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Abstract: Urban areas can significantly alter the quality status of aquifers if appropriate strategies
to prevent and detect groundwater contamination are not implemented in time. The prevention of
groundwater contamination should be a priority due to its potential long-term impact on the environ-
ment and the high cost of remediation. For effective and sustainable groundwater management, it
is crucial to proactively monitor a wide range of compounds to prevent their spread, progression
and increasing concentrations. This study is one of the few to analyse the trends of various urban
groundwater contaminants (nitrate, sulphate, hexavalent chromium, pesticides, PCE and TCE) from
a groundwater management perspective. Characteristic trends are assessed using linear regression
and the Mann–Kendall method, while significant changes in trends are determined using the Darken
and Pettitt tests. The time span of the analysed trends covers the transition period before and after
the implementation of the Water Framework Directive (2000/60/EC) and the Groundwater Directive
(2000/60/EC). This study confirms the effectiveness of enforcement measures to protect groundwater
quality, as evidenced by several statistically significant decreasing trends. On the other hand, this
study emphasises the importance of intervention-targeted sampling campaigns and the reporting of
raw analytical values according to the ISO 11843 series of standards. This approach is essential to de-
tect upward trends in emerging contaminants at an early stage and prevent them from reaching levels
that could negatively impact the economy or even jeopardise the safety of drinking water supplies.

Keywords: groundwater contamination; contaminant trends; groundwater management; urban
aquifer; Ljubljansko polje

1. Introduction

Located beneath the city of Ljubljana, the alluvial aquifer of Ljubljansko polje is an
important source of drinking water. The groundwater currently meets quality standards
and is fed into the drinking water supply system with minimal to no treatment [1]. This is
certainly appreciated elsewhere in densely populated regions. Nevertheless, the highly ur-
banised catchment area poses a major threat to groundwater quality caused by agricultural,
industrial and wastewater-related environmental pressures [2], so the pumping regime and
recharge zone must be strictly controlled to prevent the potential inflow of contaminated
groundwater into the supply system.

The city has a long-standing and sophisticated surveillance and operational groundwa-
ter monitoring system, which is managed by three institutions. Although each institution
collects its data independently, considerable effort has been made in recent decades to
establish a protocol for consolidating this data into a common standardised database. This
has provided valuable insight into the spatial and temporal trends in groundwater quality
and offered an accurate and up-to-date understanding of changing conditions in the region
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for the period between 1992 and 2019. This time span covers the transition period before
and after the implementation of the Water Framework Directive (WFD, 2000/60/EC) and
the Groundwater Directive (GWD, 2000/60/EC). One of the main environmental objectives
of the WFD and the GWD is to achieve the good status of groundwater bodies by the
end of 2015, with a conditional extension to 2021 or 2027. Both directives also require
that any significant and sustained upward trend in pollutant concentrations be identified
and reversed.

Although this article focuses on data from a specific aquifer, it stands out as a rare
overview of a pilot case that provides valuable insights into several long-term pollution
trends in urban groundwater from a groundwater management perspective. The case serves
as an exemplary illustration that highlights both effective practises and potential challenges
in managing groundwater pollution in comparable aquifers. This paper also emphasises
the crucial role of advanced analytical methods in the early detection of contamination.
As the development and progress of water management and protection continue, water
quality standards should no longer be the objectives of water management but rather
safety thresholds for consumers and ecosystems. The contemporary objective for urban
groundwater should be a continuous restoration of quality and protection from emerging
contaminants. Any contamination should be kept in a downward trend, and any upward
trend of new emerging synthetic organic compounds should be detected and stopped at
much lower concentrations than the actual water quality standard, in the range between
the limit of detection (LOD) and the limit of quantification (LOQ). The data set presented
in this paper considers all available data, regardless of their different sources and time
periods, and captures the transition from the era of the “nitrate and atrazine dispersed
pollution” paradigm [3–5] to the contemporary challenges posed by “emerging organic
synthetic pollutants and multipoint pollution sources” [6–8].

Background and Perspective

It is predicted that by 2050, about 84% of the European population will live in cities
and urban areas [9], where groundwater is more at risk due to high population density
and intensive land use. Urban hydrogeology has been the subject of several important
review articles addressing topical issues from different perspectives [10–14]. The main
challenges that urbanisation poses to groundwater are fluctuations in groundwater levels
due to changes in land and water use and the deterioration of groundwater quality due to
human activities in urban areas, both of which may be exacerbated by the effects of climate
change [15–19].

Groundwater recharge in urban areas may decrease as surface sealing impedes natural
infiltration [20,21], although other studies suggest that groundwater recharge rates may
increase due to reduced evapotranspiration and leaky utility lines, storm sewer systems
and stormwater catchments [22,23]. The net effect is difficult to predict as each city has
different settings and climatic conditions [24]. Increasing water demand combined with
inappropriate groundwater management, such as excessive groundwater extraction, can
lead to groundwater depletion, land subsidence, saltwater intrusion in coastal regions and
numerous other problems [25–27].

According to the EEA [28], groundwater abstraction accounts for less than a quarter
of total water consumption in the EU-27 Member States, but it represents 65% of total
water abstraction for public water supply. The relative share of groundwater in total
water abstraction increased by 4% between 2000 and 2019. While poor quantitative status
was reported for 9% of the total groundwater body area in the EU-27, a much larger
proportion, 24% of the groundwater body area, had poor chemical status [28]. Agriculture
remains the main source of groundwater contamination, affecting about 19% of the total
groundwater body area in the EU-27, followed by abandoned industrial and contaminated
sites (5%) and mining activities (3%). Burri et al. [10] provided a thorough overview of
potentially contaminating compounds in groundwater based on three major land use
categories, namely agriculture, urban areas and industry, which can be further subdivided
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in various ways. The study [10] points to the fact that the same compounds can originate
from multiple sources and that categories of land use rarely exist in isolation, but often
overlap and interact with each other.

