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Abstract
A connected graph of order n admitting a semiregular automorphism of order n/k
is called a k-multicirculant. Highly symmetric multicirculants of small valency have
been extensively studied, and several classification results exist for cubic vertex- and
arc-transitive multicirculants. In this paper, we study the broader class of cubic vertex-
transitive graphs of order n admitting an automorphism of order n/3 or larger that
may not be semiregular. In particular, we show that any such graph is either a k-
multicirculant for some k ≤ 3, or it belongs to an infinite family of graphs of girth 6.

Mathematics Subject Classification 2020 · 05E18

1 Introduction

Studying the structure of the automorphism groups of highly symmetrical graphs is
one of the classical topics in the area of algebraic graph theory and a very important
part of it aims at proving upper bounds on the order of the automorphism groups in
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terms of a conveniently tame function of the order of the graph (see, for example, the
classical work of Tutte [32] on cubic symmetric graphs). Existence of such bounds
often allows strong group theoretical tools to be applied.

In some applications (such as a construction of a complete list of all graphs of
fixed valence, bounded order and given symmetry type; see for example [7, 23]), a
bound on the order of the automorphism group can be substituted with a weaker result
where the order of individual automorphisms is bounded rather than the order of the
automorphism group itself. It is well known that the order of the automorphism group
of a connected vertex-transitive graph of valence 3 (cubic vertex-transitive graph,
for short) cannot be bounded by any subexponential function of the order (see, for
example, [23]). However, a recent result [27, Theorem 1.6] shows that the order o(g)

of an individual automorphism g of a cubic vertex-transitive graph other than K3,3
equals the length �(g) of the longest orbit of the cyclic group 〈g〉, implying that o(g)

cannot exceed the order of the graph. In other words, if we define

η(�) := |V(�)|
max{o(g) : g ∈ Aut(�)} ,

then η(�) ≥ 1 holds for every cubic vertex-transitive graph. The aim of this paper
is to investigate how sharp this bound is and under what additional assumptions it
can be improved. More precisely, we obtain a complete classification of cubic vertex-
transitive graphs � for which 1 ≤ η(�) ≤ 3 holds and thus show that η(�) > 3
for every cubic vertex-transitive graph not belonging to a known list of exceptional
families (see Theorem 1.1).

Before stating Theorem 1.1, let us first introduce a few notions appearing in its
statement. A non-trivial automorphism g of a graph is called semiregular provided
that the length of every vertex-orbit of 〈g〉 equals o(g), or equivalently, when all the
orbits of 〈g〉 have equal size. A graph admitting a semiregular automorphism with k
vertex orbits is called a k-multicirculant; in addition, every graph on n vertices is an
n-multicirculant. Let

κ(�) := min{k : � is a k-multicirciulant}

and observe that η(�) ≤ κ(�) ≤ |V(�)| holds for every graph �. What is more, the
well-known polycirculant conjecture [16] (which is known to be true for graphs of
valence 3 [17], as well as many other classes of graphs; see [1]) states that κ(�) <

|V(�)| for every vertex-transitive graph �. There are numerous classification results
proved about cubic vertex-transitive k-multicirculants of different symmetry types
(see for example [6, 9, 10, 12–15]) and in particular, all cubic vertex-transitive 1-
multicirculants (also called circulants), 2-multicirculant (also called bicirculants) and
3-multicirculants (also called tricirculants) are known [22, 24].

An interesting interplay between the parameters η(�) and κ(�) is considered in
Sect. 8. In particular, the question whether the parameter κ(�) can be bounded above
in terms of η(�) is discusses there.

Let us now introduce some families of graphs appearing in Theorem 1.1. For a
positive integer n ≥ 3, let Prism(n) denote the prism on 2n vertices, which can also
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be viewed as the generalised Petersen graph GP(n, 1), and let Moeb(n), n ≥ 4 even,
be the Möbius ladder with vertex-set Zn and edges of the form {x, x + s} for x ∈ Zn ,
s ∈ {±1, n/2}. Note that κ(Moeb(n)) = 1 for every n, while κ(Prism(n)) is 1 or 2,
depending on whether n is odd or even, respectively.

Further, for a positive integer n and distinct elements i, j ∈ Zn\{0}, let H(n, i, j)
be the graph with vertex-set Zn × Z2 and edges of the form {(x, 0), (x + s, 1)} for
x ∈ Zn and s ∈ {0, i, j}. Note that the graphs H(n, i, j) are bipartite bicirculants and
are also known as cyclic Haar graphs [22]. Clearly, κ(H(n, i, j)) ≤ 2 and the values
of n, i, j for which κ(H(n, i, j)) = 1 are characterised in Lemma 7.1.

Let us nowdefine two families of tricirculants, first introduced in [24,Definitions 4.1
and 5.1]. For an odd integer k, k > 1, let X(k) be the graphwith 6k vertices, labelled ui ,
vi andwi for i ∈ Z2k , and the edge-set being the union E1∪ E2∪ E3∪ E4∪ E5 where:
E1 = {{ui , ui+k} : i ∈ Z2k}, E2 = {{ui , vi } : i ∈ Z2k}, E3 = {{ui , wi } : i ∈ Z2k},
E4 = {{vi , wi+1} : i ∈ Z2k}, and E5 = {{vi , wi+r } : i ∈ Z2k}, where r = (k + 3)/2
if k ≡ 1 (mod 4) and r = (k + 3)/2 + k if k ≡ 3 (mod 4).

Further, for an odd integer k, k > 1, let Y(k) be the graph with 6k vertices, labelled
ui , vi andwi for i ∈ Z2k , and the edge-set being the union E1∪E2∪E3∪E4∪E5 where:
E1 = {{ui , ui+1} : i ∈ Z2k}, E2 = {{ui , vi } : i ∈ Z2k}, E3 = {{vi , wi } : i ∈ Z2k},
E4 = {{vi , wi+2} : i ∈ Z2k}, and E5 = {{wi , wi+k} : i ∈ Z2k}.

By [24, Theorem 4.3 and Theorem 5.3], κ(X(k)) = κ(Y(k)) = 3 for k ≡ 3(mod 6)
while κ(X(k)) = κ(Y(k)) = 2 for k ≡ 0 (mod 6). More facts about graphs X(k) and
Y(k) can be found in [24, Sects. 4 and 5].

For positive integersm, t ≥ 3, let SDW(m, t) be the cubic graph with the vertex-set
Zm ×Zt ×Z2 and edges of the form {(x, i, 0), (x, i ±1, 1)} and {(x, i, 1), (x +1, i, 0)}
for all x ∈ Zm and i ∈ Zt . (The graphs SDW(m, t) with t = 3 are also known as
split depleted wreath graphs.) Note that a graph SDW(m, t) is a 2t-multicirculant, as
witnessed by the semiregular automorphism of order m, mapping a vertex (x, i, j) to
the vertex (x + 1, i, j) for every x, i, j . It can be easily seen that κ(SDW(m, 3)) ≤ 6
and that η(SDW(m, 3)) ≤ 3 unlessm is divisible by 6 (inwhich case η(SDW(m, 3)) =
6); see Lemma 6.13 for more details.

Finally,Tutte’s 8-cage is the unique cubic arc-transitive graphon30vertices, appear-
ing under the name CubicVTgraph(30, 8) in [23], while the truncated tetrahedron
is the graph on 12 vertices obtained by the geometric truncation of the skeleton of the
tetrahedron (it appears under the name CubicVTgraph(12, 2) in [23]).

We can now state the main result of this paper.

Theorem 1.1 Let � be a finite simple connected vertex-transitive graph of valence 3
and order n. Then, � admits an automorphism of order at least n

3 (or equivalently,
η(�) ≤ 3) if and only if one of the following happens:

(1) κ(�) = 1 and � is isomorphic to

(a) the prism Prism(m) where n = 2m with m ≥ 3, m odd; or
(b) the Möbius ladder Moeb(n) with n ≥ 4;

(2) κ(�) = 2 and � is isomorphic to

(a) the prism Prism(m) where n = 2m with m ≥ 4, m even;
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(b) a generalised Petersen graph GP(m, r) where n = 2m, m ≥ 5, 2 ≤ r < m/2,
and

• m ≥ 3, r2 ≡ ±1 (mod m), or
• m = 10 and r = 2;

(c) the cyclic Haar graphs H(m; r , s) where n = 2m with m ≥ 3, 1 ≤ r , s ≤
m − 1, r 	= s, r divides m, gcd(r , s) = 1, such that m is even or m is odd and
{r , s} is neither {1, m − 1} nor {1, 2}.

(3) κ(�) = 3 and � is isomorphic to one of the following graphs:

(a) X(k) with k ≡ 3 (mod 6);
(b) Y(k) with k ≡ 3 (mod 6);
(c) Tutte’s 8-cage where n = 30;
(d) the truncated tetrahedron where n = 12.

(4) κ(�) = 6 and � ∼= SDW(m, 3) with m ≡ 3 (mod 6), m ≥ 9, n = 6m.

Remark 1.2 If� is a graph appearing in one of items (1)–(3), then κ(�) = η(�) except
when � is isomorphic to

• the cube graph Q3 ∼= Prism(4) where η(�) = 4
3 ;

• the Petersen graph GP(5, 2) where η(�) = 5
3 ;

• the Heawood graph H(7, 1, 3) where η(�) = 7
4 ;

• the Möebius–Kantor graph GP(8, 3) where η(�) = 4
3 ;

• the Pappus graph Y(3) ∼= SDW(3, 3) where η(�) = 3
2 .

If� is one of the graphs in item (4), then η(�) = 3. The relation between the functions
η and κ is further discussed in Sect. 8.

The proof of the above theorem is inevitably rather technical since a certain amount
of case-by-case analysis cannot be avoided. However, we have tried to use as many
theoretical tools as possible in order to shorten and organise the arguments into self-
contained parts.

Our proof relies on two crucial ideas. The first idea is to classify cubic vertex-
transitive graphs � admitting an automorphism g of order at least |V(�)|/3 in terms
of the quotient graphs�/〈g〉. For this approach to be practical, we need to store enough
information that will allow us to reconstruct the graphs � from their quotients. Here,
a recently developed theory of generalised cyclic covering projections [25], briefly
summarised in Sect. 3, provided the needed theoretical background. The second crucial
fact making this approach feasible follows from the results of [27], from which one
can deduce that a cyclic group of automorphisms of a cubic vertex-transitive graph
� with order at least |V(�)|

3 can have at most 5 orbits on V(�) (see Lemma 4.1). In

particular, there is only a finite number of possible quotients�/〈g〉with o(g) ≥ |V(�)|
3 .

The rest of the proof is then a careful case-by-case analysis of these possible quotient
graphs. The strategy of proving Theorem 1.1 is laid out in more detail in Sect. 2.3.
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2 Overview and Basic Definitions

The following paragraphs, in which we give some basic formal definitions and we
outline the proof of Theorem 1.1, serve as a more detailed summary of the contents
of this paper.

2.1 Graphs

We would first like to stress that all the graphs in this paper are finite. Even though we
are primarily interested in simple graphs (that can be defined as a finite set of vertices
together with an irreflexive symmetric relation on it), it will be very convenient for us
to adopt a more general definition of a graph that has become standard when quotients
and covers of graphs are considered (see, for example, [18]).

