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a b s t r a c t

In this paper, the problem of interpolation of two points, two corresponding tangent
directions and curvatures, and the arc length sampled from a circular arc (circular arc
data) is considered. Planar Pythagorean–hodograph (PH) curves of degree seven are
used since they possess enough free parameters and are capable of interpolating the
arc length in an easy way. A general approach using the complex representation of
PH curves is presented first and the strong dependence of the solution on the general
data is demonstrated. For circular arc data, a complicated system of nonlinear equations
is reduced to a numerical solution of only one algebraic equation of degree 6 and a
detailed analysis of the existence of admissible solutions is provided. In the case of
several solutions, some criteria for selecting the most appropriate one are described
and an asymptotic analysis is given. Numerical examples are included which confirm
theoretical results.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Interpolation of local planar geometric data, such as points, tangent directions and curvatures, by parametric poly-
omial curves is a standard problem in Computer Aided Geometric Design (CAGD) and a common way to construct
arametric objects from given discrete data. If such interpolants are joined together, they form geometrically continuous
plines of order k (or Gk continuous splines), where k depends on the type of the interpolated data (k = 0 if only
ositions of points are given, k = 1 if in addition also tangent directions are provided, etc.). For a detailed survey of
eometric interpolation methods the reader is referred to [1] or [2]. However, there are not many results also concerning
he interpolation of some global geometric data, such as the arc length. This becomes extremely important when the arc
ength of the approximant is prescribed in advance (in planar motion design, e.g.), some global shape control is needed or
ethods relying on optimization of curve energies, such as bending energy, are to be developed. It turned out that there

s a specific class of curves which are of great help to solve such kinds of problems, the so-called polynomial Pythagorean–
odograph (PH) curves introduced in [3] and comprehensively described in [4]. They are distinguished by possessing a
olynomial arc length function. This implies several nice properties, which will be explained in detail later. Some recent
esults concerning interpolation of G1 data by PH quintic curves preserving an arc length are in [5], and confirm the
dvantage of PH curves if interpolation of global geometric data is considered. The author studied the interpolation of
wo points together with the corresponding tangent directions and the prescribed arc length. A detailed analysis of the
nterpolation problem was done, and a simple algorithm relying only on the solution of a certain quadratic equation was
escribed. As already guessed in [5], it is hard to believe that the generalization to the interpolation of G2 data with the
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rescribed arc length would possess such a simple solution as in the quintic case. However, some results considering
eneral G2 data without an arc length were obtained in [6,7] and recently in [8]. In this paper, we intend to extend these
esults to the interpolation of G2 data and the arc length arising from a circular arc (circular arc data) by PH curves of
egree seven. It should be noted that even in this case no relevant literature is available. Most of the approximation
echniques namely consider the interpolation of local geometric data only and use the remaining parameters to minimize
he distance between the interpolant and the circular arc, minimize the deviation of the curvature, etc. The results of this
ype can be found in [9–24], if we mention just the most important and recent ones. Although the proposed algorithms
rovide good approximations of circular arcs if the Hausdorff distance is considered as a measure of the error, they do
ot include an arc length in interpolation data. Our goal is to provide interpolants of G2 circular arc data which possess
he required arc length and retain a small Hausdorff distance. Note that they will be determined numerically since the
pproach requires solving an algebraic equation of degree 6.
The paper is organized as follows. In Section 2 some basic properties of complex representation of PH curves are given.

pecial attention is given to PH curves of degree 7 which are presented in detail, and all quantities needed for a solution of
he interpolation problem are derived. In the next section, the arc length preserving interpolation of G2 data is considered
and the system of nonlinear equations for the general case is presented. Two examples of such interpolation are given
showing that the solution of the problem highly depends on prescribed data. In Section 4 the interpolation of circular
arc data in canonical position is considered. The system of nonlinear equations derived for the general case is simplified,
and a new, simpler system of two nonlinear equations involving the angle α arising from the circular arc as a parameter
is provided. A detailed analysis of the solvability is done. Two cases are considered. For the first one, the absence of
real solutions is confirmed, and for the second one, the existence of at least two real admissible solutions is first proved
for any α ∈ (0, π/2]. Then a simple (numerical) procedure to check the existence of up to four admissible solutions is
described for a particular chosen α ∈ (0, π/2]. In Section 5 the existence of four solutions is confirmed for any α small
enough and asymptotic expansions of solutions are provided. In Section 6 some criteria for selecting the most appropriate
solution are described, and in the next section, several numerical examples together with the numerical confirmation of
the approximation order are given. The paper is concluded by Section 8.