Nitrate, for example, remains the main contributor to the poor chemical status of
groundwater bodies in the EU-27 region, affecting more than 18% of groundwater bodies
by area [29]. It mainly originates from agricultural runoff due to the excessive use of
mineral and organic nitrogen fertilisers and animal manure in rural areas [30–35]. However,
in urban areas, losses from sewerage systems, industrial wastewater and leachate from
landfills can also contribute significantly to contamination [4,10,36,37]. Pesticides, on
the other hand, have a negative impact on around 6.5% of groundwater bodies in the
EU-27 region [29]. Despite the banning or restriction of some pesticides, which has led
to reduced occurrence in groundwater [29], many pesticide-related active substances,
together with their by-products such as metabolites, degradation products and reaction
products, are still relevant [38–42]. Some unknown degradation products, which are not yet
well characterised, could potentially be more critical for the environment than the parent
compounds [43,44].

In addition to compounds from agriculture and salt intrusion, e.g., chloride [45–47],
some industrial chemicals are frequently detected [29], such as volatile organic com-
pounds [48–52] and heavy metals such as arsenic, nickel and lead [53–56]. The main
anthropogenic sources of heavy metals are found in various industrial sectors, e.g., current
and former mining activities, metal plating, foundries, smelters, battery manufacture, tan-
neries, petroleum refining, paint manufacture, pigment manufacture, and the printing and
photographic industries [57,58].

In recent decades, emerging organic contaminants (EOCs) from pharmaceutical residues,
personal care products, pesticides, veterinary drugs, food additives, nanomaterials, indus-
try and other sources [59–61] have been of particular concern in urban areas [62]. Numerous
EOCs are frequently detected at high concentrations across Europe [63] but are not yet
formally regulated by European directives, despite their potentially harmful effects on the
environment and human health [64,65]. Among the emerging pollutants, microplastics
have recently gained attention due to their ubiquity and persistence in the environment,
especially as their occurrence, fate and transport processes in groundwater are not yet
fully understood [66–69]. The main obstacle to achieving comparable results in existing
reports on the significance and distribution of microplastics and other emerging pollutants
in natural waters (e.g., perfluorinated compounds, benzotriazoles and certain widely used
pharmaceuticals) lies primarily in the challenges of sampling and analytical methods.

While most European countries have been monitoring groundwater quantity since the
turn of the 20th century, the monitoring of groundwater quality was uncommon before the
1970s and 80s [70,71]. Long-term monitoring of groundwater quality is valuable for several
reasons. These include early detection of contamination, understanding trends and patterns,
determining potential risks and evaluating the effectiveness of past management measures.
The identification of upward trends is also required in Europe by the Water Framework
Directive (2000/60/EC) and the Groundwater Directive (2000/60/EC). Common methods
for assessing trends in groundwater quality include traditional statistical approaches,
such as parametric methods like linear regression and polynomial regression, and non-
parametric methods like the Mann–Kendall test [35,72–74]. However, it is important to
note that changes in sampling and laboratory practices can affect the time series of water
quality data [73,75].

To restore, protect and preserve urban groundwater resources for future generations,
effective and sustainable groundwater management is essential. This is a complex task that
plays an important role in maintaining and strengthening urban resilience [12]. It requires
the cooperation of science and politics with representatives from industry, agriculture and
non-governmental organisations [76,77]. The involvement of the population often only
increases once a crisis has already occurred. Therefore, development goals, measures and
activities should be discussed by a regional implementation group and be based on a risk
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assessment [78]. Continuous efforts to raise awareness of groundwater vulnerability are
necessary. Preventing the depletion and quality deterioration of groundwater resources
should become a shared priority. This is crucial to mitigating the economic impact of the
significant costs required to manage and remediate these resources [79].

2. Site-Specific Conditions

The Ljubljansko polje aquifer is located in the central part of Slovenia (Figure 1). It
extends over an area of about 71 km2 in the Ljubljanska Kotlina tectonic depression, which
was formed by tectonic subsidence in the early Pleistocene [80]. The bedrock consists of
impermeable Permian and Carboniferous clay shale, sandstone and siltstone [81–83]. The
basin is filled with Pleistocene and Holocene alluvial deposits of the Sava River, which are
locally more than 100 m thick and consist mainly of carbonate gravel and sand beds with
layers of conglomerate [83–85]. In the western part of the aquifer, there are intermediate
layers of clay and clayey gravel above the main aquifer, which reach a thickness of up to
10 metres and serve as a barrier that retains the perched groundwater [83,86].
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Figure 1. Study area of Ljubljansko polje aquifer (Ljubljana, Slovenia) with groundwater contours
from the regional model of 4 August 2013 [87].

The unconfined aquifer is characterised by intergranular porosity. The hydraulic
conductivity in the central part of the aquifer is between 1 × 10−2 and 5 × 10−3 m/s, while
it is lower at the edges at around 5 × 10−4 m/s [84]. The general direction of groundwater
flow is towards the SE, with an average velocity of 10 m/day, although the maximum
velocity can locally exceed 20 m/day [2,4]. The groundwater table is on average 20–25 m
below the surface. The aquifer interacts strongly with surface water, particularly with
the Sava River, which recharges the aquifer in its NW part and drains the eastern part of
Ljubljansko polje [2,85]. Precipitation contributes 2.2 m3/s of water, and infiltration from
the Sava River contributes 3.2 m3/s of water [2,88]. However, the proportion of both sources
is influenced by the depth of the observation point and its distance from the Sava River [89].
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The adjacent groundwater bodies of Kranjsko—Sorško polje, Kamniško—Bistriško polje
and Ljubljansko barje contribute a small share [89] (Figure 1).

About 45% of the Municipality of Ljubljana is covered by water protection zones,
especially in the western part of the city, which includes the city centre. The groundwater
for the central water supply system of the city is extracted from five well fields located in
two aquifers—Ljubljansko polje and Ljubljansko barje. In this paper, our focus is confined
to the Ljubljansko polje aquifer, which comprises four well fields (Kleče, Hrastje, Jarški
prod and Šentvid) (Figure 1). The abstracted water is mainly intended for drinking water
supply (domestic use) and partly for industrial use [2].