For us, a graph is an ordered 4-tuple (V , D; beg, inv) where D and V 	= ∅ are
disjoint finite sets of darts and vertices, respectively, beg : D → V is a mapping which
assigns to each dart x its initial vertex beg x , and inv is an involutory permutation of
D which interchanges every dart x with its inverse dart, also denoted by x−1. The
final vertex of a dart x is beg x−1 and is denoted end x . The neighbourhood of a vertex
v is defined as the set of darts that have v for its initial vertex and the valence of v

is the cardinality of the neighbourhood. If � is a graph we write V(�) and D(�) to
denote the vertex- and dart-set of �, respectively. Furthermore, we may write beg�

and inv� , with a subscript, to indicate the beginning and inverse functions of �, to
avoid confusion when more than one graph is involved. We will generally omit the
subscript if there is no possibility of ambiguity.

The orbits of inv are called edges. The edge {x, x−1} containing a dart x is called a
semi-edge if x−1 = x , a loop if x−1 	= x while beg (x−1) = beg x , and is called a link
otherwise. The endvertices of an edge are the initial vertices of the darts contained in
the edge. If {u, v} is the set of the endvertices of an edge, then we say that u and v

are adjacent and write u ∼ v. Two darts x and y are parallel if beg x = beg y and
beg x−1 = beg y−1. Two edges are parallel if they have the same endvertices. When
we present a graph as a drawing, the links are drawn in the usual way as a line between
the points representing its endvertices, a loop is drawn as a closed curve at its unique
endvertex and a semi-edge is drawn as a segment attached to its unique endvertex.

A graph without loops, semi-edges and pairs of parallel edges is simple. Note that a
simple graph is completely determined by its vertex-set and the adjacency relation, and
conversely, given a set V and an irreflexive symmetric relation∼ on V , we can define a
graph (V , D; beg, inv) by letting D := {(u, v) : u, v ∈ V(�), u ∼ v}, beg(u, v) = u
and inv(u, v) = (v, u). A dart in a simple graph is traditionally called an arc, so we
will use these two terms interchangeably. In this paper, a cubic graphwill always stand
for a connected simple graph in which every vertex has valence 3.

Notions such as morphism, isomorphism and automorphism of graphs are obvious
generalisations of those defined in the traditional setting and precise definitions can
be found in [18, 19]. In particular, an automorphism of a graph (V , D; beg, inv) is a
permutation g of V ∪ D preserving each of V and D such that inv(xg) = inv(x)g

and beg(xg) = beg(x)g for every x ∈ D. Note that when the graph is simple, an
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Fig. 1 The Möbius ladder on 8 vertices (top left) and K3,3 (top right) above their labelled quotients by
a cyclic group of automorphisms G = 〈g〉. For the case on the left, g is the automorphism given by the
permutation (u0u1u2u3)(v0v1v2v3); for the graph on the right g is given by (u0u1)(v0v1v2). In the graph
on the lower right, the edge joining uG

0 and vG
0 has a label next to each of its endvertices: 3 next to uG

0 , and

2 next to vG
0 . These are the labels λG (x) and λG (x−1) where x is the dart pointing from u0 to v0. This

indicates that every vertex in the fibre of uG
0 (in the graph above) has 3 neighbours in the fibre of vG

0 while

every vertex in the fibre of vG
0 has 2 neighbours in the fibre of uG

0

automorphism is uniquely defined by its adjacency preserving action on the vertex-
set. We shall thus often view automorphism of simple graphs in the usual way, that is,
as adjacency preserving permutations of the vertex-set.

2.2 Labelled Quotients of Graphs

Let � := (V , D; beg, inv) be a graph admitting a cyclic group of automorphisms
G ≤ Aut(�). For v ∈ V , let vG denote the G-orbit of v and let V /G be the set
of all G-orbits of vertices of �. Similarly, let xG be the G-orbit of x ∈ D and let
D/G be the set of all G-orbits on darts. We define the G-quotient of � as the graph
�/G = (V /G, D/G, beg′, inv′) where beg′ xG = (beg x)G and inv′ xG = (inv x)G

for all x ∈ D(�).
Let x ∈ D(�) be a dart and let u = beg x . Then, xG is a dart of �/G with initial

vertex uG . Let λG(xG) denote the number of darts of � in the orbit xG that begin at
any fixed vertex in uG (note that this is independent of which vertex of uG we choose
and that λG(xG) = |xGu |). Then, λG : D(�/G) → N is a well-defined function and
the pair (�/G, λG) is called a labelled quotient (see Fig. 1).

2.3 Strategy

Inwhat follows, we describe our plan to prove Theorem 1.1.We first consult the census
of all cubic vertex-transitive graphs [23] and check that the theorem holds for all the
graphs on at most 20 vertices (this can be easily done with a help of computer and a
computer algebra system such as Sage [31]).
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We may thus concentrate on the class G of all cubic vertex-transitive graphs on at
least n > 20 admitting a cyclic group G ≤ Aut(�) of order at least n

3 . Let Q be the
set of labelled quotients (�/G, λG) where � ∈ G and G ≤ Aut(�) is cyclic of order
at least |V(�)|

3 (by [27, Theorem 4.7], the order of G equals the order of the largest
G-orbit on vertices).

Observe that if (�/G, λG) ∈ Q, then the graph �/G is connected but may admit
parallel edges, loops or semi-edges. Since the valence of every vertex in � is 3, it
follows that the vertices in �/G have valence at most 3 and that λG(x) ≤ 3 for every
dart x of �/G. Moreover, a labelled graph in Q can have at most 5 vertices (see
Lemma 4.1). This shows that the set Q is a subset of the set Q◦ of all connected
subcubic labelled graphs (Q, λ) on at most 5 vertices with λ(x) ≤ 3. The set Q◦ is
clearly finite, but still consists of an inconveniently large number of labelled graphs.

To determinewhich of the labelled graph inQ◦ indeed arise as quotients of the cubic
graphs in G by an appropriate cyclic group G (that is, which of them belong to Q),
we rely on the concept of a cyclic generalised voltage graph, first introduced in [25],
and the associated generalised covering graph construction. Loosely speaking, this
construction takes a labelled graph (�, λ), together with an additional information,
called voltage assignment ζ , as an input and constructs a connected graph � (called
a cover, for short) having (�, λ) as a labelled quotient. It was proved in [25] that as
the voltage assignment ζ varies this procedure yields all possible connected graphs
having (�, λ) as a quotient by a cyclic group.

In Sect. 4, we use the results proved in [25] (and summarised in Sect. 3) to find
a set of necessary conditions (see Theorem 4.2) for a labelled graph in Q◦ to admit
a connected vertex-transitive generalised cyclic cover belonging to G. In Sect. 5 we
determine, by means of forbidden labelled subgraphs, further necessary conditions for
an element ofQ◦ to admit a cyclic generalised cover in G (see Theorem 5.9). The set of
conditions given in Theorems 4.2 and 5.9 is restrictive enough to allow us to compute,
via a brute-force algorithm, the subset Q∗ ⊆ Q◦ of labelled graphs satisfying them.
There are 20 such graphs.

In Sect. 6, we analyse the 20 labelled graphs ofQ∗ in detail, and show that precisely
nine of them admit vertex-transitive cubic cyclic generalised covers belonging to G
(see Fig. 2). These are the nine elements of the setQ. However, due to some overlap in
the families of covering graphs, only seven elements ofQ are necessary to reconstruct
G. Finally in Sect. 7, we characterise the elements of G and complete the proof of
Theorem 1.1.

3 Covers

We now formally introduce the concept of a cyclic generalised voltage graph, which
generalises voltage graphs (in the sense of [11]) for cyclic voltage groups, and is a
special case of the wider class of generalised voltage graphs introduced in [26]. The
definitions and results in this section are mostly taken from [25], where cyclic gener-
alised voltage graphs were first defined. Each cyclic generalised voltage graph gives
rise to a unique generalised covering graph (called covering graph for simplicity). By
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Fig. 2 The nine labelled graphs in Q, where darts with no label have λ-value 1. With the exception of
the right-most graph, these graphs correspond to the 8 possible quotients of a k-multicirculant graph by a
k-multicirculant automorphism, with k ∈ {1, 2, 3}

the end of the section, we characterise those cyclic generalised voltage graphs whose
covering graphs are cubic (that is, connected, finite, simple 3-valent graphs).

Definition 3.1 Let� be a finite connected graph and let λ : D(�) → N, ι : V(�) → N

and ζ : D(�) → Z be functions such that

λ(x)ι(beg x) = λ(x−1)ι(beg x−1), (3.1)

ζ(x−1) ≡ −ζ(x) (mod λ(x)ι(beg x)) (3.2)

for every dart x ∈ D(�). Then, we say that the quadruple (�, λ, ι, ζ ) is a cyclic
generalised voltage graph, and we call the functions λ, ι and ζ a labelling, an index
function and a voltage assignment, respectively.

Definition 3.2 Let (�, λ, ι, ζ ) be a cyclic generalised voltage graph. The cover of
(�, λ, ι, ζ ), denoted by Cov(�, λ, ι, ζ ) is the graph � := (V ′, D′, beg′, inv′) where:

(1) V ′ = {(v, i) : v ∈ V(�), i ∈ {0, . . . , ι(v) − 1}};
(2) D′ = {(x, i) : x ∈ D(�), i ∈ {0, . . . , λ(x)ι(beg x) − 1}};
(3) beg′(x, i) = (beg x, i);
(4) (x, i)−1 = (x−1, i + ζ(x)).

Remark 3.3 Since the second coordinate of a vertex (v, i) or a dart (x, i) in the defini-
tion above is an element of {0, . . . , ι(v)−1} or {0, . . . , λ(x)ι(beg x)−1}, respectively,
any operation on the second coordinate is to be computed modulo ι(v) or λ(x)ι(beg x)

accordingly. In particular, on the right-hand side of equality (4), the sum i + ζ(x) is
to be computed modulo λ(x)ι(beg x).

Let (�, λ, ι, ζ ) be a cyclic generalised voltage graph and set � = Cov(�, λ, ι, ζ ).
For the sake of simplicity, we will write vi instead of (v, i) for a vertex of �, and xi

instead of (x, i) for a dart of �. The natural projection π : � → � that maps every
vi ∈ V(�) to v and every xi ∈ D(�) to x is a graph epimorphism. For each vertex
v ∈ V(�), we call the set π−1(v) = {vi : i ∈ {1, . . . , ι(v)}} the fibre of v and we
denote it fib(v). Similarly, the fibre of a dart x ∈ D(�) is fib(x) = π−1(x) = {xi : i ∈
{0, . . . , λ(x)ι(beg x) − 1}}.

Let n = lcm{λ(x)ι(beg x) : x ∈ D(�)} and observe that the group Zn acts on
D(�) ∪ V(�) by the rule (zi )

g = zi+g for all zi ∈ D(�) ∪ V(�) and g ∈ Zn (recall
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Fig. 3 A cyclic generalised voltage graph (bottom) along with its cyclic generalised cover (top)

that the index i + g is computed modulo ι(z), if z ∈ V(�), or modulo λ(z)ι(beg z) if
z ∈ D(�)). The permutation induced by each g ∈ Zn is an automorphism of � and
the orbit of a dart (or a vertex) zi under this action is precisely fib(z). Furthermore,
the action of Zn is faithful and hence there is an embedding φ : Zn → Aut(�)

(see [25, Lemma 6.3]). The image φ(Zn) is a cyclic group of order n generated by
the automorphism of � that maps every vertex vi ∈ V(�) to vi+1 and every dart
xi ∈ D(�) to xi+1. We call this automorphism the canonical covering transformation
of Cov(�, λ, ι, ζ ) and we denote it by ρ.

