ≥ k that is a contradiction. Therefore, S : avq . . . vq+rb is an

odd path between the leaves a and b of T and, for an integer t ∈ [r − 1], the vertex vq+t is adjacent

to a leaf c in T . By choosing the smallest positive t with this property, we may further assume that

S′ : avq . . . vq+tc is a clean path in T . If t is odd then, by Observation 3.3(i), vq+t belongs to X(S) that

contradicts degS(vq+t) = 2 < degT (vq+t) = 3. If t is even, then S′ is an odd clean path and hence,

|V (S′)| = t + 3 ≥ nmin(Pco(T )) = p that implies |V (S)| ≥ p + 2 and contradicts ℓ ≤ k − 1. This

contradiction, together with Theorem 3.5, imply γ′
SMB(T ) ≥ k and in turn, γ′

SMB(T ) = k follows.

From now on, suppose that a D-game is played on T and Pco(T ) 6= ∅. If tp(Pco(T )) = 1, a vertex

contained in all Pco-paths of T can be chosen as a support vertex vi. (Indeed, a set of intersecting clean

paths must have a common endvertex and a common support vertex.) Let U be the set of leaves adjacent

to vi. If Dominator plays vi as his first move, we may construct a matching satisfying the conditions of

Lemma 2.7, whereX = {vi} and Y = ∅. First, delete the support vertices of T from the subgraph induced

by the spine of T to obtain the linear forest T−. Since every Pco-path is incident to vi, each component

of T− that contains neither vi−1 nor vi+1 is an even path and admits a perfect matching. If there is an odd

path component which contains vi−1, then vi−1 is the end vertex, and we can take a matching that covers

all vertices of the component except vi−1. The situation is similar if an odd path contains vi+1. To finish
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the construction of the matching M , we add every edge which is incident to a leaf except those incident

to vi and U . By the condition tp(Pco(T )) = 1, the caterpillar contains no strong support vertex except

(possibly) vi. This shows that M is a matching in T − vi. Concerning the set of vertices covered by M ,

we observe

V (T ) \ V (M) ⊆ NT [vi] ,

and conclude by Lemma 2.7 that Staller cannot win the D-game if Dominator plays vi as his first move.

Thus, γSMB(T ) = ∞.

For the rest of the proof we assume tp(Pco(T )) ≥ 2. By the definition of p∗, after Dominator’s first

move d1, there remains an unplayed Pco-path Pj of order j ≤ p∗. Clearly, Pj ∈ Si with i ≤ ⌈log2 p
∗⌉.

By Proposition 2.1, the game continues as a Maker-start game on HT − d1. As d1 might be adjacent

to a support vertex of Pj but no vertex from X(Pj), the hypergraph HT − d1 contains a subhypergraph

H′ = H
−(V (Pj)\X(Pj))
Pj

. By Proposition 3.7, H′ ∈ Fi implies wM
M (HT − d1) ≤ i. Assuming that d1 is

an optimal first move of Dominator, we conclude

γSMB(T ) = wM
M (HT − d1) ≤ i ≤ ⌈log2 p

∗⌉.

We now prove γSMB(T ) ≥ ⌈log2 p
∗⌉ by describing a strategy of Dominator which ensures that Staller

cannot win by playing less than ⌈log2 p
∗⌉ vertices. Let v1 . . . vℓ be the spine of the caterpillar. According

to the definition of p∗, there exists a support vertex vq in T such that the smallest order of an odd clean path

not covered by vq is p∗. Let vq be the first move of Dominator. By Proposition 2.1, the game continues

as a Maker-start game on HT − vq and γSMB(T ) ≥ wM
M (HT − vq). We will transform HT − vq into a

hypergraph H′ such that wM
M (H′) ≤ wM

M (HT − vq). If q ≥ 2, then let P 1 be the clean maximal path in

T which contains both vq−1 and vq .

(a) If P 1 is an even path, we obtain H′ from HT − vq by adding the new winning set (i.e., the edge)

NT [vq−1] \ {vq}. Then, this component of H′ corresponds to the closed neighborhood hypergraph

of the caterpillar T1 that is induced by the vertices v1, . . . , vq−1 and the adjacent leaves in T . If

q = 2, then T1 is a star K1,m with m ≥ 1.

(b) If P 1 is an odd path, we obtain H′ from HT − vq by replacing the winning set NT [vq−2] with the

smaller hyperedge NT [vq−2] \ {vq−1}. This component of H′ therefore corresponds to the closed

neighborhood hypergraph of the caterpillar T1 that is induced by the vertices v1, . . . , vq−2 and the

adjacent leaves in T . If P 1 is odd, then q = 2 is not possible. If q = 3, then T1 is a star which

contains exactly one vertex, namely v1, from the spine of T .

If q ≤ ℓ − 1, we also consider a clean maximal path P 2 in T that contains vq and vq+1. Similarly to

the changes described above for P 1, if |V (P 2)| is even, we add the new winning set NT [vq+1] \ {vq};

if |V (P 2)| is odd, we replace NT [vq+2] with NT [vq+2] \ {vq+1} when construct H′. The corresponding

component of H′ is the closed neighborhood hypergraph of a caterpillar T2. In the first case, T2 is the

subgraph of T induced by vq+1, . . . , vℓ and the adjacent leaves, while in the second case T2 is induced

by vq+2, . . . , vℓ and the adjacent leaves. Note that T1 is considered empty if q = 1, while T2 is empty if

q = ℓ. In these cases we respectively set γ′
SMB(T1) = ∞ and γ′

SMB(T2) = ∞.

Observe that T1 and T2 still contain all clean maximal paths of T that do not contain vq . In particular,

a Pco-path of order p∗ is present in the disjoint union T ′ = T1 ∪ T2. In both cases (a) and (b), only clean

maximal paths of even order were added as new ones. Note that, if |V (P i)| ≤ 5, no new clean maximal
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path appears in Ti, for i ∈ [2]. Using Propositions 2.2 and 2.4, and the formula already proved for the

S-game on a caterpillar, we obtain the following relation:

γSMB(T ) ≥ wM
M (HT − vq) ≥ wM

M (H′) = min{γ′
SMB(T1), γ

′
SMB(T2)} = ⌈log2 p

∗⌉.

This completes the proof for the second formula. ✷
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