In the study area, the occurrence of contaminants is monitored by three institutions—the
Slovenian Environment Agency (ARSO) since 1990, the City of Ljubljana (MOL) since 1997
and the local utility company Vodovod Kanalizacija Snaga (VOKA Snaga) since 1992. ARSO
is responsible for monitoring at the highest national (state) level. It forms the framework of
the national monitoring system, which ensures the representativeness of the data for the
country and the higher levels of— the transboundary river basins and the EU community.
The next level of monitoring is the level of functional urban areas managed by the local
community—MOL. It advocates appropriate spatial planning that also relies on the status
and development of groundwater quality and provides spatial regulatory elements for the
long-term functionality of the city in relation to its water resources. At the most detailed
level, the local public utility company—VOKA Snaga—manages intervention-targeted
monitoring to protect wells from potential contamination and to ensure a safe water supply
for the community.

3. Methodology

This study is primarily based on the existing database of sampling results from three in-
stitutions responsible for monitoring groundwater quality in the study area. This database
was originally created as part of the INCOME project (LIFE07) for the period 1992–2011 [90],
updated and expanded as part of the AMIIGA project [8] for the period 2011–2016 and
additionally updated in 2020 for the period 2016–2019, so that it now documents a total of
283,538 entries. The database contains information on 473 chemical and physico-chemical
parameters and 164 monitoring sites in two hydrogeologically connected aquifers, Ljubljan-
sko polje and Ljubljansko barje. The analysed parameters from the database are classified
into characteristic groups and subgroups. Data on the presence of microbiological parame-
ters are not included in this database. In general, the microbiological condition of drinking
water is good, but this is a broad field that is beyond the scope of this article.

In this study, we used the latest version of the database and focussed specifically on
90 sampling sites in the Ljubljansko polje area (Figure 1). The entries related to Ljubljansko
barje were omitted as they are not the focus of this study. The availability of data in
the database varies greatly between different time periods, sampling sites and different
parameters. In particular, data from the last decade are more numerous than those from
the 1990s. We have therefore statistically analysed the occurrence of contaminants with a
focus on the last decade, 2010–2019, which is of greatest interest to us with regard to the
status of groundwater quality.

Data prior to the year 2000 are only available in the database for 11 sampling sites in
the study area (Figure 1). Particular attention was paid to the pumping wells VD Hrastje-1A,
VD Kleče-10 and VD Kleče-14, which proved to be the most suitable for analysing trends
due to long-term regular sampling (Figure 1). A comprehensive review of existing local
studies and a statistical analysis of the available data facilitated the selection of the most
critical contaminants in the study area, which were thoroughly analysed from the point of
view of the effectiveness of previous groundwater management measures.

Contaminant trends were analysed using the Hype statistical tool (BRGM) [91], which
was developed specifically for analysing trends in groundwater quality data [91]. The
Hype tool is used in an R environment. If the sampling result (input data) is below the limit
of quantification (LOQ) or below the limit of detection (LOD), half of the reported LOQ or
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LOD is considered the concentration value, in accordance with the recommendations of the
Water Framework Directive (2000/60/EC) and the Groundwater Directive (2006/118/EC).
The input data are first tested for normal distribution using the Shapiro–Wilk test, and
the quantification rate is calculated. Trends are calculated using linear regression and
the Mann–Kendall method, while significant changes in trends are analysed using the
Darken [92] and Pettitt [93] tests. All details and equations are described in the user
manual [91].

4. Results

Based on the analysis of 50 sampling sites in the study area between 2010 and 2019,
the groundwater is generally of good quality. The groundwater temperature is between
10–14 ◦C, while the pH value is between 6.9 and 7.8. The average electrical conductivity at
20 ◦C is 490 µS/cm and fluctuates in the range of 300–800 µS/cm. Oxidative conditions
prevail in the aquifer, with an average oxygen saturation of 85%. The concentration of total
organic carbon (TOC) generally remains below 0.5 mg/L and occasionally reaches peak
values of up to 2 mg/L at individual sampling sites. The biochemical oxygen demand
(BOD) generally remains below 0.5 mg/L, with occasional peaks of up to 1 mg/L.

At least 332 parameters from different characteristic groups were analysed between
2010 and 2019, with organic compounds accounting for almost 77% (Table 1). The subgroup
of pesticides had the largest set of analysed parameters (131), followed by microelements
(58) and pharmaceutical residues (51). In addition to the basic groundwater parameters
mandated by the Rules on Groundwater Status Monitoring [94], the most frequently
analysed inorganic parameters were hexavalent chromium, total chromium, fluorides and
bromides. Of 255 different organic compounds, 68 were detected above LOQ at least once
in the study area (Table 1).

Table 1. Number of analysed parameters (Np) and individual analyses (Na) conducted between 2010
and 2019 by subgroups (SubGr). Most frequently analysed parameters (MA) and most frequently
detected parameters (MD) between 2010 and 2019 by subgroups.

Gr SubGr Np Np > LOQ Na Na > LOQ Na < LOD MA MD

IP
MacE 19 11 15,982 12,813 1253 K K
MicE 58 50 9468 3412 1127 Cr(VI) Cr(T)

OP

VHH 32 12 14,552 1697 9047 1,1,1-TCA PCE
Pest 131 29 53,571 4113 38,896 MTC DAT

PCBs 1 - 12 - - - -
PAHs 14 1 152 1 45 PAH Benzene
PhR 51 13 6369 237 4138 CBZ CAFF-PROP

OthOC 23 11 1782 124 1392 2M-2H-BTA 2M-2H-BTA
OthOC Sum 3 2 976 404 377 AOX AOX

Notes: Gr: Group; IP: inorganic parameters; OP: organic parameters; SubGr: subgroup; MacE: macroelements;
MicE: microelements; VHH: volatile halogenated hydrocarbons; Pest: pesticides; PCBs: polychlorinated biphenyls;
PAHs: polycyclic aromatic hydrocarbons; PhR: pharmaceutical residues; OthOC: other organic compounds;
OthOC Sum: other organic compounds (sum parameter analysis); Np: number of analysed parameters; Np > LOQ:
number of parameters detected above LOQ at least once (2010–2019); Na: number of analyses (2010–2019);
Na > LOQ: number of analyses with detected concentrations above LOQ (2010–2019); Na < LOD: number of
analyses with concentrations below LOD (2010–2019); MA: most frequently analysed parameter (2010–2019); MD:
most frequently detected parameter above LOQ (2010–2019); K: potassium; Cr(VI): hexavalent chromium; Cr(T):
total chromium; 1,1,1-TCA: 1,1,1-trichloroethane; PCE: tetrachloroethene; MTC: metolachlor; DAT: desethyla-
trazine; PAH: polycyclic aromatic hydrocarbon; CBZ: carbamazepine; CAFF-PROP: caffeine–propyphenazone;
2M-2H-BTA: 2-methyl-2H-benzotriazole; AOX: adsorbable organic halides.