In short, the covering graph � admits a cyclic group of automorphisms of order
n whose orbits on vertices and darts are precisely the fibres of vertices and darts of
(�, λ, ι, ζ ).

Conversely, in view of [25, Theorem 5.3] and [25, Theorem 6.2] every graph
admitting a cyclic subgroup of automorphism of order n is the cover of some
cyclic generalised voltage graph (�, λ, ι, ζ ), and by [25, Lemma 6.1], it follows
that lcm{λ(x)ι(beg x) : x ∈ D(�)} = n. Moreover, by [25, Theorem 6.6] we can
always assume that ζ(x) = 0 for all darts x lying on a prescribed spanning tree T of
�. A voltage assignment satisfying this condition is said to be T -normalised. Let us
summarise these observations in the following theorem:

Theorem 3.4 A graph � admits a cyclic subgroup of automorphisms G ≤ Aut(�) of
order n if and only if � ∼= Cov(�/G, λ, ι, ζ ) for some functions λ, ι and ζ where ζ is
T -normalised for a spanning tree T of �/G and n = lcm{λ(x)ι(beg x) : x ∈ D(�)}.

Example 3.5 Consider the cyclic generalised voltage graph depicted in the bottom of
Fig. 3. The function λ is given in the figure as follows: each link has two numbers
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next to each of its endvertices, corresponding to the λ-values of each dart underlying
this link; for instance, if we let x be the dart beginning at a and ending at b, then
λ(x) = 3 and λ(x−1) = 1. The semi-edge at c has a single label 1 and the loop at d
has two labels, both equal to 1, corresponding to the λ-values of the darts underlying
it. The voltage assignment is also given in the figure. The link joining a with b has an
arrowhead directed from a to b with a 1 in boldface written above it. This indicates
that the dart beginning at a and ending at b has voltage 1, while its inverse x−1 has
voltage −1. The semi-edge at c has voltage 3, as indicated by the boldface number
above it. One dart underlying the loop at d has voltage 1 while its inverse has voltage
−1. The values of ι are written below the graph. The graph at the top of Fig. 3 is then
the cover of the cyclic generalised voltage graph.

Remark 3.6 Let (�, λ, ι, ζ ) be a cyclic generalised voltage graph and let � =
Cov(�, λ, ι, ζ ). Let x ∈ D(�) and u = beg x . Then, the following is straightfor-
ward from the definition of a cyclic generalised voltage graph:

(1) |fib(u)| = ι(u);
(2) |fib(x)| = λ(x)ι(u);
(3) For every ui ∈ fib(u), there are exactly λ(x) darts in fib(x) that begin at ui ;
(4) For every ui ∈ fib(u), deg(ui ) = degλ(v), where

degλ(v) =
∑

x∈�(v)

λ(x). (3.3)

Since cubic graphs are the main object of study of this paper, we would like to focus
precisely on those cyclic generalised voltage graphs whose covers are cubic graphs.
Hence the following definition.

Definition 3.7 A cyclic generalised voltage graph (�, λ, ι, ζ ) is called a ccv-graph
whenever Cov(�, λ, ι, ζ ) is a cubic graph.

The following characterisation of ccv-graphs is a consequence of [25, Theorems
6.8 and 6.9].

Lemma 3.8 Let (�, λ, ι, ζ ) be a cyclic generalised voltage graph where ζ is T -
normalised for some spanning tree T of �. Let A = {ζ(x) : x ∈ D(�)} and
B = {ι(v) : x ∈ V(�)}. Then, (�, λ, ι, ζ ) is a ccv-graph if and only if all the following
conditions are satisfied:

(1) gcd(λ(x), λ(x−1)) = 1 for all x ∈ D(�);
(2) ζ(x) 	≡ ζ(y) (mod gcd(ι(beg x), ι(end x)) for any two parallel darts x, y ∈ D(�);
(3) ζ(x) 	≡ 0 (mod ι(beg x)) for all darts x in a semi-edge;
(4) gcd(A ∪ B) = 1;
(5) degλ(v) = 3 for all v ∈ V(�).

In the lemma above, conditions (1)–(3) are there to guarantee the covering graph
Cov(�, λ, ι, ζ ) is a simple graph, condition (4) that Cov(�, λ, ι, ζ ) is connected, and
condition (5), that it is 3-valent.
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3.1 Extendability to ccv-Graphs

Let � be a connected finite graph, and let λ : D(�) → N be an arbitrary function.
We call the pair (�, λ) a labelled graph. Naturally, we obtain a labelled graph (�, λ)

from every cyclic generalised voltage graph (�, λ, ι, ζ ) by simply disregarding the
functions ι and ζ . In this case, the fact that λ comes from a generalised voltage
graph, which by definition satisfies equality (3.1), restricts λ to some degree. We
say that a labelled graph (�, λ) is extendable if there exist functions ι and ζ such that
(�, λ, ι, ζ ) is a cyclic generalised voltage graph. We will be particularly interested in
those extendable labelled graphs that can be extended to a ccv-graph.

Awalk of length n is a sequence of darts W = (x1, x2, . . . , xn) such that beg xi+1 =
end xi for all i ∈ {1, . . . , n − 1}. We say W is closed if end xn = beg x1, and we say
it is reduced if xi+1 	= x−1

i for all i ∈ {1, . . . , n − 1}. A path is a reduced walk where
beg xi 	= beg x j for all i 	= j and a cycle is a closed path. A cycle of length n is also
called an n-cycle. A tree is a connected graph without any cycles.

For a walk W = (x1, x2, . . . , xn), we define the inverse of W as the walk W −1 =
(x−1

n , x−1
n−1, . . . , x−1

1 ). If W1 = (x1, x2, . . . , xn) and W2 = (y1, y2, . . . , ym) are two
walks such that end xn = beg y1, then we define the concatenation of W1 and W2 as
W1W2 = (x1, . . . , xn, y1, . . . , ym).

Let (�, λ) be a labelled graph. We can extend the labelling λ to a function λ∗ that
assigns to each walk of � a rational number. For a walk W = (x1, x2, . . . , xn) in �,
we let

λ∗(W ) :=
n∏

i=1

λ(xi )

λ(x−1
i )

. (3.4)

We then have that

λ∗(W −1) = λ∗(W )−1 and λ∗(W1W2) = λ∗(W1)λ
∗(W2) (3.5)

for any two walks W1 and W2 for which the concatenation is defined. The following
is a useful characterisation of labelled graphs that are extendable.

Lemma 3.9 [25, Lemma 3.5] A labelled graph (�, λ) is extendable if and only if
λ∗(C) = 1 for every closed walk C of �.

Naturally, not every extendable labelled graph (�, λ) can be extended to a ccv-
graph. However, if (�, λ) does extend to a ccv-graph (�, λ, ι, ζ ), we say (�, λ, ι, ζ )

is a ccv-extension of (�, λ) andwe call the covering graphCov(�, λ, ι, ζ ) a ccv-cover
of (�, λ).

Lemma 3.10 [25, Proposition 7.1] A connected labelled graph (�, λ) can be extended
to a ccv-graph if and only if the following holds:

(1) (�, λ) is extendable;
(2) λ(x) = λ(x−1) implies λ(x) = 1;
(3) λ(x) = λ(y) = 1 for any two parallel darts x and y;

123



133 Page 12 of 33 P. Potočnik, M. Toledo

Fig. 4 AMöbius ladder, the cube graph and K3,3 as covers of ccv-graphs (where the voltage is simplified)

(4) λ(x) = 1 for every dart x underlying a semi-edge;
(5) degλ(v) = 3 for all vertices v ∈ V(�).

Let (�, λ) be a labelled graph and let x ∈ D(�) be such that x 	= x−1 and
λ(x) ≤ λ(x−1). We say {x, x−1} is an edge of type [λ(x), λ(x−1)], or simply a
[λ(x), λ(x−1)]-edge. From Lemma 3.10, we see that if (�, λ) is extendable to a ccv-
graph, then the edges of � are all of type [1, 1], [1, 2], [1, 3] or [2, 3] (see also [25,
Corollary 7.2]).

Now, suppose λ(x) = 1 for all x ∈ D(�). That is, every edge of (�, λ) is a [1, 1]-
edge. By Lemmas 3.9 and 3.10, (�, λ) admits a ccv-extension of (�, λ, ι, ζ ) and a
ccv-cover � := Cov(�, λ, ι, ζ ). Since λ(x) = 1 for all x ∈ D(�), it follows from
formula (3.1) and the connectedness of � that ι(v) = ι(u) for any two vertices u and
v of �. Then, the canonical covering transformation ρ of � (mapping every vertex
vi ∈ V(�) to vi+1) is a semiregular automorphism. Its vertex orbits are precisely the
vertex fibres of �. Therefore, if � has k vertices, then ρ has k orbits on vertices and
� is a k-multicirculant graph (Fig. 4).

3.2 Simplified Voltages

As one would expect, for given a labelled graph (�, λ), there may exist different ccv-
extensions (�, λ, ι, ζ ) and (�, λ, ι, ζ ′) such that Cov(�, λ, ι, ζ ) ∼= Cov(�, λ, ι, ζ ′).
It would be convenient to take, among all the possible ccv-extensions yielding isomor-
phic covers, one with a voltage assignment that is as ‘nice’ as possible. As was proved
in [25, Lemma 7.4], for every ccv-extension (�, λ, ι, ζ ) of a labelled graph (�, λ)

there exists a voltage assignment ζ ′ that is simplified in the sense of Definition 3.11,
such that Cov(�, λ, ι, ζ ) ∼= Cov(�, λ, ι, ζ ′).

Definition 3.11 Let (�, λ, ι, ζ ) be a ccv-graph. The voltage ζ is a simplified voltage
if for all x ∈ D(�) the following holds:

(1) ζ is T -normalised for a spanning tree T containing all [i, j]-edges with i 	= j ;
(2) ζ(x) < gcd(ι(beg x), ι(beg x−1));
(3) ζ(x) = ι(beg x)/2 whenever x underlies a semi-edge;
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(4) 0 < ζ(x) and ζ(x) 	= ι(beg x)/2 whenever x underlies a loop.

Note that if we assume a voltage ζ satisfies (1) in the definition above, then item (2)
is equivalent to

(2’) ζ(x) < ι(beg x).

Indeed, clearly, (2) implies (2’). Suppose ζ satisfies (1) and (2’). If for some x ∈ D(�)

we have ζ(x) = 0, then ζ(x) < ι(beg x). If ζ(x) 	= 0, then by (1) we have ι(beg x) =
ι(beg x−1) and thus gcd(ι(beg x), ι(beg x−1)) = ι(beg x). Then, ζ(x) < ι(beg x) =
gcd(ι(beg x), ι(beg x−1)) and (2) holds.

Remark 3.12 One of the advantages of considering ccv-graphs with simplified voltage
assignments is that the adjacency rules for the corresponding covering graphs become
quite straightforward. Indeed, suppose (�, λ, ι, ζ ) is a ccv-graphwhere ζ is simplified.
Let x ∈ D(�), let u = beg x and v = end x , and let e = {x, x−1}. Then, for all
ui ∈ fib(u) we have:

(1) If u 	= v and e is a [1, 1]-edge, then ui ∼ vi+ζ(x);
(2) If u 	= v and e is a [1, j]-edge, j 	= 1, then ui+k·ι(v) ∼ vi , with 0 ≤ k < j ;
(3) If u = v and e is a loop, then ui ∼ ui+ζ(x) and ui ∼ ui−ζ(x);
(4) If e is a semi-edge, then ui ∼ ui+(ι(u)/2).