2. Preliminaries

Planar PH curves are an important subclass of planar parametric polynomial curves. A regular planar parametric
polynomial curve p : [0, 1] → R2 is a PH curve if ∥p′

∥ is a polynomial, where ∥ · ∥ denotes the standard Euclidean
orm on R2. This characterization implies several important geometric properties of PH curves [4]: rational unit tangent,
ormal, curvature and offset,. . . Furthermore, the arc length function of a PH curve is the polynomial. All these properties
ake them useful for the interpolation of local geometric data and for interpolating global geometric quantities, such as
n arc length. Let p = (x, y)T be a PH curve of degree n where x′ and y′ are relatively prime polynomials. It is known [25]
hat polynomials x′ and y′ can be expressed in terms of two polynomials u and v as x′

= u2
− v2 and y′

= 2 u v which
mplies x′2

+ y′2
= (u2

+ v2)2 and consequently the arc length function is a polynomial u2
+ v2. It is often better to use a

omplex representation of PH curves [26]. If n = 2m + 1 and

w =

m∑
k=0

Bm
k wk, wk = uk + i vk, k = 0, 1, . . . ,m, (1)

where Bm
k (t) =

(m
k

)
tk(1 − t)m−k, k = 0, 1, . . . ,m, are Bernstein basis polynomials, then the integral of p′

= w2 is a PH
curve p of degree n. Furthermore, its unit tangent vector g , the curvature κ and the arc length s are given by

g(t) =
w2(t)
σ (t)

, κ(t) = 2
Im

(
w(t)w′(t)

)
σ 2(t)

, s(t) =

∫ t

0
σ (τ )dτ , (2)

where σ = |w|
2. Since we will consider PH curves of degree 7, we shall start with a complex cubic polynomial w with

complex Bernstein coefficients wk = uk + i vk, k = 0, 1, 2, 3. Integration of its square results in a PH curve p of degree 7,
which can be written in Bernstein-Bézier form as

p(t) =

7∑
k=0

B7
k(t) pk,

where

p1 = p0 +
1
7
w2

0, p2 = p1 +
1
7
w0w1, p3 = p2 +

1
7
3w2

1 + 2w0w2

5
,

p4 = p3 +
1
7
9w1w2 + w0w3

10
, (3)

p5 = p4 +
1
7
3w2

2 + 2w1w3

5
, p6 = p5 +

1
7
w2w3, p7 = p6 +

1
7
w2

3,
2
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nd p0 is a free complex integration constant. By (1) and (2) we obviously have

g(0) =

(
w0

|w0|

)2

, g(1) =

(
w3

|w3|

)2

,

nd by using some basic properties of w we also get

κ(0) = 6 Im
(

w0w1

|w0|
4

)
, κ(1) = −6 Im

(
w3w2

|w3|
4

)
.

urthermore, the total arc length L of p is

L =

∫ 1

0
|w(τ )|2 dτ =

1
7

(
|w0|

2
+ Re (w0w1) +

2
5
Re (w0w2) +

1
10

Re (w0w3) +
3
5

|w1|
2

+
9
10

Re (w1w2) +
2
5
Re (w1w3) +

3
5

|w2|
2
+ Re (w2w3) + |w3|

2
)

.

hese results will now be used in the following section where the nonlinear equations for general G2 data and the arc
ength will be derived. We will see that the solutions strongly depend on the data and a general analysis might be quite
hallenging, which justifies the restriction to the data arising from a circular arc.

. Nonlinear equations

The construction of parametric polynomial curves is usually based on the interpolation of particular geometric data,
uch as point positions, tangent directions, curvatures, etc. As was already mentioned in the introduction, in some
roblems also the interpolation of global geometric data, such as an arc length, is required. We shall follow the approach
n [5], where the author considered the problem of G1 data interpolation by PH quintics of prescribed arc length. The
roblem can be extended to G2 data interpolation, but the degree of the interpolating PH curve must be elevated to 7
ince PH quintic curves do not possess enough free parameters.
Let us assume the complex representation and suppose we want to interpolate two given endpoints q0, q1, their

orresponding tangent directions g0, g1 and curvatures κ0 and κ1. Furthermore, we require that the resulting interpolant
as a fixed arc length, say L > ∥q1 − q0∥. Since we are looking for an interpolant p among PH curves of degree 7,
here are 10 free parameters involved (8 parameters arising from the complex Bernstein coefficients (1) and two of
hem from a complex integration constant p0). The interpolation conditions provide 9 scalar equations. One could use
he remaining parameter for shape control or for optimization of some geometric property, but this would lead to a
hallenging optimization process. To avoid it, we will use the approach from [5], i.e., we shall assume equal lengths of
he tangents of p at the boundary points. This reduces the number of involved free parameters by one and gives some
ope that the interpolant is fully determined already by given geometric data. The assumption is not too restrictive, and
t is quite natural since it ensures symmetric solutions for symmetric data.

In [5], the author considered the reduction of data to the canonical form, which has previously been used also in [27].
he idea is to consider a new coordinate system which should simplify the analysis of the problem as much as possible.
ollowing the above-mentioned references, we can assume that the given data is of the form q0 = 0, q1 = 1, g0 = exp(i θ0),
1 = exp(i θ1) and L > 1, where θ0, θ1 ∈ (−π, π]. The original data are transformed into canonical one by an appropriate
ranslation, rotation and scaling. Finally, the obtained interpolant is pulled back to the original coordinate system by
nverse transformations. Note that translation, rotation and scaling preserve the PH property since a translation does not
ffect the hodograph at all, a rotation preserves the Euclidean norm of the hodograph and a scaling multiplies it by a
caling factor. Thus, if the above canonical data are assumed, the interpolation conditions become

e1 =
1
7

(
w2

0 + w0w1 +
3w2

1 + 2w0w2

5
+

9w1w2 + w0w3

10
+

3w2
2 + 2w1w3

5
+ w2w3 + w2

3

)
− 1 = 0,

e2 = w0 − d exp
(
i
1
2
θ0

)
= 0, e3 = w3 − d exp

(
i
1
2
θ1

)
= 0,

e4 = 6 Im
(

w0w1

|w0|
4

)
− κ0 = 0, e5 = 6 Im

(
w3w2

|w3|
4

)
+ κ1 = 0,

e6 =
1
7

(
|w0|

2
+ Re (w0w1) +

2
5
Re (w0w2) +

1
10

Re (w0w3) +
3
5

|w1|
2
+

9
10

Re (w1w2) +
2
5
Re (w1w3)

+
3
5

|w2|
2
+ Re (w2w3) + |w3|

2
)

− L = 0.