The concentrations of most of the analysed parameters in the study area are around
the LOQ. Of greater importance for ensuring safe drinking water are the pollutants that
occasionally exceed the drinking water standards or show increasing trends at certain
sampling sites. Table 2 shows the most prevalent parameters of concern in the study area
compared to the EU requirements for water intended for human consumption.
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Table 2. The most widespread parameters of concern in the study area between 2010 and 2019
compared to EU requirements for water intended for human consumption.

Parameter Unit
Concentration
Range in the
Study Area
(2010–2019)

Occurrence Rate
above Quality

Standard 1

Human
Consumption

(EU) 2

nitrate mg/L 2–75 0.1% 50
sulphate mg/L 5–55 250
chloride mg/L 2–114 250

hexavalent chromium µg/L <3–54
total chromium µg/L <3–54 5.3% * 25 *

atrazine µg/L <0.002–0.15 1.3% 0.1 **
desethylatrazine µg/L <0.002–0.18 1.4% 0.1
terbuthylazine µg/L <0.001–0.023 0.1 **

desethylterbutylazine µg/L <0.001–0.017 0.1
sum of pesticides µg/L <0.002–0.507 0.2% 0.5
tetrachloroethene µg/L <0.05–5.9 10 ***

trichloroethene µg/L <0.05–1.0 10 ***
carbamazepine µg/L <0.008–0.1 0.25 ****

2-methyl-2H-benzotriazole µg/L <0.001–0.047

Notes: 1 Occurrence rate: the number of results above the EU water quality standard compared to the total number
of samples analysed for this parameter, expressed as a percentage. 2 EU: minimum requirements for parametric
values used to assess the quality of water intended for human consumption, Annex I [95]. * The parametric value
of 25 µg/L for chromium should be met, at the latest, by 12 January 2036. The parametric value for chromium
until that date shall be 50 µg/L [95,96]. The occurrence rate is calculated with regard to the new standard of
25 µg/L. If the quality standard is set at 50 µg/L, the occurrence rate of total chromium is 0.6%. ** Atrazine is
banned on the national level in Slovenia and on the EU level. In the study area, terbuthylazine is banned in the
inner water protection zone. *** The quality standard of 10 µg/L should apply to the sum of the concentrations of
tetrachloroethene and trichloroethene. **** The quality standard for carbamazepine is a proposal, in accordance
with the Proposal for a Directive amending the Water Framework Directive, the Groundwater Directive and the
Environmental Quality Standards Directive [97].

4.1. Inorganic Contaminants
4.1.1. Nitrate

Although the nitrate concentration generally does not exceed the drinking water
standard (i.e., 50 mg/L), it is still considered one of the most important and ubiquitous
contaminants in Ljubljansko polje. The local background concentration is estimated to be
around 6 mg/L [4], while higher concentrations clearly indicate anthropogenic pollution
related to either agriculture (i.e., mineral fertilisers and livestock manure) or sewerage losses.
Based on a local groundwater transport model covering an area of 58 km2 [4] (Figure 2a),
the total nitrogen load was estimated to be 334.22 tonnes/year, of which 38% arises from
the leaking sewerage system and 62% from agriculture [4]. The proportion of each source,
however, varies considerably at the local level [4,5]. According to Ogrinc et al. [5], nitrate
from atmospheric deposition accounts for around 10% of the nitrate in groundwater.

The mean nitrate concentration in Ljubljansko polje is 16 mg/L (2010–2019) and has
decreased significantly since 2005 at a rate of 0.256 mg/L per year [8]. Considering the
regulatory measures mandated by the EU Nitrates Directive 91/676/EEC and the Slovenian
Nitrates Decree, it is reasonable to presume that the observed reduction in total nitrogen
load is primarily due to the reduced use of nitrates in agriculture. Unfortunately, we lack
information regarding the use of preparations that could confirm our assumptions. This
declining trend is particularly evident in well VD Hrastje 1a (Figure 2b), for which mea-
surements are available over a longer period of time, namely since 1993. The Shapiro–Wilk
test indicates a non-normal distribution of the input data for the trend analysis (p < 0.05).
Both the Mann–Kendall method (−0.242 mg/L/year, p = 1.4 × 10−29) and the linear re-
gression (−0.240 mg/L/year, p = 1.9 × 10−18) show a significant decreasing trend. In
contrast, the Darken method shows a statistically significant decreasing trend after 1999
(−0.244 mg/L/year, p = 3.3 × 10−23), while the trend before 1999 was insignificant. In
addition, the Petitt test indicates a significant change in the mean value (p = 7.5 × 10−22) in
2010, which decreased from 23.33 mg/L to 20.79 mg/L after the turning point.
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Figure 2. (a) The spatial distribution of modelled nitrate concentrations in groundwater of Ljubljansko
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blue solid lines—MK trend before/after trend reversal; green dashed line—Pettitt [93] change in
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Despite the general decrease in nitrate load, certain areas within the region have
recorded an increase in nitrate levels. The analysis of monitoring for the 2010–2019 period
indicates that out of 1900 measurements at 71 monitoring sites, the annual mean nitrate
value exceeded 20 mg/L at 9 monitoring sites, namely 30 times, and was above 30 mg/L
5 times at 3 monitoring sites. The highest concentrations (>25 mg/L) were observed in the
area where two conditions were met, namely a high load from sewerage and agriculture
and, at the same time, a low groundwater flow rate and dilution capacity [4]. This is
particularly the case at the edge of the aquifer, at the western edge of the Kleče waterworks
along Stegne and Dravlje.