Let (�, λ, ι, ζ ) be a ccv-graph. By [25, Proposition 7.4] there exists a simplified
voltage assignment ζ ′ for� such thatCov(�, λ, ι, ζ ) ∼= Cov(�, λ, ι, ζ ′). This implies
that every cubic graph is the cover of a ccv-graphwith a simplified voltage assignment.
For this reason, we will henceforth always assume that the voltage of a ccv-graph is
simplified. The following theorem summarises the contents of this section.

Theorem 3.13 A graph � is cubic and admits a cyclic group of automorphisms of
order n if and only if it is the cover of a cyclic generalised voltage graph (�, λ, ι, ζ )

where λ : D(�) → {1, 2, 3} satisfies conditions (1)–(4) of Lemma 3.10, ζ is simplified,
gcd{ζ(x), ι(v) : x ∈ D(�), v ∈ V(�)} = 1 and lcm{λ(x)ι(beg x) : x ∈ D(�)} = n.

4 Vertex-Transitive Covers

We have shown in Sect. 3 that if � is a cubic graph admitting a cyclic group of
automorphisms G, then � is isomorphic to a ccv-cover of some labelled graph (�, λ),
where the labelling λ satisfies conditions (1)–(5) of Lemma 3.10; that is, (�, λ) is
extendable, λ(x) = 1 for every dart x underlying a loop, a semi-edge or a link that
is parallel to another link, and degλ(x) = 3 for all darts x ∈ D(�). If in addition we
suppose that � is vertex-transitive and that G has order at least V(�)/3, then further
restrictions are set on the labelled graph (�, λ). It was shown in [27] that if � is a
cubic vertex-transitive graph and G ≤ Aut(�) is cyclic, then the number of orbits of
G is bounded by a function of k = |V(�)|/|G|. This, in turn, bounds the number of
vertices of the quotient �/G. Furthermore, the ratio between the sizes of the largest
and smallest orbits of G is also bounded, which restricts the labelling λ. Let us be
more precise.

123



133 Page 14 of 33 P. Potočnik, M. Toledo

Let � be a cubic graph of order n > 20 admitting a cyclic subgroup of automor-
phisms G. Then, � is isomorphic to the cover of some ccv-graph (�, λ, ι, ζ ) where
lcm{λ(x)ι(beg x) : x ∈ D(�)} = |G|. We can slightly abuse the language and identify
� with Cov(�, λ, ι, ζ ). Suppose � is vertex-transitive and let m = |G|. Then, by [27,
Theorem 4.7], a G-orbit on vertices must have size m/i for some i ∈ {1, 2, 3, 4, 6}
and the largest G-orbit has size precisely m. It follows that for any two vertices ū and
v̄ of �, we have

1

6
|ūG | ≤ |v̄G | ≤ 6|ūG |.

Since the orbits of G on V(�) are identified with the fibres of V(�) we see that

1

6
ι(u) ≤ ι(v) ≤ 6 · ι(u) (4.1)

for any two u, v ∈ V(�) (recall that ι(u) = |fib(u)| for all u ∈ V(�)). If in addition
we suppose that m ≥ n/3, then there must exist a vertex û ∈ V(�) such that

3 · ι(û) ≥
∑

v∈V(�)

ι(v) = |V(�)|. (4.2)

Furthermore, [27, Theorem 1.6] asserts that if � has order n > 20 and ū ∈ � is
such that ūG is of maximal order among all G-orbits, then ū has a neighbour v̄ such
that ūG 	= v̄G but |ūG | = |v̄G |. In particular, since the largest orbit of G has size at
least n/3, this implies that at least two thirds of the vertices of � are contained in only
two orbits (ūG and v̄G ). It is an easy exercise to see that the remaining vertices can be
divided in, at most, 3 different orbits (of size n/9 each, or all three having different
sizes: n/6, n/9 and n/18). Hence, we obtain the following lemma.

Lemma 4.1 Let � be a cubic vertex-transitive graph of order n > 20, and let G ≤
Aut(�) be a cyclic group with an orbit of size n/3 or greater. Then, G has at most 5
orbits on vertices.

Now, consider the function λ∗ defined with formula (3.4). If W = (x1, x2, . . . , xn)

is a uv-walk in �, then by a consecutive application of equality (3.1) to the darts of
W we have

ι(v) = λ∗(W )ι(u). (4.3)

Since u and v are arbitrary vertices, we see that the index function ι is completely
determined by the labelling λ (as λ∗ depends only on λ) and the value of ι on a single
vertex. The following theorem sums up the preceding paragraphs.

Theorem 4.2 Let (�, λ) be a labelled graph, let � be a ccv-cover of (�, λ) of order
n > 20 and let T be a spanning tree of �. If � is vertex-transitive and admits an
automorphism of order m ≥ n

3 , then the following holds:
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(1) (�, λ) is extendable;
(2) degλ(v) = 3 for all vertices v ∈ V(�);
(3) λ(x) = λ(x−1) implies λ(x) = 1;
(4) λ(x) = λ(y) = 1 for any two parallel darts x and y;
(5) λ(x) = 1 for every dart x underlying a semi-edge;
(6) � has at most 5 vertices;

moreover, there exists a vertex û ∈ V(�) such that:

(7) û is incident to an edge of type [1, 1];
(8) 1

6 ≤ λ∗(Wv);
(9)

∑
v∈V(�)\{û}

λ∗(Wv) ≤ 2;

for every v ∈ V(�) \ {û}, where Wv denotes the unique ûv-path in T .

Proof That items (1)–(5) hold follows at once from Lemma 3.10. Item (6) holds by
Lemma 4.1. Now, let u ∈ V(�) be such that |uG | has maximum cardinality amongst
all the vertex orbits of G. Then, |uG | ≥ n

3 . Let û = π(u) and let v ∈ V(�)\{û} (recall
that the natural projection π maps every vertex vi ∈ fib(v) to v). That û is incident
to a [1, 1]-edge follows from [27, Theorem 4.7], and thus (7) holds. Furthermore, by
(4.1) we have 1

6 ι(û) ≤ ι(v), but by (4.3) we can replace ι(v) by λ∗(Wv)ι(û). Thus (8)
holds. To see that (9) holds, subtract ι(û) on both sides of inequality (4.2) and replace
ι(v) by λ∗(Wv)ι(û). ��

5 Artefacts

A labelled subgraph of a labelled graph (�, λ) is a pair (�′, λ′)where�′ is a subgraph
of � and λ′ is the restriction λ |D(�′). In this section, we will define a set of ‘forbidden
subgraph’ for a labelled graph, that we call artefacts. An artefact in a labelled graph
(�, λ) is a labelled subgraph of (�, λ) that guaranties the existence of a particular
subgraph (containing a short cycle) in any ccv-cover of (�, λ). We will show that a
labelled graph containing certain artefacts cannot admit a vertex-transitive ccv-cover
of order larger than 10. First, we will define the notion of the signature of a graph.

Let � be a cubic graph, let x be a dart of � and c be a positive integer. Denote by
εc(x) the number of c-cycles (cycles of length c) that pass through x . Let v ∈ V(�)

and let {x1, x2, x3} be the set of darts beginning at v, ordered in such a way that
εc(x1) ≤ εc(x2) ≤ εc(x3). The triplet (εc(x1), εc(x2), εc(x3)) is then called the c-
signature of v. Informally, the c-signature of v tells us how the cycles of length c
passing through v are distributed among the darts incident to v. If all vertices of �

have the same c-signature, we say that� is c-cycle-regular, and we say the c-signature
of � is the c-signature of any of its vertices. Observe that if � is vertex-transitive, then
� is c-cycle-regular for all c ∈ N. For cubic graphs of small girth g, the g-signature is
sometimes enough to completely determine the graph. The following lemma is a direct
consequence of the results proved in [28] (or independently in [8]) and [29], where a
g-cycle-regular graph, where g is the girth of the graph, is called girth-regular.
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Lemma 5.1 (See [28, Theorem 1.5] and [29, Theorem 1].) Let � be a cubic girth-
regular graph of girth g ≤ 6. Then, either the g-signature of � is (0, 1, 1) or one of
the following occurs:

(1) g = 3 and � ∼= K4;
(2) g = 4 and one the following occurs

(a) � has signature (1, 2, 2) and is isomorphic to a prism or a Möbius ladder;
(b) � is isomorphic to K3,3 or the cube graph Q3;

(3) g = 5 and � is isomorphic to the Petersen graph or the dodecahedron GP(10, 2).
(4) g = 6 and one of the following occurs:

(a) � belongs to a finite list of exceptional graphs with at most 20 vertices;
(b) � has signature (1, 1, 2), (2, 2, 2) or (3, 4, 5);
(c) � has signature (2, 3, 3) and is isomorphic either to

• a cyclic Haar graph H(3m; k, m) of order 6m, m > 3, where k = 1 if
m ≡ 0 (mod 3) and k = 3 otherwise;

• a graph SDW(m, 3) of order 6m, m > 3.

Remark 5.2 The Haar graph H(3m; k, m) featuring in part (c) of the case g = 6
of Lemma 5.1 was defined in [29, Sect. 2.4] as the bipartite Cayley graphs on the
dihedral group D3m = 〈ρ, τ | ρ3m, τ 2, (ρτ)2〉 with respect to the connection set
{τ, τρk, τρm} and were denoted by �m . It is, however, clear that such defined graph
�m and the cyclic Haar graph H(3m; k, m) are isomorphic. As was proved there, their
automorphism group has order 6m and thus acts regularly on the vertices.

Similarly, the graph SDW(m, 3) was denoted in [29] as �m and defined as the
Cayley graph on the group Dm × Z3 with respect to the connection set S =
{(ρτ, 0), (τ, 1), (τ, 2)}), where Dm = 〈ρ, τ | ρm, τ 2, (ρτ)2〉 denotes the dihedral
group of order 2m. To prove that �m is indeed isomorphic to SDW(m, 3) one can
check that the mapping (ρiτ j , k) �→ (i, k, 1 − j) is indeed a graph isomorphism. As
was proved in [29, Proposition 5], the automorphism group of SDW(m, 3), m > 3,
is isomorphic to the group S3 × Dm (where by S3 we denote the symmetric group of
order 6).

Corollary 5.3 If � is a cubic arc-transitive graph of girth smaller than 6, then � is
isomorphic to one of the following: K4, K3,3, the three-dimensional cube Q3, the
Petersen graph or the dodecahedron GP(10, 2).

Lemma 5.4 [21, Lemma 4.2] If � is a cubic arc-transitive graph of girth 6, then either
� has 6-signature (2, 2, 2) or it has order n ≤ 20.

Lemma 5.5 Let (�, λ, ι, ζ ) be a ccv-graph and suppose � := Cov(�, λ, ι, ζ ) is
vertex-transitive. If for some x ∈ D(�) we have λ(x) = 3, then � is arc-transitive.