The first equation arises from the interpolation of two points, the second and the third one from the interpolation of
tangent directions, the next two ensure prescribed curvatures, and the last one prescribes the arc length L.
3
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Fig. 1. Ellipses (gray) and hyperbolas (black) arising from the first example with L = 101/100 (the first and the second figure from the left) and
ellipses and hyperbolas arising from the second example with L = 3 (the third and the last figure from the left).

Consider e2 = 0, e3 = 0 and write w0 = d(c0 + i s0), w1 = u1 + i v1, w2 = u2 + i v2, and w3 = d(c1 + i s1). where
ci = cos(θi/2), si = sin(θi/2), i = 0, 1. Then the above system of complex and real equations can be written as the system
of five real equations 35(e6 + Re(e1)) = 0, 35(e6 − Re(e1)) = 0, e4 = 0, e5 = 0 and 70 Im(e1) = 0, or equivalently as

6u2
1 + 9u1u2 + 6u2

2 +
(
10c20 + 10c21 + c0c1

)
d2 + 10d (u1c0 + u2c1) + 4d (u1c1 + u2c0) − 35(L + 1) = 0,

6v2
1 + 9v1v2 + 6v2

2 +
(
10s20 + 10s21 + s0s1

)
d2 + 10d (v1s0 + v2s1) + 4d (v1s1 + v2s0) − 35(L − 1) = 0,

κ0d3 + 6s0u1 − 6c0v1 = 0, κ1d3 − 6s1u2 + 6c1v2 = 0, (4)

12u1v1 + 9u2v1 + 9u1v2 + 12u2v2 + (s0(20c0 + c1) + s1(c0 + 20c1)) d2

+ 2 ((5v1 + 2v2)c0 + (2v1 + 5v2)c1 + (5u1 + 2u2)s0 + (2u1 + 5u2)s1) d = 0.

Since the equations arising from G2 conditions are linear in u1, u2, v1, v2, some further reduction of the system (4) is
definitely possible. However, the analysis of the solvability for general data seems to be extremely complicated, as already
guessed in [5]. To justify this, let us consider two particular simple examples showing that the existence of the solution
heavily depends on data.

Assume the data θ0 = π/2, θ1 = −π/2, κ0 = κ1 = 0 and L = 101/100. Plugging corresponding constants in (4) and
doing some manipulations with equations reveal that v1 = u1 and v2 = −u2. This further implies that either u2 = u1 or
u2 = −u1 − 5

√
2
6 d. If u2 = u1, we end up with two biquadratic equations for u1 and d, namely

d2 + 8
√
2 d u1 + 18u2

1 − 70 = 0, 200d2 + 200
√
2 d u1 + 240u2

1 − 707 = 0.

hey represent a hyperbola and an ellipse shown in Fig. 1 (the first figure on the left), and it is easy to show that they
o not intersect. Similarly we can check that also for u2 = −u1 − 5

√
2
6 d we do not have a solution (a hyperbola and an

llipse in Fig. 1 (the second figure from the left)).
For the second example consider the same data as in the previous one, except that L = 3. Similar procedure as before

eads to v1 = u1, v2 = −u2 and again to u2 = u1 or u2 = −u1 − 5
√
2
6 d. If u2 = u1, we end up with two biquadratic

quations for u1 and d, namely

d2 + 8
√
2 d u1 + 18u2

1 − 70 = 0, 10d2 + 10
√
2 d u1 + 12u2

1 − 105 = 0,

gain representing a hyperbola and an ellipse shown in Fig. 1 (the third figure from the left). It is clearly seen that they
ntersect in four points, thus the system of nonlinear Eqs. (4) has four solutions. The case u2 = −u1 − 5

√
2
6 d again implies

hyperbola and an ellipse with no intersections (Fig. 1, the last figure in the row). It is clear that changing also the angles
i and curvatures κi, i = 0, 1, would imply even more complicated examples with solutions relying heavily on the data.

. Interpolation of circular arc data

The analysis of the system of nonlinear equations determining the PH curve of degree 7, which interpolates given G2

ata with a prescribed arc length is, in general, highly nontrivial task as can be seen from the examples in the previous
ection. No references are available with at least some progress toward a general solution. Recently, the same interpolation
roblem was solved in [28] by using PH biarcs of degree 7. However, the problem simplifies due to the fact that biarcs
ossess more degrees of freedom than a single PH curve. Another special case was considered in [29], where the authors
onsidered arc length preserving G2 Hermite interpolation of clothoid segments. They have used the fact that the curvature
f a clothoid is proportional to the arc length parameter and its arc length has a simple analytic representation. Even with
his simplification, they have been able to solve the problem only by applying a numerical method on a reduced system
f nonlinear equations (two quadratic and one cubic equation). No detailed analysis of the existence of the solution was
rovided. In this section, we consider another simplification, the approximation of circular arcs. We consider interpolation
f circular arc data, i.e., the data arising from a circular arc. As we will see, we will be able to reduce the problem to one
4
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lgebraic equation of degree 6 and provide a detailed analysis of the existence of (up to four) admissible solutions. There
eem to be no results of this type available in the literature. Thus we may consider our approach as the first approximation
cheme of circular arcs involving the interpolation of the arc length.
Let the data be sampled from the circular arc with its inner angle equal to 2α. The canonical position and some