4.1.2. Hexavalent Chromium

Groundwater contamination with hexavalent chromium—Cr(VI), identified at the end
of 1985, was the first major contamination that led to a temporary halt of water extraction
from several wells at the Kleče pumping station [98]. Despite comprehensive research
over the past few decades, the main individual sources have not yet been identified. The
quantities that could be lost from the sewage system in the normal course of events are
not expected to result in concentrations as high as monitoring indicates, implying that the
primary sources are uncontrolled [99]. Given that modern technological use of chromium is
typically based on closed systems, thereby avoiding direct outflow of wastewater containing
chromium, it is assumed that the main source of pollution could be the saturation of soil
with chromium at the site of former galvanising plants and “illegal dumps” [98].

Concentrations of Cr(VI) in Kleče waterworks began to decrease only after 1994 and
are expected to eventually fall below the LOD. However, the most probable modelled
scenarios have shown that at least two pronounced contamination plumes still pose a
threat to the Hrastje waterworks [100] (Figure 3a), where concentrations remain relatively
high, particularly in the southernmost water wells. 197 sampling results from well VD
Hrastje-1a were used for the long-term trend analysis, 96% of which were above the LOQ.
The Shapiro–Wilk test indicates a non-normal distribution of the input data (p < 0.05). While
both the Mann–Kendall method and the linear regression showed statistically significant
trends over the entire 26-year period, their values and slopes do not match, which is likely
due to the influence of trend reversal. The Darken method, which was used to identify the
characteristic change in the trend, proved to be the most reliable (p = 2 × 10−29) with a trend
reversal in 2009. The Mann–Kendall trend for the period before 2009 shows a characteristic
increasing trend (0.739 µg/L/year, p = 2.8 × 10−16) and a characteristic decreasing trend
(−0.277 µg/L/year, p = 1.3 × 10−15) after 2009.
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sampling campaign between 2017 and 2022, concentrations of Cr(VI) in the Stegne indus-
trial area were repeatedly above the quality standard for total chromium (i.e., 50 µg/L), 
which was even exceeded threefold on one occasion. This indicates that we are dealing 
with continuous sources of chromium that may still be active. The scattered concentra-
tions and the slight downward trend may both be related to sampling uncertainty. Further 
research is ongoing to address this issue. 
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polje—modelled scenario [100]; (b) Trend analysis of Cr(VI) concentrations at VD Hrastje 1a: black
line—linear regression (LR); red line—Mann–Kendall (MK); blue dashed line—Darken [92] date of
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It is important to note that the decreasing concentration of Cr(VI) in the Hrastje
waterworks is not significantly related to the movement of concentrations in the hinterland.
On the contrary, in the central part of Ljubljansko polje between Stegne and Hrastje, an
increasing trend has been observed in recent years. As part of an investigation-targeted
sampling campaign between 2017 and 2022, concentrations of Cr(VI) in the Stegne industrial
area were repeatedly above the quality standard for total chromium (i.e., 50 µg/L), which
was even exceeded threefold on one occasion. This indicates that we are dealing with
continuous sources of chromium that may still be active. The scattered concentrations and
the slight downward trend may both be related to sampling uncertainty. Further research
is ongoing to address this issue.

4.1.3. Other Inorganic Contaminants

The inorganic parameters that frequently occur above the limit of quantification
(LOQ) include the basic parameters of groundwater that are also present in the natural
background, such as chlorides, nitrates and sulphates. Regular monitoring of these
parameters is important to detect anomalies or deviations from expected values. The
presence of chlorides does not jeopardise the supply of drinking water and does not
exceed the quality limits, although local concentrations above 30 mg/L indicate pressures
associated with sewage and industrial effluents, road salting and the use of mineral
fertilisers such as KCl.

Of particular note is the parameter sulphate, which showed the most significant trend of
decreasing concentration. This was determined both by linear regression (−0.42 mg/L/year,
p = 4.1 × 10−34) and by the Mann–Kendall method (−0.47 mg/L/year, p = 2.4 × 10−31)
(Figure 4a). No trend reversal was observed, but the Pettitt test showed a significant change
in the mean value in 2012 (p = 4.6 × 10−23). This decreasing trend can be attributed to the
reduction of sulphur dioxide in the atmosphere between 1993 and 2006 (−2.75 µg/m3/year,
p = 2.5 × 10−5), which is due to the decrease in emissions from coal combustion plants before
the widespread introduction of natural gas as a fuel source [101] (Figure 4b). According
to the Pettitt test, the most significant change in the mean value of sulphur dioxide in the
atmosphere occurred in 2004 (p = 4.4 × 10−5).
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4.2. Organic Contaminants
4.2.1. Pesticides

The widespread use of pesticides was one of the main threats to groundwater resources
in Ljubljansko polje at the turn of the century [102]. The presence of atrazine, desethyla-
trazine and 2,6-dichlorobenzamide—the degradation products of dichlobenil—regularly
endangered well fields, especially Hrastje, as the threshold values for drinking water
(i.e., 0.1 µg/L) were repeatedly exceeded [3,102]. Following the ban on the use of phy-
topharmaceuticals containing dichlobenil and atrazine in 2002 and 2003, respectively, the
water quality in the waterworks improved significantly within two years (Figure 5a,b).
A significant downward trend (p < 0.01) for atrazine was determined both by linear re-
gression (−0.0068 µg/L/year) and by the Mann–Kendall method (−0.0094 µg/L/year)
(Figure 5a). The same applies to 2,6-dichlorobenzamide, where the linear regression and
the Mann–Kendall method showed a decreasing trend of −0.0021 and −0.0015 µg/L/year,
respectively (Figure 5b).

