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Abstract. We have extended the existing two-dimensional rigid solid phase benchmark
for binary substance with the solid phase motion in the present paper. Incompressible
laminar Newtonian flow is assumed, and a standard mixture formulation is used for the mass,
momentum, energy, and solute transport. A coherency solid motion model accounts for the
free-floating grains, assuming that the solid velocity is proportional to the mixture velocity
and the liquid fraction. The lever rule is used to describe the mass fractions of the phases.
A two-dimensional benchmark is solved using the semi-implicit meshless diffuse approximate
method with an adaptive subdomain upwinding strategy. The results of the meshless method
are compared to the finite volume method results with a reasonable agreement. The new
benchmark results show that the solid motion has an essential effect on the macrosegregation
pattern.

1. Introduction
The incorporation of the movement of free-floating grains into solidification simulation results in
improved fidelity of the results. For example, it was observed that the solid motion might cause
inverse segregation in the billet centre during the direct chill casting of aluminium alloys [1].
Several benchmark cases were proposed in [2] to test and verify the implementations of the
solidification models. In the present paper, we aim to extend one of the proposed benchmarks
with a model considering the solid motion on a reduced scale, like in [3]. So far, different
models for treating free-floating grains were developed, which differ in complexity. For example,
in [4], a two-region approach has been developed, which divides the solidification region into the
slurry and the rigid region. In the slurry region, the solid is allowed to move with the convective
currents, and in the rigid region, it is assumed to behave as a rigid structure, with a critical solid
fraction being the slurry-mushy partitioning parameter. More recently, an attempt to reduce
the complexity of such models was presented [5]. This enables to include the solid motion in the
existing mixture continuum equations developed in the eighties [6]. In the present benchmark,
a simple non-parametric coherency solid motion model is used, which assumes that the solid
velocity is proportional to the mixture velocity through the liquid fraction. Previously, the
benchmark with the solid motion model, based on the rigid solid assumption, was successfully
solved with different strong-form meshless methods [3, 7]. In the present extended benchmark,
the diffuse approximate method (DAM) is used to obtain the numerical solution, and the results
are compared to the finite volume method (FVM) with reasonable agreement.
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2. Problem definition
The physical model is derived based on the mixture continuum assumption for a multi-
component substance elaborated in [6]. The coupled mass, energy, species, and momentum
conservation equations are formulated for an incompressible Newtonian fluid. The solidification
process of a binary alloy is considered, and the lever rule is used for the mass fractions of the
phases. A linearized binary phase diagram is used to describe the local equilibrium conditions.

The governing equations describing the macroscopic model are given as

∇ · v = 0, (1)

ρ
∂h

∂t
+ ρ (v · ∇)h = k∇2T − ρ∇ · [(hl − h) (v − vs)] , (2)

∂C

∂t
+ (v · ∇)C = −∇ · [(Cl − C) (v − vs)] , (3)

ρ
∂v

∂t
+ ρ (v · ∇)v = −∇p+ µ∇2v + bD + bB, (4)

where ρ, v, h, k and C are the mixture density, velocity, enthalpy, thermal conductivity, and
species concentration, µ is the liquid viscosity, T is the temperature, and p is the pressure. The
individual phase variables are denoted with indexes l for liquid and s for solid, therefore hl is
the liquid enthalpy, Cl is the liquid species concentration, and vs is the solid velocity. The
additional body forces bD and bB exerted on the mixture are the hydraulic drag force in the
solidifying region modelled with Darcy law and the buoyancy force modelled with the Boussinesq
approximation. Their definitions are

bD = − µ

K
(v − vs) , (5)

bB = ρref [1− βT (T − Tref )− βC (Cl − Cref )]g, (6)

where K is the isotropic hydraulic permeability, ρref , Tref , and Cref represent the reference
density, temperature and species concentration, βT and βC are the thermal and species
volumetric expansion coefficient, and g is the gravitational acceleration. The hydraulic
permeability is modelled with the Carman-Kozeny relation, defined as

K = K0
g3l

(1− gl)
2 , (7)

where K0 is the Kozeny constant and g is the volumetric fraction. The mixture quantities are
defined as

v = glvl + gsvs, (8)

h = cpT + glL, (9)

C = [gl + (1− gl) kp]Cl, (10)

where cp is the mass specific heat at a constant pressure of the liquid and the solid phase, L is
the latent heat, and kp is the partition coefficient. The equilibrium liquidus temperature Tliq is
defined as

Tliq = Tf +mCl, (11)

where Tf is the pure substance temperature of fusion and m is the slope of the liquidus line.
In the present paper, we compare the results of the rigid and the coherency solid motion

models. The former is defined as
vs = vsys, (12)
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where vsys is the velocity of the system, and the latter is defined as

vs = glv + (1− gl)vsys, (13)

where the liquid and solid fractions measure the intensity of the solid phase movement. In the
present article, vsys = 0 ms−1, since the system is stationary.

The problem geometry is shown in figure 1 together with the mathematical description of the
boundary conditions, initial conditions, and the reference points with cross-sections used in the
analysis of the results in tables 1-3.