lementary geometry imply α = θ0 = −θ1, κ0 = κ1 = −2 sinα, L = α cscα, the radius of the arc equals 1/(2 sinα), and
ts center is at (1/2, −1/2 cotα)T . Note that in the following we will use two additional standard trigonometric functions
sc = 1/ sin and sec = 1/ cos. We shall further assume that 0 < α ≤ π/2, since for practical applications it is enough
o construct good approximations of circular arcs up to the semicircle. Similar analysis as in the following could also be
one for π/2 < α < π , too.
The circular data are first used to determine constants in the nonlinear system (4). The third and the fourth equation

re then solved on v1 and v2, i.e.,

v1 =
1
3
tan

(α

2

)(
3u1 − 2d3 cos

(α

2

))
, v2 = −

1
3
tan

(α

2

)(
3u2 − 2d3 cos

(α

2

))
. (5)

ombining this with the fifth equation leads to

(u1 − u2)
(
6(u1 + u2) − d(d2 − 10) cos

(α

2

))
= 0.

We obviously have two possibilities, u2 = −u1 +
1
6d(d

2
− 10) cos

(
α
2

)
or u2 = u1. Note that (4) implies that

f (d, u1, v1, u2, v2) is a solution, then also (−d, −u1, −v1, −u2, −v2) is a solution, which, by (3), provides the same
nterpolant p, so it is enough to consider solutions with d > 0 only.

.1. First case

We will prove that there are no real solutions in the case u2 = −u1 +
1
6d(d

2
− 10) cos

(
α
2

)
. Considering (5) the system

f nonlinear Eqs. (4) reduces to

18(4 cosα − 3)u2
1 + 3d(d2 − 10)

(
cos

(α

2

)
− 2 cos

(
3α
2

))
u1

+ cos2
(α

2

) (
−3d6 + 18d4 − 34d2 − 420 + 4d2(d4 − 6d2 + 30) cosα

)
= 0, (6)

36
(
3 sin

(
3α
2

)
− 11 sin

(α

2

))
u2
1 + 6 sin

(α

2

)(
5 cos

(α

2

)
− 3 cos

(
3α
2

))
d(d2 − 10)u1

+
(
840α − 8d2(d4 − 6d2 + 30) sinα + d2(3d4 − 18d2 + 34) sin (2α)

)
cos

(α

2

)
= 0.

Fortunately, the resultant of the polynomials on the left-hand side of (6) with respect to u1 simplifies to (504 cos(α/2))2
(d), where

r(d) =
(
16 sin3 α d2 + 30((3 cosα − 4) sinα + α(4 cosα − 3))

)2
(7)

nd the candidates for solutions of (6) with positive d are positive zeros of r .

emma 1. For α ∈ (0, π/2], function r in (7) has precisely one (double) positive zero

d1 =

√
30
4

√
α(3 − 4 cosα) + (4 − 3 cosα) sinα

sin3 α
>

5
2
.

roof. By (7) (double) zeros of r are ±d1. The result of the lemma will follow if we prove that f (α) > 0 on (0, π/2],
here

f (α) = α(3 − 4 cosα) + (4 − 3 cosα) sinα −
10
3

sin3 α.

uite clearly f (0) = 0 and f ′(α) = sinα(4α + 6 sinα − 5 sin 2α) ≥ 6 sin2 α (1 − cosα) > 0, where we have used the
nown fact that α > sinα for α > 0. Consequently f is positive on (0, π/2] and the proof is completed. □

Note that the second equation in (6) is quadratic in u1 with the discriminant

504
(
2 cos

(α

2

)
+ 6 sin

(α

2

)
sinα

)
sin

(α

2

)
fα(d), (8)

here

fα(d) = 960α + −8d2(d4 − 4d2 + 20) sinα + d2(3d4 − 12d2 − 4) sin 2α.

emma 2. Function f is negative on [5/2, ∞) for all α ∈ (0, π/2].
α

5
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g(α) = fα(5/2) = 960α −
13625 sinα

8
+

15275
64

sin 2α.

Obviously g(0) = 0 and g ′(α) =
5
32 (6110 cos2 α − 10900 cosα + 3089). By solving a simple quadratic equation one can

conclude that α0 ≈ 1.2069 is the unique zero of g ′ on (0, π/2] implying the local minimum g(α0) ≈ −274.2089. Since
also g(π/2) ≈ −195.1605, function g must be negative on (0, π/2]. Furthermore, zeros of f ′

α are d1 = 0,

d2,3 = ±

√
16 − 12 cosα − h(α)

12 − 9 cosα
, d4,5 = ±

√
16 − 12 cosα + h(α)

12 − 9 cosα
,

here

h(α) =
√

−614 + 288 cosα + 90 cos 2α.