Proof Let u = beg x and u0 ∈ fib(u). Let a and b be two arbitrary darts of �.
Since � is vertex-transitive, there exist automorphisms φ,ψ ∈ Aut(�) such that
(beg a)φ = u0 = (beg b)ψ . In particular, both aφ and bψ begin at u0. Furthermore,
since λ(x) = 3, all three darts beginning at u0 belong to the same orbit of the cyclic
group of automorphisms of � preserving the fibres, and thus there exists γ ∈ Aut(�)

such that aφγ = bψ . Then, aφγψ−1 = b. We conclude � is arc-transitive. ��

123



Cubic Vertex-Transitive Graphs Admitting... Page 17 of 33 133

Fig. 5 The five artefacts Ai with i ∈ {1, 2, 3, 4, 5} (bottom row). Above each, a small subgraph of the cover
of any ccv-graph containing Ai

Let A1, A2, A3, A4 and A5 be the 5 labelled graphs depicted in the bottom row of
Fig. 5.

Lemma 5.6 Let (�, λ) be a labelled graph and let � be a ccv-cover of (�, λ). Suppose
(�, λ) contains an artefact A j for some j ∈ {1, 2, 3, 4, 5}. Then:

(1) if j = 1, � contains a 3-cycle;
(2) if j ∈ {2, 3}, � contains a 4-cycle;
(3) if j ∈ {4, 5}, � contains a copy of K3,2.

Proof The proof consists in repeatedly applying Remark 3.12 for each of the five
possible cases. For instance, suppose � ∼= Cov(�, λ, ι, ζ ) where (�, λ, ι, ζ ) is a
ccv-extension of (�, λ) and that (�, λ) contains a subgraph isomorphic to A j for
some j ∈ {1, . . . , 5}. Recall that we may assume that [a, b]-edges with a 	= b have
trivial voltage and that the voltage of a semi-edge x is ι(beg x)/2. Assume the notation
of Fig. 5.

First suppose j = 1. Then, ι(u) = 2 · ι(v) = 2m for some m ∈ N and since uv is
a [1, 2]-edge, it follows from Remark 3.12 that each vi ∈ fib(v) is adjacent to ui and
ui+m . Furthermore, since u is incident to a semi-edge, ui is incident to ui+m (again,
by Remark 3.12). Then, (ui , ui+m, vi ) is a 3-cycle of � for all i ∈ {0, . . . , m − 1}.

Now, suppose j = 2. Since uw and uv are [1, 2]-edges, ι(u) = 2m for some m,
and by Remark 3.12, each vi ∈ fib(v) and wi ∈ fib(w) is adjacent to both ui and
ui+m . It follows that (ui , wi , ui+m, vi ) is a 4-cycle of � for all i ∈ {0, . . . , m − 1}.

If j = 3, then ι(u) = 2m for some m since u is incident to a semi-edge. Moreover,
since uv is a [1, 1]-edge we have ι(u) = ι(v), and the dart x , beginning at u and ending
at v, may have non-trivial voltage ζ(x). By Remark 3.12, each ui ∈ fib(u) is adjacent
to vi+ζ(x). Since both u and v are adjacent to a semi-edge, we have that ui ∼ ui+m

and vi ∼ vi+m for all i ∈ {0, . . . , m − 1}. Therefore, (ui , vi+ζ(x), vi+m+ζ(x), ui+m)

is a 4-cycle in �.
The two remaining cases follow in a similar way from Remark 3.12. ��
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Fig. 6 The two artefacts A6 and A7 (bottom row). Above each, a small subgraph of the cover of any
ccv-graph containing it

Corollary 5.7 Let (�, λ) be labelled graph containing an artefact Ai with i ∈
{1, 2, 3, 4, 5} and a dart x such that λ(x) = 3. If � is a vertex-transitive ccv-cover of
(�, λ), then � is isomorphic to K4, K3,3 or Q3.

Proof By Lemma 5.5 � is arc-transitive and since it contains an artefact Ai with
i ∈ {1, 2, 3, 4, 5} it has girth 3 or 4. It follows from Corollary 5.3 that � is isomorphic
to K4, K3,3 or Q3. ��

Let A6 and A7 be the labelled graphs depicted in the bottom row of Fig. 6.

Lemma 5.8 If (�, λ) is a labelled graph containing A6 or A7, then no ccv-cover of
(�, λ) is vertex-transitive.

Proof Let (�, λ, ι, ζ ) be a ccv-extension of (�, λ) such that � ∼= Cov(�, λ, ι, ζ ).
Suppose, on the contrary, that � is vertex-transitive and (�, λ) contains a copy of A j

for some j ∈ {6, 7}.
Now, suppose j = 7. Let a, b, c and d be the vertices of A7, as they are labelled

in Fig. 6. There are two edges connecting b to a. Without loss of generality, we may
assume the darts on one of these edges have trivial voltage, as necessarily one of these
edges must lie on a spanning tree of � and (we can assume) the voltage assignment ζ
is simplified. As for the other edge, let r 	= 0 be the voltage of the dart underlying it
and beginning at b (and thus, its inverse, beginning at a, has voltage−r ). Let ι(c) = m
so that ι(b) = ι(a) = 2m. Observe that (c0, b0, a0, am, bm) and (c0, b0, ar , am+r , bm)

are 5-cycles of � (note that this is true even if r = m). Then, every dart beginning at
b0 lies on a 5-cycle. Since dc is a [1, i]-edge of (�, λ), we see that d0 is adjacent to
c0 in �. Furthermore, since � is vertex-transitive, the dart beginning at d0 and ending
at c0 lies on a 5-cycle C := (d0, c0, u, v, w), for some u, v, w ∈ V(�). Clearly,
u ∈ {b0, bm} and v ∈ {a0, ar , am, am+r }, since both fib(c) and fib(b) are independent
sets. Then, w ∈ fib(a) ∪ fib(b) which leads us to a contradiction, since no vertex in
fib(a) ∪ fib(b) is adjacent to a vertex in fib(d). Therefore, there is no 5-cycle tracing
the edge d0c0 and thus � is not vertex-transitive.
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Fig. 7 Elements ofQ∗ with at most 3 vertices

Finally, suppose j = 6 and assume the notation in Fig. 6. Then, ι(d) = m for some
m ∈ N. By Lemma 5.6, � contains a 3-cycle and thus the vertex d0 ∈ fib(d) must
lie on a 3-cycle C . Since d0 has two neighbours in fib(c), one vertex of C must be
in fib(c). Without loss of generality, let c0 be that vertex. Then, the third vertex in C
must be a common neighbour of d0 and c0, but the other two neighbours of c0 are b0
and b2m , none of which si adjacent to d0. Therefore, d0 does not lie on a 3-cycle, and
� is not vertex-transitive. ��

The following theorem, which is a consequence of Corollary 5.7 and Lemma 5.8,
summarises the contents of this section.

Theorem 5.9 Let (�, λ) be a labelled graph and let � be a ccv-cover of (�, λ) with
more than 20 vertices. If � is vertex-transitive, then one of the following holds:

(1) (�, λ) does not contain an artefact Ai with i ∈ {1, 2, 3, 4, 5} and a dart x such
that λ(x) = 3;

(2) (�, λ) does not contain an artefact Ai with i ∈ {6, 7}.

6 The SetQ
Recall thatG is the set of all vertex-transitive cubic graphs� of order n > 20 admitting
an automorphism g of order n/3 or greater, and thatQ is the set of all labelled quotients
�/〈g〉. As a step towards proving Theorem 1.1, we must determine the set Q. Then,
we can reconstruct G by considering all vertex-transitive ccv-covers of elements ofQ.
Observe thatQ is a subset of the setQ∗ of all labelled graphs satisfying the conditions
stated in Theorems 4.2 and 5.9. These conditions are restrictive enough to allow us to
quickly computeQ∗ by means of a brute-force algorithm. As it transpires,Q∗ consist
of 20 labelled graphs. To determine Q it suffices to determine which of these graphs
admit a vertex-transitive ccv-cover with more than 20 vertices.

The eight elements ofQ∗ having less than four vertices, shown in Fig. 7, correspond
to the eight possible quotients of a cubic graph by a (k, �)-semiregular automorphism
with k ∈ {1, 2, 3}.

Each of these eight graphs admits at least one vertex-transitive ccv-cover with more
than 20 vertices (see [25, Theorem 1.1] or [22] and [24] for details). Therefore, the
eight graphs of Fig. 7 are elements of Q.
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Fig. 8 Elements ofQ∗ with more than 3 vertices

The remaining 12 labelled graphs of Q∗ are shown in Fig. 8. We will show that,
with the exception of �12, none of these graphs admit a vertex-transitive ccv-cover
of order larger than 20. The graph �12 will be studied in detail in Sect. 6.1.

Now consider a labelled graph �i from Fig. 8 and suppose (�, λ, ι, ζ ) is a ccv-
extension of �i . We may assume that ζ is a simplified voltage assignment and agrees
with Fig. 8, where we adopt the same notation convention as in Example 3.5, which we
revisit here for convenience. For a symbol α ∈ {r , s}, an edge with an arrow oriented
from, say, u to v, with the letter α next to it, indicates that the dart x underlying this
edge and beginning at u has voltage α, for some 0 ≤ α < ι(v). A loop with the letter
α next to it, indicates that one of the underlying darts, say x , has voltage α for some
integer 0 < α < ι(beg x). For a semi-edge x , ζ(x) = ι(beg x)/2. All other darts
belong to a spanning T and have trivial voltage. The vertices of each �i are named
in Fig. 8, but we refrain from naming the darts in the figure so as not to overburden it.
Since parallel darts in a ccv-graph need to have distinct voltages, every dart in �i is
completely determined by its endpoints along with its voltage. Hence, we will denote
a dart x of �i beginning at u and ending at v by (uv)ζ(x); its inverse is then (vu)−ζ(x).
As every cover of a ccv-graph is a simple graph, the darts in the fibre of (uv)ζ(x) are
denoted by uivi+ζ for i ∈ {0, . . . , ι(u) − 1} (like arc or directed edges are usually
denoted).

Let (�, λ) be a labelled graph, � be a ccv-cover of (�, λ) and let π : � → � be
the corresponding projection. If W is a uv-walk in�, then a lift of W based at a vertex
ui ∈ fib(u) is a walk W = (x1, x2, . . . , xn) beginning at ui such that the projection
π(W ) := (π(x1), π(x2), . . . , π(xn)) is equal to W . We denote by L(W ) the set of all
lifts of W based at u0.

We say W is λ-reduced if xi+1 	= x−1
i whenever λ(x−1

i ) = 1, and xn 	= x−1
1

whenever λ(x1) = 1. Clearly, every reduced walk is λ-reduced.
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Let (�, λ, ι, ζ ) be a ccv-graph and set n = lcm{λ(x)ι(beg x) : x ∈ D(�)}. Let
W = (x1, x2, . . . , xk) be a walk in � and let d = gcd{ι(beg xi ) : xi ∈ W }. We define
the endset of W as

end(W ) =
k∑

i=0

ζ(xi ) + 〈d〉,

where 〈d〉 denotes the subgroup of Z generated by d, and where the addition is com-
puted modulo ι(end xk).

Lemma 6.1 [26, Lemma 30] Let (�, λ, ι, ζ ) be a ccv-graph and � = Cov(�, λ, ι, ζ ).
Let W be a uv-walk for some u, v ∈ V(�). If W ∈ L(W ), then the final vertex of W
is v j for some j ∈ end(W ). Conversely, for every j ∈ end(W ) there exists a lift of W
beginning at u0 and ending at v j .

Lemma 6.2 Let (�, λ, ι, ζ ) be a ccv-graph and � = Cov(�, λ, ι, ζ ). If C is a cycle
in �, then π(C) is a λ-reduced closed walk in � and 0 ∈ end(π(C)).