A two-dimensional cartesian coordinate frame with basis vectors ix and iy and the position
vector p = xix + yiy is used to describe the problem. Points A, B, C and D define the corner
points of the rectangular cavity and segments AB, BC, CD, and AD represent the boundaries
of the cavity. The boundary is denoted with Γ and the interior is denoted with Ω.

The problem is symmetric about the left boundary. The cavity is impermeable for species
transfer on the top, right, and bottom and thermally insulated at the top and bottom. Heat is
extracted from the right boundary through forced convection with a heat transfer coefficient
h̃ to the surroundings with temperature Tenv. A sticking boundary condition is used on
all non-symmetry boundaries. Initially, the melt is at rest with the temperature and the
species concentration uniformly distributed and set to T0 and C0. The numerical values of
the parameters used in the simulation are given in table 4.

y

x

P4

P3P2

P1

A B

CD

V1 V2 V3

H1

H2

H3

Figure 1: The solidifying
domain.

Table 1: The reference points.

A B C D P1 P2 P3 P4

x [mm] 0 10 10 0 5 1 9 5
y [mm] 0 0 20 20 2 10 10 18

Table 2: The cross sections.

H1 H2 H3 V1 V2 V3

x [mm] x x x P2 P1 P3

y [mm] P1 P2 P4 y y y

Table 3: The boundary and initial conditions.

p ∈ ΓAB, t > 0 s

C = C0, v = vsys,
dT
dn = 0 Km−1

p ∈ ΓBC , t > 0 s

C = C0, v = vsys,
dT
dn = h̃ (T − Tenv)

p ∈ ΓCD, t > 0 s

C = C0, v = vsys,
dT
dn = 0 Km−1

p ∈ ΓDA, t > 0 s
dC
dn = 0 m−1, vx = 0 ms−1,

dvy
dn = 0 s−1, dT

dn = 0 Km−1

p ∈ Ω, t = 0 s
C = C0, v = vsys, T = T0
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3. Solution procedure

Table 4: Thermophysical parameters.

ρ 2450 kgm−3

cp 1000 J kg−1K−1

k 192 Wm−1K−1

L 4× 105 J kg−1

µ 1.2× 10−3 Pa s
βT 1.3× 10−4 K−1

βC −7.3× 10−3 wt%−1

ρref 2450 kgm−3

Tref 465 ◦C
Cref 4.5 wt%
g −9.8iy ms−2

K0 5.56× 10−11 m2

Tf 660 ◦C

m −3.43 ◦Cwt%−1

kp 0.173 /

h̃ 500 Wm−2K−1

Tenv 20 ◦C
T0 700 ◦C
C0 4.5 wt%
vsys 0 ms−1

The solution to the problem stated is calculated
by using DAM, which belongs to local strong-form
meshless methods. This method uses weighted least
squares to determine a locally smooth solution and
has been used to solve several solidification problems
before [8, 7, 9, 10]. The shape functions Ψk used in this
work are Gaussian function weighted monomials defined
as

Ψk(r) = e
−W

(
∥r∥
D

)2

ψk

( r

D

)
, r = p− p0, (14)

where W is the Gaussian weighting function sharpness
parameter, ∥·∥ represents the Euclidian norm, r
represents the relative position vector, D is a
normalization constant, ψk is the k-th monomial from
the set of monomials

{
1, rx, ry, r

2
x, r

2
y, rxry

}
, and p0 is

the position of the node of interest.
The governing equations are propagated through

time by using a first-order accurate scheme. The
energy (2) and species (3) equation are solved in a
fully explicit manner, whilst the momentum equation
is solved in a semi-implicit manner.

During solidification, the Darcy term (5) in the mixture momentum equation poses a serious
numerical stability issue if a fully explicit approach is used. For this reason, the part of the
Darcy term associated with the mixture velocity is treated implicitly. To avoid singularity when
the liquid fraction approaches 0, the permeability is calculated up to a small liquid fraction ϵ and
K(gl = ϵ) is used at gl < ϵ. In this way, no error is introduced in the permeability calculation
when gl ≥ ϵ. In the present paper, ϵ = 1 × 10−2, where the Darcy drag force is practically
infinite and the mixture is stationary.

The momentum and continuity equations are directly coupled to satisfy the discrete
incompressibility constraint exactly. To prevent numerical instabilities resulting from the
advective terms in the governing equations, an upwinding stabilization method is used similar
to the one in [11].

The support subdomains include Nloc = 9 nearest nodes and the chosen Gaussian weighting
parameter is W = 5. The normalization constant is defined as

D = max
(
∥rj∥

)
, j = 1, . . . , Nloc, (15)

where j represents the local node index. The time step is ∆t = 4×10−5 s. To test the convergence
of the solution, grids of 20× 40, 25× 50, 40× 80, 50× 100, and 80× 160 nodes were used with
the same time step and numerical parameters. The meshless simulation is performed on an Intel
Xeon Gold 6146 CPU and is parallelized to use 6 cores. The wall time of the simulation run for
the 80× 160 set of nodes was 34 h.