Obviously h2 < 0, and d2,3,4,5 are complex thus fα must be monotone on [5/2, ∞). Since f ′′
α (0) = −16 sinα(20 sinα +

cosα) < 0, fα is decreasing which together with fα(5/2) < 0 implies the result of the lemma. □

From Lemmas 1 and 2 and (8) now follows that the system of nonlinear Eqs. (6) has no real solutions for any
α ∈ (0, π/2].

4.2. Second case

Let us now consider the symmetric case, i.e., u1 = u2. Eqs. (5) then imply v2 = −v1 and the first two equations in (4)
simplify to

3(1 + cosα)d2 + 8 cos
(α

2

)
du1 + 6u2

1 − 10(1 + α cscα) = 0, (9)

4d6 − 24d4 + 57d2 − 12 sec
(α

2

)
d(d2 − 3)u1 + 9 sec2

(α

2

)
u2
1 + 105 csc2

(α

2

)
(1 − α cscα) = 0, (10)

the system of two nonlinear equations for d and u1. The first equation again represents an ellipse, while the second one
is a much more complicated algebraic curve of degree 6 (see Fig. 2). But it is quadratic in u1 and we can detect its two
ranches

u+

1 (d) =
1
3
cos

(α

2

)(
2d3 − 6d +

√
21

√
5 csc2

(α

2

)
(α cscα − 1) − d2

)
, (11)

u−

1 (d) =
1
3
cos

(α

2

)(
2d3 − 6d −

√
21

√
5 csc2

(α

2

)
(α cscα − 1) − d2

)
(12)

(u+

1 is the black solid part and u−

1 is the black dashed part of the curve in Fig. 2). Let

dmax = csc
(α

2

)√
5 (α cscα − 1). (13)

hen clearly u+

1 and u−

1 are both defined on [−dmax, dmax], u+

1 ≥ u−

1 and u+

1 (±dmax) = u−

1 (±ddmax). Consequently, (10) is a
losed curve on [−dmax, dmax]. Let us first prove the following observation.

emma 3. For α ∈ (0, π/2] the inequality dmax >
√
10/3 holds true.

Proof. It is easy to see that the inequality from the lemma is equivalent to f (α) > 0, where f (α) = 3(α−sinα)−sinα(1−

cosα). Since f (0) = 0 and f ′(α) = 8 sin4 (
α
2

)
> 0, the proof of the lemma is complete. □

The following lemma guarantees the existence of the solution of the considered interpolation problem.

Lemma 4. The system of nonlinear Eqs. (9), (10) has at least two real solutions with d > 0 for any α ∈ (0, π/2].

roof. During the proof, we will refer to Fig. 2. Consider the (d, u1) plane. Let u1e and u1a be the positive intersections
f (9) and (10) with d = 0, respectively, and similarly, let de and da be the positive intersections of the same curves with
1 = 0, respectively. If we show that

(u1a − u1e)(da − de) < 0, (14)

hen curves must intersect in the first quadrant of the chosen coordinate system. But due to the symmetric properties,
hey must also intersect in the fourth quadrant and the result of the lemma will follow.
6
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u

i

R

Fig. 2. Curves given by Eqs. (9) (gray, an ellipse) and (10) (black solid and black dotted, an algebraic curve of degree 6) for α = π/2 with quantities
sed in the proof of Lemma 4.

Quite clearly, for (14) it is enough to see u1a > u1e and de > da. Let us start by proving the first inequality. If d = 0,
then (9), (11) and (12) imply

u1e =

√
5
3

√
α cscα + 1, u1a =

√
35
3

cot
(α

2

)√
α cscα − 1.

Some straightforward calculations reveal that u1a > u1e is equivalent to f (α) := cosα (4α − 3 sinα)−4 sinα +3α > 0 on
(0, π/2]. Since f ′(α) = 2 sinα(3 sinα − 2α), f is strictly increasing on (0, α∗) and strictly decreasing on (α∗, π/2], where
α∗

∈ (π/4, π/2). But f (0) = 0, f (π/2) = (3π − 8)/2 > 0, and the conclusion f > 0 on (0, π/2] follows.
For the second inequality, observe that dmax > da, and it is enough to see that de ≥ dmax. Inserting u1 = 0 in (9)

and considering (13) lead us to show that g(α) := cosα sinα + 2 sinα − 2α cosα − α ≥ 0 on (0, π/2]. But this follows
mmediately from g(0) = 0 and g ′(α) = 2 sinα(α − sinα) > 0 on (0, π/2]. □

emark 1. Identical proof can be done for the case α ∈ (0, αmax), where αmax ≈ 2.0682 is the first positive zero of f
defined in the proof of the previous lemma.

From the previous lemma it follows that the considered system of nonlinear equations has an even number of solutions
with positive d for any α ∈ (0, π/2]. Numerical examples reveal that there might be four of them as indicated in Fig. 2.
However, it seems quite difficult to prove the existence of a precise number of solutions in general. Four solutions reduce
to three for α = αcrit ≈ 2.2337 and to only two solutions for α > αcrit (see Fig. 3). The critical value αcrit is a solution
of the system (9), (10) and their zero Jacobian. In the following, we will provide an easy (numerical) procedure to check
the existence of four solutions with d > 0 for a particular α ∈ (0, π/2] and prove their existence for α small enough. The
PH interpolant of the degree seven arising from the positive solution dj, j = 1, 2, 3, 4, where d1 < d2 < d3 < d4, will be
denoted by pj.