Proof Let C be a cycle in �. Clearly, C is a uaua-walk for some vertex ua ∈ fib(u)

and some u ∈ V(�). Let x be a dart visited by π(C) and suppose that π(C) traces
x−1 immediately after x . We will show that λ(x−1) 	= 1. Observe that since π(C)

traces x and x−1 one after the other, there must exist a dart xi ∈ fib(x) and a dart
(x−1) j ∈ fib(x−1) such that C traces xi and (x−1) j consecutively. Since C is a cycle,
it is a reduced walk by definition, and thus (x−1) j 	= (xi )

−1. However, both (x−1) j

and (xi )
−1 belong to fib(x−1). Moreover, since xi and (x−1) j are two consecutive

darts of a walk, we have beg(x−1) j = end xi = beg(xi )
−1. That is, there are two

distinct darts in fib(x−1) beginning at the same vertex. This implies that λ(x−1) ≥ 2.
Nowsuppose x and x−1 are the first and the last darts traced byπ(C). Let xi ∈ fib(x)

and (x−1) j ∈ fib(x−1) be the first and last darts traced by C , respectively. By an
argument analogous to the one used in the previous case, we have that (x−1) j 	= x−1

i

but beg(x−1) j = beg x−1
i , and thus λ(x) ≥ 2. This shows that π(C) is λ-reduced.

To show that 0 ∈ end(π(C)), recall that � admits an automorphism ρ that maps
every dart xi to xi+1. Then, ρ−a maps the vertex ua to u0, and thus ρ−a(C) is a reduced
closed walk beginning and ending at u0. Moreover, ρ−a(C) ∈ L(π(C)). Since the
final vertex of ρ−a(C) is u0, it follows from Lemma 6.1 that 0 ∈ end(π(W )). ��

Throughout the rest of the section, we will assume that (�, λ) = �i for some
i ∈ {1, . . . , 11}, that � is the cover of a ccv-extension (�, λ, ι, ζ ) of �i , and that
π : � → � is the covering projection. Note that � is completely determined by
the values of the voltages r and s, and m := gcd{ι(u) : u ∈ V(�)}. Indeed, � is
uniquely determined by the quadruple (�, λ, ι, ζ ). Recall that the index function ι is
determined by its value on a single vertex along with the labelling λ, which is given.
Let u ∈ V(�) be any vertex and for each v ∈ V(�)\{u} chose (arbitrarily) a uv-walk
Wv . By equality (4.3), we have ι(v) = λ∗(Wv)ι(u) for all v ∈ V(�)\ {u}. Let c be the
smallest positive integer such that c ·λ∗(Wv) is an integer for all v ∈ V(�)\{u}. Then,
ι(u) = c · m. Note that c depends only on λ and our choice of u. Then, ι is completely
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determined by λ and m. Finally, since we can assume ζ to be simplified, we know
that every dart x underlying a semi-edge has voltage ι(beg x)/2, and any other dart
not labelled r or s has voltage 0. The values of r and s, along with the function ι, thus
completely determine ζ .

We are now ready to analyse the labelled graphs�i . The technique employed in the
following pages relies mainly in finding a closed walk W of length n in �i such that
L(W ) contains a cycle of length n, regardless of the specific values of the voltages r
and s. Such a walk can often be found by finding an artefact A j in �i . If we suppose
that � is vertex-transitive, then for every vertex vi of �, at least one dart incident to
vi must lie on an n-cycle. Then, by Corollary 6.2, this will imply that for every vertex
v ∈ V(�) a specific dart incident to v lies on a closed walk W ′ of length n such that
0 ∈ end(W ′). Since every element of end(W ′) can be seen as a linear combination of
m, r and s, 0 ∈ end(W ′) implies a relation between m, r and s, which along with the
fact that gcd(m, r , s) = 1 (see item (5) of Lemma 3.8), is often enough to completely
determine their values (up to a few options). This, in turn, determines the graph �.

Lemma 6.3 If � is a vertex-transitive ccv-cover of �1, then � is a bicirculant graph
of order 12.

Proof Let (�, λ, ι, ζ ) be a ccv-extension of �1 such that � = Cov(�, λ, ι, ζ ). Let
ι(c) = m and note that ι(d) = m as c and d are connected through a [1, 1]-edge.
Similarly ι(a) = ι(b) = 2m. Let W = ((ac)0, (ca)0, (ad)0, (da)0) and note that
every reduced walk in L(W ) is a cycle of length 4, as the darts traced by W induce
the artefact A2 (see Lemma 5.6). Then, every dart in the fibre of (ac)0 or (ad)0 lies on
a 4-cycle. Since � is vertex-transitive, every dart in the fibre of (bb)s (or of (bb)−s)
must lie on a 4-cycle. Suppose C is a 4-cycle (in �) through b0bs . Then, π(C) is a λ-
reduced walk of length 4 through (bb)s . Clearly, π(C) = ((bb)s, (bb)s, (bb)s, (bb)s)

and end(π(C)) = {4s}. By Lemma 6.2, 0 ∈ end(π(C)) and thus 4 s ≡ 0 (mod 2m).
Since 0 < s < m, we have 2 s = m. This shows that (b0, bs, b2s, a2s, c2s, a2s+m) is a
6-cycle in � since a2 s+m = a0 and a0 ∼ b0. Then, the 6-signature of � is (ε1, ε2, ε3)

where εi > 0. That is, every dart of � lies in at least one 6-cycle. In particular, there
is a 6-cycle C ′ through c0d−r . Then, π(C ′) is a λ-reduced walk of length 6 through
(cd)−r . By inspecting Fig. 8, one can easily find all closed walks of length 6 whose
first and second vertices are c and d, respectively, in the graph�1 of Fig. 8. The reader
can easily and quickly verify that π(C ′) must be one of

W1 = ((cd)−r , (da)0, (ac)0, (cd)−r , (da)0, (ac)0),

W2 = ((cd)−r , (da)0, (ab)0, (bb)s, (ba)0, (ac)0),

W3 = ((cd)−r , (da)0, (ab)0, (bb)−s, (ba)0, (ac)0).

Now, end(W1) = {−2r}, end(W2) = {s − r} and end(W3) = {−s − r}. Since
0 ∈ end(Wi ) for some i ∈ {1, 2, 3}, we see that one of the following holds modulo m,

−2r ≡ 0,

s − r ≡ 0,

−s − r ≡ 0.
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Since 0 ≤ r < m and 2 s = m, we see that either r = 0 or s = r . However,
gcd(m, r , s) = 1 by Lemma 3.8. Therefore, r = s = 1 and m = 2. That is, the
functions ζ and ι are completely determined and so is �. It can be verified that � is
a bicirculant isomorphic to the Franklin graph (see page 244 of [4] for definition and
properties). ��
Lemma 6.4 If � is a ccv-cover of �i , i ∈ {2, 3, 11}, then � is not vertex-transitive.

Proof Let (�, λ, ι, ζ ) be a ccv-extension of � j and suppose � := Cov(�, λ, ι, ζ ) is
vertex-transitive.

First, suppose j = 2. Let ι(d) = 2m and for k ∈ {0, 1} let Wk =
((da)0, (ab)kr , (bc)0, (cb)0, (ba)−kr , (ad)0). Observe that every edge incident to a0
lies on a 6-cycle belonging to L(W0) ∪ L(W1). Then, d0dm must lie on a 6-cycle C
of � and π(C) is a λ-reduced closed walk of length 6. It is straightforward to see that
no λ-reduced closed walk of length 6 in �2 traces the dart (dd)m , a contradiction.
Therefore, � is not vertex-transitive.

Now, suppose j = 3. Let ι(d) = 2m and W = ((da)0, (ab)r , (ba)0, (ad)0, (da)0,

(ab)0, (ba)−r , (ad)0). Observe that every edge incident to a0 lies on an 8-cycle of
L(W ), which implies the existence of an 8-cycle C through d0dm , since � is vertex-
transitive. Then, π(C) is a λ-reduced closed walk of length 8 through (dd)m . Once
more, one can verify that no such walk exists in �3. We conclude � is not vertex-
transitive.

Finally, suppose j = 11. Let ι(d) = m and note that since the voltage assignment
is simplified, the darts incident to a or b have voltage m and those incident to c or d
have voltage m/2. Since � is connected, gcd(m/2, m) = 1, which implies that m = 2.
Note that the functions ζ and ι are thus completely determined, and so is the graph �.
One can simply verify that � is a non-vertex-transitive graph of order 12. ��
Lemma 6.5 If � is a vertex-transitive ccv-cover of � j , with j ∈ {4, 5}, then � has
less than 20 vertices.

Proof Suppose � = Cov(�, λ, ι, ζ ) is vertex-transitive where (�, λ, ι, ζ ) is a ccv-
extension of�4 and let ι(a) = m. Since�4 has a [1, 3]-edge, � must be arc-transitive
by Lemma 5.5. Now, if r ≡ 0 (modm), then (d0, a0, cm, am) is a 4-cycle of � and by
Corollary 5.3, � has less than 20 vertices. Suppose that r 	≡ 0 (modm). For i ∈ {0, 1},
let

Wi = ((da)0, (ab)ir , (bc)0, (cb)0, (ba)−ir , (ad)0).

Observe that every dart in the fibre of (da)0 lies on 4 distinct 6-cycle inL(W0)∪L(W1)

(see Fig. 9, left). Then, by Lemma 5.4 � has less than 20 vertices.
Now, suppose � := Cov(�, λ, ι, ζ ) is vertex-transitive where (�, λ, ι, ζ ) is a

ccv-extension of �5 and consider the walk

W = ((ec)0, (ca)0, (ad)0, (da)0, (ac)0, (ce)0).

Observe that every dart in e0c0 lies on 4 distinct 6-cycle in L(W ) (see Fig. 9, right)
and by Lemma 5.4, � has less than 20 vertices. ��
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Fig. 9 For each of the two cases in the proof of Lemma 6.5, a subgraph of � containing 4 distinct 6-cycles
through the dart d0a0 (left) and through the dart e0c0 (right), respectively

Lemma 6.6 If � is a vertex-transitive ccv-cover of �6, then � is a tricirculant of order
18.

Proof Suppose � := Cov(�, λ, ι, ζ ) is vertex-transitive where (�, λ, ι, ζ ) is a ccv-
extension of �6. Then, for some m ∈ Z we have ι(c) = ι(d) = m and ι(a) = ι(b) =
2m. Let W = ((aa)m, (ad)0, (da)0) and observe that every reduced walk in L(W )

is a 3-cycle (see Lemma 5.6). Then, every dart in the fibre of (aa)m or (ad)0 lies on
a 3-cycle. Since � is vertex-transitive, it must be 3-cycle-regular. In particular, every
dart in the fibre of (bb)r lies on a 3-cycle and so, in �, there is a 3-cycle C through
the edge b0br . Then, π(C) is a λ-reduced closed walk of length 3 that traces (bb)r . It
is straightforward to see that necessarily π(C) = ((bb)r , (bb)r , (bb)r ). Moreover, by
Lemma 6.2, 0 ∈ end(π(C)) = {3r} and so

3r ≡ 0 (mod 2m). (6.1)

Now, every dart in the fibre of (cc)s must also lie on a 3-cycle, and by an analogous
argument,

3s ≡ 0 (modm). (6.2)

Since � is connected, by Lemma 3.8 we see that gcd(m, r , s) = 1 and by (6.1) and
(6.2), we see that the only possibility is that m = 3, r = 2 and s = 1. One can readily
verify that � is isomorphic to the truncation of K3,3, and thus is a vertex-transitive
tricirculant of order 18. ��
Lemma 6.7 If � is a vertex-transitive ccv-cover of �7, then � is a bicirculant of order
12.