The reference results are calculated using FVM. The momentum equation is solved in a
fully implicit manner and the pressure-velocity coupling is made with the SIMPLE algorithm as
proposed by Patankar (1980). The energy and species concentration equations are solved in a
fully explicit manner. The advection terms are treated by a first-order upwinding stabilization
method. The results shown are calculated on a regular 80 × 160 mesh with the time step
∆t = 8× 10−6 s.
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4. Results
As can be seen in the comparison of the final macrosegregation in figure 2, very different results
are obtained just by using a different solid velocity constitutive relation. Since the species
transport is governed exclusively by advection in both models, whatever influences the mixture
velocity will also influence the final macrosegregation. Compared to the rigid model, the species
concentration is more evenly distributed throughout the cavity when using the coherency model.
Even though its peak is still at the bottom, it is significantly lower than in the rigid model. The
convergence of the solutions is monitored in terms of the species concentration field standard
deviation and the minimum and maximum absolute value of segregation Smin |max defined as

std (C) =

√√√√ 1

N − 1

N∑
n=1

(C (pn)− C0), Smin |max = min |max (|C (pn)− C0|) , n = 1, . . . , N,

(16)
where N is the number of nodes used in the simulation. The convergence is measured against
the relative grid spacing. For both the rigid and the coherency model, the convergence of the
chosen parameters is shown in figure 3.
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Figure 2: Macrosegregation comparison of the DAM solutions of the (a) rigid and the (b)
coherency model.

Even though a relatively fine regular grid of nodes is used, the solution is still underresolved
in the vicinity of the boundaries for the coherency model both in the FVM and DAM solutions
of the problem. Compared to the rigid model’s solution, the coherency model’s solution exhibits
sharper species concentration peaks, which require a dense node arrangement to be properly
resolved. Even more nodes than used would be required, especially near the boundaries, which
is impractical to do with a regular grid node arrangement. A node set biased towards the
boundaries of the cavity would be better suited. The results converge slower than the rigid
model results but are nevertheless slowly convergent concerning std(C). A parametric study
with denser node arrangements would have to be used to determine more accurate results.
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Figure 3: DAM solutions convergence for (a) rigid and (b) coherency model.

Practically speaking, the macrosegregation on the 80 × 160 node arrangement yields a very
similar solution as the 40× 80, and the trend is unlikely to change with denser nodes.

To analyze the results more thoroughly, horizontal and vertical cross-section results are
provided in figure 4. The DAM solution of the rigid model was verified using the results presented
in [3] and the comparison is for clarity not shown in the figure. A qualitative agreement between
the results of the FVM and DAM is obtained. One can attribute the quantitative disagreement
to the first-order upwind method in FVM, which is known to introduce numerical diffusion. In
the meshless solution procedure, the upwinding method is analogous to the second-order finite
difference upwinding method, and therefore, less numerical diffusion is introduced as in FVM
solution.

From the time evolution of the magnitude of the mixture velocity for each of the reference
points in figure 5a the mixture velocity in the coherency model is equal to or larger than its
rigid counterpart. That is because the moving solid incorporated through the coherency model
imposes less drag on the mixture flow in the solidification region than the rigid model. The
coherency model progressively builds up the drag by a factor of 1 − gl since vsys = 0 ms−1.
As a result, the flow is faster in the solidifying region allowing for more solute advection.
Consequently, this leads to more evenly distributed macrosegregation, as seen in figure 2b.

Both models are similar in terms of the solidification start and end times, which are at 5 s and
45 s, respectively. As expected, both models behave the same in the fully liquid region but quite
differently during the solidification. The time it takes for the macrosegregation to appear like the
final macrosegregation is very different. In the rigid model, it takes 4 s after the solidification
start, whilst in the coherency model, it takes 12 s. This can be attributed to the flow being
less constrained in the slurry, allowing the solute to be more freely distributed, resulting in
changing species concentration field. This effect can be more clearly seen in figure 5b, where
a small peak in species concentration is reached in P2 before decreasing and increasing again.
The temperature distribution remains approximately the same, since the maximum local Péclet
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Figure 4: A comparison of the solution of the rigid (denoted as R) and the coherency (denoted
as C) models with DAM and FVM. Horizontal (a) and vertical (b) cross section.

number is on the order of magnitude of 2× 10−1 and the diffusive heat transport dominates in
the energy transport equation.
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Figure 5: Concentration and velocity magnitude at the reference points for the rigid (denoted
as R) and the coherency (denoted as C) models of a meshless DAM solution.
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5. Conclusion
In the present paper, the macrosegregation benchmark [3] has been extended to consider the
solid motion through a simple coherency model, and the results were compared to the original
benchmark case. Different numerical approaches, namely the DAM and FVM have been used
to implement the physical model, and a qualitative agreement was reached between the two
methods. The elaboration of the meshless solution procedure will be presented in a follow-up
publication. Convergence of the results of the meshless method is shown where it can be seen
that DAM can be used to get accurate predictions of the macrosegregation. The effect of the
solid motion model is demonstrated, producing significantly different results than the rigid model
case.
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