Let us first transform the system of nonlinear Eqs. (9) and (10) to a more appropriate one for the analysis. This can
be done by using a Gröebner basis [30] with respect to a particular ordering of the unknowns. The system of nonlinear
equations then reads as

p1(d) = −32 sin6 α d12 + 256 sin6 α d10 − 1184 sin6 α d8

− 96 sin3 α(−40α + 9 sinα + 20 sin 2α + 7 sin 3α − 30α cosα) d6

+ 96 sin3 α(−160α + 99 sinα + 80 sin 2α + 7 sin 3α − 120α cosα) d4

+ 13440(α − sinα) sin5 α csc2
(α

2

)
d2

− 1800(6α + 8α cosα − 2 sinα(3 cosα + 4))2 = 0, (15)
7
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L
p

Fig. 3. Four solutions with positive d for α = 1.8 < αcrit ≈ 2.2337 (left) which degenerate into three of them for α = αcrit (middle) and transform
to two solutions for α = 2.5 > αcrit (right).

p2(u1, d) = 24d
(
d2 − 2

)
sec

(α

2

)
u1 + 210 csc2

(α

2

)
(α cscα − 1)

+ sec2
(α

2

) (
−30α cscα + 9d2 cosα + 9d2 − 30

)
− 8d6 + 48d4 − 114d2 = 0. (16)

et us analyze the polynomial p1 first. Since it is even of degree 12, we can reduce its degree to 6 by introducing
(x) = p1(

√
x). Taylor expansion of p around 0 as a function of α can be obtained with the help of a computer algebra

system, namely

p(x) = −32q(x)α6
+ O(α8), q(x) = x6 − 8x5 + 37x4 − 134x3 + 284x2 − 280x + 100. (17)

Real zeros of q are

x1 = x2 = 1 x3 ≈ 2.1842, x4 ≈ 3.2872. (18)

Note that x3 and x4 can also be written in radicals since they are zeros of some quartic polynomial, but expressions are
too complicated to be given here explicitly. We observe that zeros of p must be close to zeros of q at least for α small
enough. But it turns out that they play a crucial role in finding the solution of nonlinear system (15) and (16) for general
α too.

Lemma 5. For any α ∈ (0, π/2], the polynomial p has at most four positive zeros on (0, d2max). If p(yi), i = 0, 1, . . . , 4, where
y0 = 0, y1 = 1, y2 = x3, y3 = x4 and y4 = d2max, are of alternating signs, then p has precisely four positive zeros.

Proof. First, observe that the fourth derivative of p is of particular simple form, namely p(iv)(x) = −768 sin6 α
(
15x2 − 40x

+37). It is quite clearly negative and consequently, p has at most four real zeros. By Lemma 3 and (18) we have
y0 < y1 < y2 < y3 < y4 and p(yi)p(yi+1) < 0, i = 0, 1, 2, 3, implies precisely four zeros due to the continuity
of p. □

We are now ready to prove the main theorem of this paper.

Theorem 1. If α ∈ (0, π/2] then the number of real solutions of the nonlinear system (9), (10) with d > 0 is the same as the
number of positive zeros of p.

Proof. Since nonlinear system (9), (10) is equivalent to the system (15), (16), the only candidates for real solutions with
d > 0 are, by Lemma 5, positive zeros of p. Thus we have to prove that each positive zero of p implies the unique real
solution of the system (15), (16). Let z be a positive zero of p. Then dz =

√
z is a positive zero of p1 and the solution of

p2(u1, dz) = 0 on u1 provides the desired solution of the system of nonlinear equations. But p2(u1, ·) is a linear polynomial
and it remains to prove that its leading coefficient does not vanish at dz . It is equivalent to verifying that z ̸= 0, 2, or
equivalently

p(0) = −7200f1(α)2 < 0, p(2) = −32f2(α)2 < 0,

where

f1(α) = cosα (4α − 3 sinα) − 4 sinα + 3α,

f2(α) = 45α − 2 sin3 α − 66 sinα + 60α cosα + 6 sinα cos2 α − 45 sinα cosα.
8
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hus it is enough to show that f1, f2 > 0 on (0, π/2]. The inequality f1 > 0 follows from the fact that f1 = f from the
roof of Lemma 4. To confirm f2 > 0, observe that f2(0) = 0 and f ′

2(α) = −6 sinαf3(α), where f3(α) = 10α − 15 sinα +

sinα cosα. Since f ′

3(α) = 6 − 15 cosα + 8 cos2 α, f ′

3 has precisely one zero on [0, π/2] and consequently f3 has at most
wo zeros there. Since f3(0) = 0, f3(α) = −α + O(α3) and f3(π/2) = 5(π − 3) > 0, f3 has the unique zero α0 ∈ (0, π/2].
hus f2 is increasing on (0, α0) and decreasing on (α0, π/2]. Since f2(0) = 0 and f2(π/2) = (45π − 136)/2 > 0, function
2 must be positive on (0, π/2] and the result of the theorem follows. □

The previous theorem provides an efficient and easy way to check the number of polynomial parametric approximants
nterpolating G2 data and an arc length arising from a circular arc given by an inner angle 2α. For some practically
mportant angles α, such as α = π/2, π/3, π/4, π/8, . . . , the direct application of Lemma 5 confirmed the existence of
our zeros of p, except for α = π/2, where we had to replace y2 = x3 by y2 = 2. A direct formal proof that precisely four
olutions exist for any α ∈ (0, π/2] seems to be quite a difficult task since the analysis of symbolic expressions involving
ombinations of algebraic and trigonometric terms in Lemma 5 would be needed. However, if α is small enough, the
xpansion (17) enables us to prove the existence of four solutions in general. This will be done in the following section.