Proof Suppose � = Cov(�, λ, ι, ζ ) is vertex-transitive where (�, λ, ι, ζ ) is a ccv-
extension of �7. Then, ι(c) = ι(a) = 2m and ι(b) = ι(d) = m for some m ∈ Z. Let
W = ((ad)0, (da)0, (ab)0, (ba)0) and observe that every reduced walk in L(W ) is a
4-cycle. In particular, a0b0 and a0d0 lie on a 4-cycle, and thus, the vertex-transitivity
of � implies that there is a 4-cycle C through c0cr . It follows that π(C) is a λ-
reduced closed walk of length 4 through the dart (cc)r . It is plain to see that π(C) =
((cc)r , (cc)r , (cc)r , (cc)r ) and thus end(π(C)) = {4r}. Then, 4r ≡ 0 (mod 2m) and
gcd(m, r) = 1. Since 0 < r < m, we see that r = 1 and m = 2. Then, � is a cubic
bicirculant of order 12 and is in fact isomorphic to the Franklin graph. ��
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Lemma 6.8 If � is a vertex-transitive ccv-cover of �8, then � is the triangular prism
GP(3, 1).

Proof Let � = Cov(�, λ, ι, ζ ) be vertex-transitive where (�, λ, ι, ζ ) is a ccv-
extension of �8. Let ι(c) = m so that ι(a) = ι(b) = 2m. Consider the walk
W = ((aa)m, (ab)0, (bb)m, (ba)0) and see that both a0am and a0b0 lie on a 4-cycle
in L(W ). Since � is vertex-transitive, then one of d0a0 or d0am must lie on a 4-cycle
C . Then, π(C) is a λ-reduced closed walk of length 4 through the dart (da)0. Clearly
π(C) = ((da)0, (ab)0, (bc)0, (cd)−r ) and end(π(C)) = {−r}. Then, by Lemma 6.2
we have r ≡ 0 (modm). Since gcd(m, r) = 1 and r < m, we see that m = 1 and
r = 0. Then, � can be seen to be isomorphic to the triangular prism. ��
Lemma 6.9 If � is a ccv-cover of �9, then � is not vertex-transitive.

Proof Let � = Cov(�, λ, ι, ζ ) where (�, λ, ι, ζ ) is a ccv-extension of �9. Observe
that ι(a) = 2 · ι(b) = 3 · ι(d). Moreover, ι(b) is even as b is incident to a semi-edge.
Then, ι(a) is divisible by 12. That is, for some m ∈ Z we have ι(a) = ι(c) = 12m,
ι(b) = 6m, ι(d) = 4m and the order of � is 34m. Suppose � is vertex-transitive and
consider the walk

W = ((da)0, (ab)0, (ba)0, (ad)0, (da)0, (ab)0, (ba)0, (ad)0).

Observe that every dart beginning at d0 lies on an 8-cycle belonging to L(W ). This
implies the existence of a λ-reduced walk W ′ of length 8 through the dart (bb)3m .
Observe that then W ′ must be one (or the inverse) of the following 6 walks, where
i ∈ {−1, 1}:

W1,i = ((bb)3m, (ba)0, (ac)0, (cc)ir , (cc)ir , (cc)ir , (ca)0, (ab)0),

W2,i = ((bb)3m, (ba)0, (ac)0, (cc)ir , (ca)0, (ad)0, (da)0, (ab)0),

W3,i = ((bb)3m, (ba)0, (ad)0, (da)0, (ac)0, (cc)ir , (ca)0, (ab)0).

Let W be the set containing the six walks W j,i , j ∈ {1, 2, 3} and i ∈ {−1, 1}, along
with their inverses. Denote by end(W) the union of endsets over the elements of W .
A tedious but straightforward computation shows that

end(W) = {±2m,±(m + r),±(m − r),±(3m + r),±(3m + 3r)}.

Then, z ≡ 0 (mod 6m) for some z ∈ end(W). This implies that m = 1 and r = km
for some k ∈ {1, 3, 5}. Then, � is one of three possible graphs of order 34 (observe
that � is completely defined by the values of r and m). One can check that in neither
one of the three possible cases is � vertex-transitive. ��

Lemma 6.10 If � is a ccv-cover of �10, then � is not vertex-transitive.

Proof Let � = Cov(�, λ, ι, ζ )where (�, λ, ι, ζ ) is a ccv-extension of�10. Suppose
� is vertex-transitive. Since�10 has a [1, 3]-edge, � is arc-transitive. For some m ∈ Z
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Fig. 10 The 8 distinct 8-cycles through the dart d0a0 in the proof of Lemma 6.10

we have ι(e) = m, ι(c) = 3m, ι(a) = ι(b) = 6m and ι(d) = 2m. Observe that the
order of � is 18m. As one can verify with the census of cubic vertex-transitive graphs
[23], no ccv-cover of �10 is vertex-transitive if m ∈ {1, 2}. Thus assume that m > 2.
Furthermore, r 	≡ 0 (modm), for otherwise m = 1 (since gcd(m, r) = 1). Now, for
i, j ∈ {0, 1} and k ∈ {2, 4} consider the walks in �:

Wi, j = (d0, a0, bir , cir , eir , c(1+ j)m+ir , b(4−2 j)m+ir , a(4−2 j)m, d0),

W ′
i,k = (d0, a0, b(1−i)r , a(1−2i)r , d(1−2i)r , akm+(1−2i)r , bkm+(1−i)r , akm).

Note that each of these 8 walks is an 8-cycle through a0d0 (see Fig. 10). Since � is
arc-transitive, there must be 8 distinct 8-cycles through c0b0. Now, consider the walks

W1 = ((cb)0, (ba)0, (ad)0, (da)0, (ab)0, (bc)0, (cd)0, (dc)0),

W2 = ((cb)0, (ba)−r , (ad)0, (da)0, (ab)r , (bc)0, (cd)0, (dc)0),

W3 = ((cd)0, (ba)0, (ab)r , (bc)0, (cb)0, (ba)−r , (ab)0, (bc)0),

W4 = ((cd)0, (ba)−r , (ab)0, (bc)0, (cb)0, (ba)0, (ab)r , (bc)0)

(see Fig. 11). Observe that for all i ∈ {1, 2, 3, 4}, all lifts of Wi that trace the dart c0b0
are 8-cycles. There are exactly 6 such cycles. It follows that there are an additional two
8-cycles through c0b0 that do not project to any of the four walks Wi , i ∈ {1, 2, 3, 4}.
Each of these two cycles projects to a λ-reduced closed walk of length 8 based at c
and visiting the dart (cb)0. Moreover, such projections must be different than Wi with
i ∈ {1, 2, 3, 4}. LetW be the set of allλ-reduced closedwalks of length 8 based at c and
visiting the dart (cb)0, that are distinct from Wi with i ∈ {1, 2, 3, 4}. Let end(W) be the
union of the endsets of all the elements ofW . A computer assisted calculation shows
that end(W) = {±(2m+r),±(m+2r),±(m+r),±(r),±(2r),±(3r),±(2m+2r)}.
Then, z ≡ 0 (mod 3m) for some z ∈ endW . This implies that m = 1 and r ∈
{1, 2, 3, 4, 5} or m = 2 and r ∈ {5, 7}, a contradiction. We conclude that � is not
vertex-transitive. ��

Up to this point we have shown that none of the labelled graphs �i with i ∈
{1, . . . , 11} admit a vertex-transitive ccv-covers with more than 20 vertices. Since the
graphs in Fig. 7 all admit vertex-transitive ccv-covers with more than 20 vertices, it
follows that the set Q consists of these eight graphs and possibly the graph �12 (it
will be shown in Sect. 6.1 that �12 does in fact admit infinitely many vertex-transitive
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Fig. 11 Two subgraphs of � in the proof of Lemma 6.10. On the left, a subgraph containing all lifts of W1
that visit c0 (8-cycles through c0b0 shown in bold edges). On the right, a subgraph containing all lifts of
W3 and W4 that visit c0

Fig. 12 The voltage assignment giving rise to the graph �12(m, r , s)

ccv-covers and thus belongs to Q). Since the graphs in Fig. 7 have at most 3 vertices
and all of their edges are of type [1, 1], we see that their generalised cyclic covers are
k-multicirculants for some k ≤ 3. The following proposition summarises the contents
of this section.

Proposition 6.11 Let � be a cubic vertex-transitive graph of order n > 20 admitting
an automorphism of order n/3 or greater. Then, either κ(�) ∈ {1, 2, 3} or � is a
ccv-cover of �12.

6.1 The Graph112

Let m be a positive integer, and let r and s be two distinct elements of Z. Let
�12(m, r , s) be the ccv-extension of �12 shown in Fig. 12, where voltages are shown
in bold characters next to each edge and ι(a) = m. It follows from equality (3.1) that
ι(u) = ι(v) = 2m and ι(a) = ι(b) = m. As the final step in the proof of Theorem 1.1,
we need to prove the following:

Theorem 6.12 Let m, r , s, m > 3, be positive integers. If the cyclic generalised cover
� = �12(m, r , s) arising from �12(m, r , s) is connected and vertex-transitive, then m
is odd and � ∼= SDW(m, 3). Conversely, if m is odd, then SDW(m, 3) is isomorphic
to �12(m, 1, 2), is connected and vertex-transitive and admits an automorphism of
order 2m.

Proof Recall that �12(m, r , s) admits an automorphism ρ of order 2m whose orbits
on vertices and darts are precisely the fibres of vertices and darts. Moreover, the
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automorphism ρm fixes the 2m vertices in the fibres fib(a) and fib(b); in particular,
�12(m, r , s) admits a non-trivial automorphism that fixes one third of the vertices of
the graph.

Suppose first that the girth of � is less then 6. Then, by Lemma 5.1 (see also
[28, Theorem 1.5]) and the fact that � has at least 24 vertices, it follows that � is
isomorphic to the Möbius ladder Moeb(6m) or to the prism Prism(3m). However,
every non-trivial automorphism of these graphs fixes at most 4 vertices, yielding
a contradiction. Hence, the girth of � is at least 6. Now observe that � contains
two 6-cycles C1 := (u0, a0, um, vm, bm, v0) and C2 := (u0, a0, um, vm+r , bm+r , vr ),
implying that its girth is 6.

Let (α, β, γ ), α ≤ β ≤ γ , be the 6-signature of �. Note that the edge {u0, a0}
lies on both of the cycles C1 and C2, while each of the remaining two edges incident
with u0 lies on precisely one of them. This shows that α, β ≥ 1 and γ ≥ 2. Similarly,
since both C1 and C2 pass through the edges {a0, u0} and a0, um}, incident with a0,
we see that β, γ ≥ 2. Moreover, since α ≥ 1, there must a third 6-cycle C3 passing
through the edge {a0, bs}. Since C3 also passes through one of the edges {a0, u0},
{a0, um}, it follows that γ ≥ 3. Finally, since � admits the automorphism ρm (where
ρ is the canonical covering transformation) of order 2 fixing a vertex and swapping
two of its neighbours, we see that two of the parameters α, β, γ must be equal. By
Lemma 5.1 (see also [29, Theorem 1]), it follows that � ∼= SDW(m, 3). Finally, as
mentioned in Remark 5.2 (and proved in [29, Proposition 5]), the automorphism group
of SDW(m, 3), m 	= 3, equals S3 × Dm and thus contains an element of order 2m if
and only if m is odd.