The banned substances were largely replaced by alternative compounds that were
recognised as less soluble and mobile in groundwater, such as terbutryn and terbuthy-
lazine [102,103]. Although for this reason terbuthylazine was considered significantly
less risky for groundwater contamination in 2005 [102] and was still below the LOQ,
increasing trends were observed for both compounds—terbuthylazine and especially
its more soluble degradation product, desethylterbutylazine—throughout the period
2010–2017 in the Kleče and Šentvid waterworks. In particular, a significant upward trend
of 0.0001 µg/L/year (p < 0.01) was observed in well VD Kleče 10 using both linear re-
gression and the Mann–Kendall method (Figure 5c). In response to the persistent upward
trend, the use of terbuthylazine was finally banned in 2016. Subsequent monitoring from
2017–2019 indicated the effectiveness of the measures taken, however, the available data
was not yet long enough to confirm a statistically significant trend reversal (Figure 5). The
largest waterworks, Kleče, was also characterised by a periodic occurrence of the herbicide
metazachlor, with the highest concentration measured in the winter of 2009/10 (approx.
0.6 µg/L) (Figure 5d). After the peak, a significant trend reversal was detected in 2010
using the Darken method (p = 9.5 × 10−33). In addition, the Petitt test shows a significant
change in the mean value (p = 2.3 × 10−31) in 2012.
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Due to long-standing agricultural practises in the hinterland of waterworks, pesti-
cides remain the most frequently analysed compounds among organic pollutants. Of the 
131 pesticides analysed between 2010 and 2019, the concentration of 25 different pesticides 
was detected at least three times above the LOQ, 10 of which are currently banned in the 
inner water protection zone (VVO I) in Ljubljansko polje (Table 3). The frequency of oc-
currence with concentrations above the LOQ was by far the highest for desethylatrazine 
and atrazine (Table 3). 

Figure 5. Characteristic trends of (a) atrazine at VD Hrastje 1a; (b) 2,6-dichlorobenzamide at VD
Hrastje 1a; (c) desethylterbuthylazine at VD Kleče 10; (d) metazachlor at VD Kleče 14: black
line—linear regression (LR); red line—Mann–Kendall (MK); blue dashed line—Darken [92] date
of trend reversal (D) and blue solid lines—MK trend before/after trend reversal; green dashed
line—Pettitt [93] change in mean (P) and green solid lines—mean value before/after change. The
plus signs indicate results > LOQ, and the circle signs indicate results < LOQ or <LOD.

Due to long-standing agricultural practises in the hinterland of waterworks, pesti-
cides remain the most frequently analysed compounds among organic pollutants. Of the
131 pesticides analysed between 2010 and 2019, the concentration of 25 different pesticides
was detected at least three times above the LOQ, 10 of which are currently banned in
the inner water protection zone (VVO I) in Ljubljansko polje (Table 3). The frequency of
occurrence with concentrations above the LOQ was by far the highest for desethylatrazine
and atrazine (Table 3).

Table 3. Occurrence of pesticides or their degradation products banned in water protection zones.

Parameter (2010–2019) Na > LOQ Na Nmp > LOQ Nmp

desethylatrazine 1381 1573 73 76
atrazine 1152 1382 71 75

metazachlor 259 1594 17 73
desethylterbutylazine 39 1016 22 68

metolachlor 82 1693 28 76
bentazone 74 555 19 29

terbuthylazine 33 1136 17 74
isoproturon 4 555 4 29

dimethenamid 5 1379 2 76
metalaxyl 7 596 5 29

desisopropylatrazine 1 1161 1 74
Notes: Na > LOQ: Number of analyses with detected concentrations above LOQ; Na: Total number of analyses;
Nmp > LOQ: Number of measuring points with detected concentrations above LOQ; Nmp: Total number of
measuring points.
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To curb the emergence of new pesticides that replace atrazine, a mitigation measure has
been in place since 2015 that requires continuous preventive monitoring of drinking water
wells to detect the presence of pesticides. If pesticides are detected, the active substance is
subject to a specific procedure and added to the list of prohibited substances in the inner
water protection zone [104].

4.2.2. Volatile Halogenated Hydrocarbons

Short-term elevated concentrations of volatile halogenated hydrocarbons from un-
known pollution sources have occurred occasionally and randomly in the past, with the
most serious pollution being caused by tetrachloroethene (PCE) and trichloroethene (TCE).
The average annual concentration of PCE exceeded the normative limit for drinking wa-
ter of 2 µg/L (Figure 6), which meant that the aquifer did not fulfil the requirements
for achieving good chemical status in 2003 [102]. The highest concentrations were de-
tected at the Hrastje well field at 3.5–6.9 µg/L. Despite generally decreasing concentrations
(−0.053 µg/L/year, p = 6.3 × 10−10), especially between 2010–2015, a new upward trend
was observed after the trend reversal in 2015 (0.025 µg/L/year, p = 2.6 × 10−3). On the
other hand, the Petitt test shows a significant change in the mean value (p = 1.3 × 10−14)
in 2012.
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solid lines—mean value before/after change. The plus signs indicate results > LOQ, and the circle
signs indicate results < LOQ or <LOD.

In 2004, severe localised pollution with TCE was detected as a uniform sharp contami-
nation peak about 2.5 km southwest of the Hrastje waterworks with maximum concentra-
tions of over 700 µg/L [102,105]. The pollution gradually covered the southern part of the
Hrastje waterworks (Figure 6) and exceeded the already high background concentrations of
PCE and TCE. After the uniform peak of the TCE concentration in VD Hrastje 1a, the TCE
concentration started to decrease by 0.024 µg/L/year (p = 5.0 × 10−17) after a trend reversal
in 2005. According to the Pettitt test, there was a significant change in the mean value
of the TCE concentration in 2010 (p = 1.3 × 10−19), and after 2010, only threshold values
were found (Figure 6). This indicates that pollution was released from several pulse-like
contaminant inputs. The downward trend could also be a consequence of the state Decree
on the Area of the Ljubljansko Polje Aquifer and Its Hydrographic Reserves at Risk from
Plant Protection Products and Volatile Chlorinated Hydrocarbons, which came into force
in 2003.