. Asymptotic analysis

Let us now consider α small enough. Using (17) and considering some additional terms in the expansion, we get

p(y0) = −3200α6
+ O(α8), p(y1) = 64α10

+ O(α12), p(y2) ≈ −52.3867α8
+ O(α10),

p(y3) ≈ 2292.89α8
+ O(α10), p(y4) = −

156800
729

α6
+ O(α8).

onsequently, p has four positive zeros by Lemma 5. The leading terms constants can also be written in a closed form,
hus their numerical values can be computed with arbitrary precision.

In the following, we will find asymptotic expansions of positive zeros of p, which provide asymptotic expansions of
eal solutions of the system of nonlinear Eqs. (9), (10). Let zi, i = 1, 2, 3, 4, be a positive zero of p. Then (17) suggests the
expansion of zi as

zi = xi +
∞∑
j=1

ci,jαj, i = 1, 2, 3, 4.

Constants ci,j can now be found as a solution of the system of equations for ci,j arising from the condition that terms in
the expansion of p(zi) vanish for all α. Let us demonstrate the procedure for i = 2, since the solution z2 will later turn
out as the most appropriate one. The expansion of p(z2) reads as

p(z2) = −1248c22,1α
8
+ 64c2,1

(
23c22,1 − 39c2,2 − 2

)
α9

− 32
(
12c42,1 − 3

(
46c2,2 + 9

)
c22,1 + 78c2,3c2,1 + 39c22,2 + 4c2,2 − 2

)
α10

+ . . .

The requirement that the coefficients at αj, j = 8, 9, 10, vanish, leads to the triangular system of nonlinear equations with
solutions c2,1 = 0, c2,2 = (−2±

√
82)/39. Since z2 > 1, we must take c2 = (−2+

√
82)/39. Considering more terms in

the expansion, we can similarly compute additional constants c2,j but we will skip the details. Recall that d2 =
√
z2, so

he asymptotic expansion of d2 is

d2 = 1 −
1
78

(
2 −

√
82

)
α2

+

(
37966 + 10579

√
82

)
19456632

α4
+ · · · (19)

ogether with (16) we get the asymptotic expansions

u1,2 = u2,2 = 1 +
1

312

(
73 − 4

√
82

)
α2

−

(
3071515 − 636632

√
82

)
311306112

α4
+ · · · (20)

nd finally from (5) also

v1,2 = −v2,2 =
α

6
+

(
371 − 36

√
82

)
1872

α3
−

(
8660963 − 1179080

√
82

)
1037687040

α5
+ · · · (21)

imilarly we compute asymptotic expansions for the other three solutions d1, d3, d4 and consequently also expansions for
1,j, u2,j, v1,j and v2,j, j = 1, 3, 4. Either in the non-asymptotic or in the asymptotic approach we obtain several solutions.
n the next section, we will provide suggestions on choosing the most appropriate one.
9
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. Solution selection

Multiple solutions are regularly observed fact when one is dealing with interpolation by PH curves. Usually, some of
hem are more appropriate for applications (without undesirable loops, e.g.) than others. This was observed already in
he early papers dealing with interpolation by PH curves [27,31]. There are several suggestions on how to choose the
ost appropriate solution, but none of them can be considered a universal one. Quite standard measure of fairness is the
bsolute rotation index [4, p. 532], which is defined as

Rabs =

∫ 1

0
|κ(t)| ∥p′(t)∥dt. (22)

t was successfully used in [5] to identify more appropriate solutions. We can use the same criterion here for the general
nterpolation of G2 data. However, for the circular arc data, it seems reasonable to observe the deviation of the curvature
f the interpolant from the (constant) curvature of the corresponding circular arc in the L2 norm. Since the curvature of
he circular arc in the chosen canonical position is −2 sinα, the error becomes

Eκ =

∫ 1

0
(κ(t) + 2 sinα)2 dt. (23)

ote that the (numerical) evaluation of Eκ for a PH curve is quite simple since its curvature κ is a rational function.
For the asymptotic case explained in the previous section is promising to choose the solution which provides a curve

ith the best approximation properties, such as the minimal Hausdorff distance. Since the approximation of a circular
rc is considered, one can use the radial distance drad as the error measure [32]. It is a special type of parametric distance
onsidered in [11] and later in [19] where the authors have proved that it coincides with the Hausdorff distance in the
ase of circular arc approximation. Let p = (px, py)T be a PH curve of degree seven approximating the circular arc c given
y some small inner angle 2α in the canonical position. Then the radial distance is defined as

drad(p; α) = max
t∈[0,1]

⏐⏐⏐⏐⏐⏐
√(

px(t) −
1
2

)2

+

(
py(t) +

1
2
cotα

)2

−
1

2 sinα

⏐⏐⏐⏐⏐⏐ .
.e., the distance between the point p(t) and the intersection of the line passing through the center of the circular arc
1/2, −1/2 cotα)T and p(t) with the circular arc. Using the asymptotic expansions (19)–(21) we can derive

drad(p; α) = c αr
+ O

(
αr+1) , (24)

here c is some positive constant and r ∈ N is the asymptotic approximation order. Since p interpolates two points,
wo tangent directions, two curvatures and an arc length, the expected approximation order is 7. Indeed, for the solution
= d2 which implies the PH interpolant p2 we have

drad(p2; α) =
47773 − 5264

√
82

318898944
α7

+ O
(
α8)