Of the 33 volatile halogenated hydrocarbons analysed between 2010 and 2019,
14 exceeded the LOQ at least once, but concentrations remained relatively low. PCE
and TCE continued to dominate the frequency of occurrence above the LOQ, followed by
trichloroethane and trichloromethane. Between 2012 and 2017, new, increasing trends in



Water 2024, 16, 890 13 of 20

TCE and PCE were observed at two sampling points located in the direct hinterland of
the Hrastje waterworks, emphasising the importance of continuous monitoring to detect
deterioration in quality and take immediate action if necessary.

4.2.3. Pharmaceutical Residues and Other Synthetic Organic Pollutants

The presence of endocrine disruptors, pharmaceutical residues and other chemi-
cals from personal care products in the groundwater of Ljubljansko polje has become
a subject of research in the last decade [6–8]. Back in 2009, Ljubljansko polje was not
overloaded with characteristic pharmaceutical residues such as caffeine, carbamazepine,
and propyphenazone, but traces of contaminants were already observed, including the
detection of carbamazepine in the Hrastje well field [6]. Between 2010 and 2019, out of
51 pharmaceutical compounds analysed, only 13 were quantifiable, with salicylic acid being
the most frequently detected (62% of analyses), followed by caffeine (17%), sulfamethox-
azole, theophylline, propyphenazone and carbamazepine. In terms of prevalence across
sampling sites, caffeine, salicylic acid, carbamazepine and propyphenazone predominated.

Due to its properties, carbamazepine was considered one of the most serious emerging
contaminants between 2010 and 2019 [7]. It was typically found in scattered concentrations,
indicating diffuse pollution in the area. In 2017, the highest values between 10 and 50 ng/L
were found in the shallow perched aquifer in the NW part of Ljubljansko polje, as well as
in the most SW part. Due to the lack of time series data at the most relevant sampling sites,
it was not possible to examine any trends. Given that the contamination plume extends
south of the waterworks, it is unlikely that carbamazepine will pose a significant threat to
water quality in the well fields. However, to prevent further increases in carbamazepine
concentrations, it is critical to reduce the losses from the sewerage system, which is believed
to be the primary source of contamination.

Among the 23 synthetic organic pollutants analysed between 2010 and 2019, 11 were
found above the LOQ. Above all, nonylphenols, phthalates, bisphenol A and 2-methyl-
2H-benzotriazole were detected most frequently. In 2017, particularly high concentrations
of 2-methyl-2H-benzotriazole (up to 47 ng/L) were observed at the western edge of the
aquifer, where perched groundwater is present. Its primary source is the entire urban area,
including losses from the sewage system.

Recent targeted sampling conducted between 2022 and 2024 revealed characteris-
tic increasing trends of 1H-benzotriazole, 4-methyl-1H-benzotriazole and 5-methyl-1H-
benzotriazole in the central part of Ljubljansko polje. This poses a potential threat to the
Hrastje waterworks and is the reason for the ongoing research efforts. These parameters
were not monitored in the target period of 2010–2019 due to the lack of precise equipment
required to accurately detect these compounds. The same applies to the occurrence of
PFAS, which remains uncertain due to unavailable data. Based on the annual reports on
the compliance of drinking water in the supply areas managed by the public company
Vodovod Kanalizacija Snaga, PFAS does not appear to pose a significant threat to the safety
of the water supply. However, it should be noted that trace amounts of these compounds
can be detected, usually close to the detection limit of the test methods.

Because emerging pollutants occur in markedly low concentrations or in trace amounts,
they are difficult to evaluate statistically in terms of reliability of results and probability of
prediction. For this reason, some sampling results in the study area [3,8] have started to
be reported in accordance with ISO 11843-2:2000 [106]. Table 4 shows an example where
both the analytical raw value and its uncertainty are given. If the measured value does
not exceed the critical value, which, for example corresponds to the limit of detection
(LOD) set at LOD = 0.0100 µg/L, the notation < LOD = 0.0100 µg/L is given, with the
measured raw value in brackets. This approach is quite demanding and requires a dedicated
effort from the laboratory, but it allows the prediction of temporal and spatial trends of
emerging pollutants even before the concentrations become quantifiable. This is particularly
valuable for drinking water supply systems, as they need to take action before the pollutant
concentrations become characteristic or exceed the LOD or LOQ.
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Table 4. An example of reporting raw analytical values in accordance with the ISO 11843 standard in
the area of Ljubljansko polje [7,8].

Concentration Value Level Original Value
[µg/L]

Numerical Value
[µg/L]

Conc. > LOQ 0.078 (>LOQ = 0.033) 0.078
LOQ > Conc. > LOD <LOQ = 0.033 & >LOD = 0.010 (0.0215) 0.0215

Conc. < LOQ <LOQ = 0.033 (0.017) 0.017
Conc. < LOD <LOD = 0.0100 (0.00758) 0.00758

Note: Original value = the result presented in the laboratory report.

5. Discussion

The surveillance and operational monitoring of groundwater quality in the functional
urban area of Ljubljana have proven effective in ensuring comprehensive control of ground-
water resources and the safety of drinking water supply. In recent years, groundwater
monitoring at the local level has been greatly modernised through frequent, targeted sam-
pling campaigns, the introduction of passive sampling and the reporting of raw analytical
values in accordance with the ISO 11843 series of standards [7,8], which has enabled the
very early detection of several unfavourable upward trends (e.g., desethylterbutylazine).
By consolidating data from different institutions, an important step was taken to simplify
the interpretation of monitoring results and improve groundwater management. How-
ever, the main disadvantage of long data sets is the potential scarcity and inconsistency of
data [72], as well as the impact of changes in sampling protocols and laboratory methods
on the comparability of data [72,73]. Some studies suggest that changes in sampling and
laboratory practises may have a greater impact on the data than actual environmental
changes [73,75]. Our data set shows that data prior to the year 2000 are significantly sparser
and more scattered, and that extreme values occured more frequently.