≈ 3.3068 × 10−7 α7
+ O

(
α9) , (25)

hile d1, d3 and d4 imply interpolants p1, p3 and p4, respectively, with inferior leading term constant or much lower
pproximation order. More precisely,

drad(p1; α) =
47773 + 5264

√
82

318898944
α7

+ O
(
α8)

≈ 2.9928 × 10−4 α7
+ O

(
α9) , (26)

drad(p3; α) = 0.0173α + O
(
α3) , drad(p4; α) = 0.1246α + O

(
α3) . (27)

. Numerical examples

In all numerical examples, canonical data will be considered. Since we know that there are always several solutions of
he problem, we can find them numerically either by applying the continuation method [33] or by using Lemma 5 which
rovides excellent starting values for an iterative algorithm (such as the Newton–Raphson method) to find positive real
eros of p. The selection criterion (23) (for general circular arc data) or (24) (for circular data with α small enough) is
hen used to identify the most pleasant interpolant.

Let us first consider the following circular arc data:

α := θ0 = −θ1 = π/2, κ0 = κ1 = −2, L = π/2. (28)

e know from Lemma 5 that four admissible solutions exist. The error (23) is taken as the selection criterion. Its
orresponding values for the approximants pi arising from the positive solutions di, i = 1, 2, 3, 4, are 4.2527 × 10−2,
8.6586 × 10−8, 2.4235 × 106 and 34.0648, respectively. The approximant p2 corresponding to d2 ≈ 1.2756 is clearly the
most appropriate, which is also confirmed in Fig. 4. The Hausdorff distance between the chosen interpolating curve and
the circular arc is approximately 1.2850× 10−5 and it is attained at the middle of the arc. Thus the constructed PH curve
10
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Fig. 4. Plots of semicircle approximants pi , i = 1, 2, 3, 4, interpolating data (28) (top) together with corresponding curvature profiles (bottom). The
gray horizontal line is the curvature of the approximated semicircle. Note that p3 possesses two almost invisible tiny loops.

Fig. 5. Plots of interpolants of data (29) (the first and the second on the left) and corresponding curvature profiles. Dotted lines are curvatures of
he circular arc from which the data were taken.

Table 1
Radial distances and estimated approximation orders for G2 interpolants p2 (the second
and the third column) and p3 (the fourth and the fifth column).
α drad(p2; α) r drad(p3; α) r

π /2 1.2850×10−5 – 1.3865×10-2 –
π /4 6.8517×10−8 7.55 1.3143×10-2 0.08
π /8 4.9016×10−10 7.13 6.7687×10-3 0.96
π /16 3.7474×10−12 7.03 3.3944×10-3 1.00
π /32 2.9119×10−14 7.01 1.6980×10-3 1.00

of the degree 7 can be considered a remarkably accurate approximation of the semicircle preserving the arc length. For
the G2 approximation of the whole circle, just consider the spline approximant build by the constructed interpolant and
its rotation.

As the second example, let us consider the data from the circular arc with α > π/2. Let

α := θ0 = −θ1 = 5π/6, κ0 = κ1 = −1, L = 5π/3. (29)

he system of nonlinear Eqs. (9) and (10) has only two admissible solutions. According to (23), the first one is clearly
ejected since the error is Eκ ≈ 61.3568, much higher than the error of the second one Eκ ≈ 9.0995 × 10−6. This is
vidently confirmed also in Fig. 5 where approximants together with their curvature profiles are shown. The Hausdorff
istance of the second interpolant and the circular arcs is 1.6607 × 10−3, which is less than 0.2% relatively to the radius.
Note that we could take also a greater value of α. Numerical examples confirm admissible solutions of the system of

nonlinear equations for any α < π , i.e., for the data arising from circular arcs up to almost the whole circle.
Let us conclude this section with a numerical evaluation of the approximation orders (25)–(27). For the sake of

simplicity we will consider just interpolants p2 and p3. They are computed for αn = π/2n, n = 1, 2, . . . , 5, and the
orresponding Hausdorff errors en are determined. From en ≈ cαr

n one easily concludes that r ≈ log(en/en+1)/ log 2.
umerical results are collected in Table 1 and they confirm theoretical values established in the previous section.

. Closure

PH curves of degree seven are promising objects for interpolating G2 local data and preserving an arc length. Since the
roblem turns out to be quite complicated for general data, a relaxation to the circular arc data was done and a detailed
nalysis was provided. It turned out that the above-mentioned curves provide excellent approximants of circular arcs, and
11
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hey preserve a prescribed arc length. An algorithm for the construction of such curves was provided. It basically requires
ust solving an algebraic equation of degree six. An asymptotic analysis reveals that the approximation order is seven.

For future work, it would be nice to make some progress in studying the interpolation of general data. This requires
ome deeper analysis of a general system of nonlinear Eqs. (4). Another approach to solve the same problem would be
sing the PH quintic biarcs, a generalization of cubic biarcs studied already in an early paper by [34] and recently in [35].
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