In general, the data set revealed that quite a large number of the analysed parameters
were only reported as a qualitative result, i.e., below the LOQ or below the LOD, without
a quantitative value. If the parameter was never quantified at the measurement site, it
could be concluded that no such contamination was present. According to the risk-based
approach, this parameter would only be of concern if there is a reliable identification of
a detectable or quantifiable concentration or if there is a clear indication that substances
are leaking into the environment and are expected to be present in groundwater sooner or
later. However, with the continuous advances in analytical methods, the limits of detection
and quantification are gradually being lowered. As a result, current advanced analyses can
reveal contaminant levels and trends that were previously unquantifiable. It is important to
note that the absence of quantifiable contaminants in previous analyses does not necessarily
mean that they were not present in the past. Therefore, it is necessary that the data is always
linked to LOQ and LOD information. To ensure the accuracy, reliability and reproducibility
of the data collected at each sampling point, it is also essential to keep a detailed record of
the sampling conditions. This record enables the direct comparison of successive samplings
and can improve the representativeness of the data series.

After a thorough review of local studies and analysis of available data, we identified
the most critical contaminants in the study area to investigate the characteristic trends. Our
analysis revealed that none of the input data sets followed a normal distribution, as shown
by the Shapiro–Wilk test. Long-term trends were assessed using both the non-parametric
Mann–Kendall test and parametric linear regression. In cases where consistent trends
were observed over a longer period of time (e.g., decreasing nitrate and sulphate levels
and increasing desethylterbutylazine levels), the two methods yielded very similar slopes
with minimal differences in trend assessment. However, in cases where a significant trend
reversal was observed, such as with hexavalent chromium, the differences between the two
methods were more pronounced. This clearly demonstrates how the techniques that detect
monotonic trends can be considerably affected by trend reversal [72]. A slightly smaller
amount of data prior to the year 2000 showed no significant effect on trend assessment, but
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the Mann–Kendall method appeared to be less influenced by outliers within the data set,
which is also consistent with the conclusions of Oliva et al. [72].

To detect a trend reversal, i.e., a shift from an upward trend to a downward trend or
vice versa, the Darken test proved to be the most suitable. This method, which is based
on recognising a change of sign in the slope, is already integrated into the statistical tool
Hype [91] and described in the Common Implementation Strategy for the Water Framework
Directive and the Floods Directive [107]. On the other hand, the Pettitt test, although widely
used, proved to be less reliable for detecting a trend reversal point, as already stated by
Frollini et al. [73]. In almost all analysed data sets, the Pettitt test showed apparently
significant shifts that were not related to the actual trend reversal, i.e., the change in the
sign of the slope, but rather to the smaller changes in the data set, such as the changes in
the mean value and the data scatter.

The time span of the long-term contaminant trends in the study area covers the transi-
tion period before and after the implementation of the Water Framework Directive and the
Groundwater Directive in 2000. While the period between 1992 and 2005 was characterised
by higher pollutant concentrations (e.g., nitrate, sulphate, atrazine) or even increasing
trends (e.g., hexavalent chromium, trichloroethene), the situation began to improve to-
wards 2010. Statistically significant changes in the mean value of pollutant concentrations
based on the Pettitt test can be observed between 2010 and 2012. The greatest improvements
can be seen for some pesticides, such as metazachlor and 2,6-dichlorobenzamides, which
occur around the LOQ, while nitrates and hexavalent chromium, for example, are still
well above natural background concentrations. Although occasional peaks in pollutant
concentrations still occur locally, the general groundwater status improved between 2010
and 2019. This confirms the effectiveness of enforcing measures to protect groundwater
quality—not only directives at the EU level but also regulations at the national or even
municipal level.

An excellent example of good practice was the ban on atrazine and, in the inner water
protection zone, the ban on dichlobenil-based pesticides, which successfully reduced the
infiltration of pollutants into the aquifer and significantly improved the safety of drinking
water supplies. Such positive effects are not necessarily self-evident in other regions [35,108]
and depend on many factors, such as the historical use of pollutants, the initial status of
the groundwater and the properties of the aquifer. A proactive approach to integrated
agriculture is still required throughout the hinterland of the waterworks in the study area.
It is also particularly important to control emerging pollutants in the wastewater system,
which is becoming a critical source of the mass flow of pollutants.

As we approach the end of the period set by the European directives as the final dead-
line for achieving good groundwater status, it is assumed that pollutant concentrations are
under control and below water quality standards. Compliance with the quality standards
alone should no longer be sufficient as the primary objective of groundwater management,
because as soon as the pollutant exceeds the quality standard, it is already considered
problematic. Instead, the quality of urban groundwater should be continuously improved
and protected from new emerging contaminants. Any contamination should be kept in a
downward trend, and any upward trend should be detected at much lower concentrations
than the current water quality standard, preferably in the range between LOD and LOQ.

6. Conclusions

Based on the existing database, a comprehensive analysis of the long-term data on
the groundwater quality of the Ljubljansko polje aquifer was carried out. The analysis
revealed predominantly favourable conditions and good groundwater quality status in
the study area. Many contaminants that were highly prevalent in the 1990s (e.g., nitrate,
sulphate, atrazine, etc.) show statistically significant decreasing trends. In contrast, the
prevalence of emerging organic compounds has increased over the last decade. Although
many of these compounds do not exceed the LOQ, their detection has become possible
thanks to modernised groundwater sampling techniques and advanced analytical methods,
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which have revealed several previously unquantifiable contaminant levels and trends.
Such advanced monitoring enables the immediate introduction of appropriate measures
to counteract contamination before it poses a significant risk to drinking water supplies.
This is also in line with the EU Water Framework Directive (WFD, 2000/60/EC), which
emphasises the principle of “prevent and limit”. With the increasing use of various new
substances and the advancing technology of chemical analysis and scanning capabilities,
we expect that the risk-based approach will play an important role in reducing the amount
or proportion of non-numerical results below the LOQ and LOD. We anticipate that the
quality and precision of sampling will be more important than the number of samples, as
sampling itself will become more technically and logistically demanding and it will be
hardly possible to process large quantities of samples.
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