To conclude the proof of the theorem, assume that m is odd, m > 3, and consider
the mapping ϕ : V(�12(m, 1, 2)) → V(SDW(m, 3)) given by

ϕ(i, 0, 0) = bi+1;
ϕ(i, 0, 1) = ai ;
ϕ(i, 1, 0) =

{
ui+m if i is even;
ui if i is odd;

ϕ(i, 1, 1) =
{

vi+1 if i is even;
vi+m+1 if i is odd;

ϕ(i, 2, 0) =
{

ui if i is even;
ui+m if i is odd;

ϕ(i, 2, 1) =
{

vi+m+1 if i is even;
vi+1 if i is odd;

for all i ∈ {0, 1, . . . , m − 1}, where the indices at b j ’s and a j ’s are computed modulo
m, while those at u j ’s and v j ’s are computed modulo 2m. The isomorphism ϕ is
depicted in Fig. 13 where each vertex of SDW(m, 3) is labelled with its ϕ-image.

It is obvious that ϕ is a graph isomorphism. ��

By [29, Proposition 5] (see also Remark 5.2), the automorphism group of
SDW(m, 3) is isomorphic to S3 × Dm , unless m = 3, in which case SDW(m, 3) is the
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Fig. 13 A section of �12(m, 1, 2) with m ≥ 3

unique cubic arc-transitive graph on 18 vertices, also called the Pappus graph. From
this, it is easy to deduce the parameter κ and η for the split wreath graph SDW(m, 3):

Lemma 6.13 Let � = SDW(m, 3) for some integer m ≥ 3. Then, one of the following
holds:

• m is not divisible by 3 and η(�) = κ(�) = 2;
• m ≡ 0 (mod 6), and η(�) = κ(�) = 6;
• m ≡ 3 (mod 6), m 	= 3, and η(SDW(m, 3)) = 3 while κ(SDW(m, 3)) = 6;
• m = 3, � is isomorphic to the Pappus graph and κ(�) = 3 while η(�) = 3/2.

7 Proof of Theorem 1.1

Using the results proved in the previous sections, it is now not difficult to prove Theo-
rem 1.1. Before we proceed to the proof, we will need the lemma below, characterising
those cyclic Haar graphs that are circulant graphs.

Lemma 7.1 For an integer m ≥ 5, a connected cyclic Haar graph H(m, x, y) is a
circulant if and only if m is odd and {x, y} = {a, 2a} or {x, y} = {a,−a} for some
a ∈ Z such that gcd(m, a) = 1.

Proof Suppose that � = H(m, x, y), gcd(m, x, y) = 1, is a circulant. For i ∈ Zm ,
we let ui and vi denote the vertices (i, 0) and (i, 1), respectively, and recall that the
neighbours of ui in � are vi , vi+x and vi+y .

Since � is a circulant, it is isomorphic to a prism or to a Möbius ladder. In both
cases, the girth of � is 4 and at every vertex there is an edge belonging to two 4-cycles,
none of these 4-cycles sharing a 2-path (recall that we are assuming that m ≥ 5
and thus the order of � is at least 10). Observe also that exactly one of the graphs �,
H(m,−x, y −x) and H(m, x − y,−y), isomorphic to�, is such that the edge incident
with the vertex (0, 0) belonging to two 4-cycles is e0 = {u0, v0}. Denote this graph
H(m, a, b) (that is, (a, b) is one of (x, y), (−x, y − x) or (x − y,−y), or equivalently,
(x, y) is one of (a, b), (−a, b − a) or (a − b,−b)).

One of the two 4-cycles passing through e0 passes also through the edge e1 =
{u0, va}, while the other passes through e2 = {u0, vb}. Since the neighbours of v0
are u0, u−a and u−b, for these two edges to form a 4-cycle together with the edge e0,
either u−a is adjacent to va and u−b to vb, or u−b is adjacent to va and u−a to vb.

123



133 Page 30 of 33 P. Potočnik, M. Toledo

In the first case, both 2a and 2b belong to the set {0, a, b}, while in the second case,
a + b ∈ {0, a, b}, which forces a + b = 0 (since a 	= 0 	= b).

Let us consider the first case. Observe that 2a 	= a and 2b 	= b. If 2a = 0, then m is
even, a = m/2 and 2b = a. Since gcd(m, a, b) = 1, this forces m = 4, contradicting
our assumption that � has at least 10 vertices. A similar contradiction is obtained if
2b = 0. This leaves uswith the possibility that 2a = b and 2b = a. But then a+b = 0,
and we find ourselves in the second case.

Therefore, the second case occurs, that is, a + b = 0. Since gcd(m, a, b) = 1, this
implies that gcd(m, a) = 1 and b = −a. But then (x, y) is one of the pairs (a,−a),
(−a,−2a) or (2a, a).

To summarise, if a connected cubic cyclic Haar graph H(m, x, y) with m ≥ 5
is a circulant, then {x, y} = {a, 2a} or {x, y} = {a,−a} for some a ∈ Zm with
gcd(m, a) = 1. Furthermore, the graphs H(m, a, 2a) and H(m, a,−a) are isomorphic
to the prism Prism(m) whenever m is even, and thus cannot be circulants. It follows
that m must be odd, as required.

For the converse, let m, a ∈ Z be such that m ≥ 5, m is odd and gcd(m, a) = 1. If
� = H(m, a,−a), then themapping given by ui �→ vi+r and vi �→ ui+r is a circulant
automorphism of �. On the other hand if � = H(m, a, 2a) then the mapping given
by ui �→ vi and vi �→ ui−2r is a circulant automorphism of �. ��

We are now ready to prove Theorem 1.1. As mentioned in Sect. 2.3, the validity of
the theorem for graphs on at most 20 vertices can easily be checked by consulting the
census of cubic vertex-transitive graphs [23].

Now, as in the statement of Theorem 1.1, let � be a cubic vertex-transitive graph
of order n, n > 20, admitting an automorphism of order at least n

3 . We need to show
that then one of the claims (1) – (4) of Theorem 1.1 holds.

Observe first that by combining Proposition 6.11 with Theorem 6.12, κ(�) ∈
{1, 2, 3} or � is isomorphic to SDW(m, 3) with m odd (and m 	= 3 since we are
assuming that � has more than 20 vertices). In the latter case, by Lemma 6.13, we see
that κ(�) ≤ 3 or m ≡ 3 (mod 6) (in which case κ(�) = 6).

To summarise, either κ(�) ∈ {1, 2, 3} or claim (4) of Theorem 1.1 holds.
Suppose now that κ(�) ∈ {1, 2, 3}. If � is a circulant, then, by definition,

� ≡ Cay(Z2m; S), where S = {r ,−r , m} for some r ∈ Z2m , r 	= 0. By connec-
tivity of �, we may assume that gcd(r , m) = 1, implying that there exists s ∈ Z2m ,
gcd(s, 2m) = 1, such that rs = 1, or r is even, m is odd and rs = 2 in Z2m . Note
that � is then isomorphic to Cay(Z2m; {1,−1, m}) ∼= Moeb(2m) (in the first case) or
to Cay(Z2m; {2,−2, m}) ∼= Prism(m) (in the second case). In particular, claim (1) of
Theorem 1.1 holds in this case.

If � is a bicirculant, then it can be deduced from [22, Propositions 3 and 4] and
[3, Theorem 7 and Corollay 8] (see also [25, Theorem 1.1 and Remark 1.2]) that �

is isomorphic either to a prism Prism(m), or to a Möbius ladder Moeb(n), or to one
of the vertex-transitive generalised Petersen graphs GP(m, r) with 2 ≤ r < m/2,
r2 ≡ ±1 (modm), or to a cyclic Haar graph H(m, r , s) with gcd(m, r , s) = 1.

If � is a prism or a Möbius ladder, then it is not a circulant only if it is isomorphic
to a prism Prism(m) with m even (and then claim (2a) of Theorem 1.1 holds). Further,
since the girth of a generalised Petersen graph GP(m, r) is at least 5 unless m ≤ 4 or
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r = 1, we see that a generalised Petersen graph GP(m, r) is a circulant if and only if
r = 1 and m is odd (in which case it is a prism). In particular, if � is a generalised
Petersen graph which is not a circulant, then claim (2b) of Theorem 1.1 holds.

If � is a connected cyclic Haar graph, that is � = H(m, r , s) with m > 10 and
gcd(m, r , s) = 1, then by applying the permutation ϕα,0 for an appropriate α, we
may assume that r divides m (where r is represented as a positive integer smaller than
m), and thus that gcd(r , s) = 1. Under this assumption, by Lemma 7.1 � is then a
circulant if and only if m is odd and {r , s} = {1, 2} or {r , s} = (1, m − 1). We have
thus shown that the claim (2c) of Theorem 1.1 holds in this case.

If � is a tricirculant but not a bicirculant, then by [24, Theorems 1.1, 4.3 and 5.3], �
is either the Tutte’s 8-cage (on 30 vertices), the truncated tetrahedron (on 12 vertices)
or isomorphic to one of the graphs X(m) or Y(m) with m ≡ 3 (mod 6). Note that
claims (3) of Theorem 1.1 holds in this case.

For the converse, it is clear that the circulants, bicirculants and tricirculant appearing
in parts (1), (2) and (3) of Theorem 1.1 all admit an automorphism of order at least one
third of the order of the graph. The graph SDW(m, 3) with m ≡ 3 (mod 6) has order
6m and admits, by construction, an automorphism with two orbits of size 2m, namely,
the canonical covering transformation ρ. This completes the proof of Theorem 1.1.

8 Relationship Between �(0) and �(0) and Open Problems

Let us conclude the paper with a discussion on the interplay between the parameters
κ(�) and η(�). First, note that none of the functions η(�) and κ(�) can be bounded
above by a constant, even when restricted to the class of cubic vertex-transitive graphs.
Namely, if there were a constant C such that η(�) ≤ C holds for all graphs �, then
max{o(g) : g ∈ Aut(�)} ≥ |V(�)|/C , or in other words, the parameter meo(�) :=
max{o(g) : g ∈ Aut(�)} is bounded below by a linear function of |V(�)|. However, it
was shown in [27] that there exists an infinite family {�i }i∈N of cubic vertex-transitive
graphs with meo(�i ) growing slower than any logarithmic function of |V(�i )|. This
implies that there is no constant C such that η(�) ≤ C for all cubic vertex-transitive
graph �. Since η(�) ≤ κ(�) holds for all �, this implies that there is no upper bound
on κ(�).

Let us mention at this point that a somewhat similar problem was raised in [5],
where it was conjectured that the value

m(n) := min{ |V(�)|
κ(�)

: � a cubic vertex-transitive graph on at most n vertices}

tends to ∞ as n grows to ∞, or in other words, for every integer n, there is a constant
cn such that every cubic vertex-transitive graph on more than n vertices admits a
semiregular element of order at least cn . However, in [30], an infinite family of cubic
vertex-transitive graphs was constructed in which every semiregular automorphism
has order at most 6, proving this conjecture wrong in general (but proved to be correct
when restricted to arc-transitive or Cayley graphs [20]). On the other hand, it was
proved recently in [2] that m(n) ≥ 6 for n sufficiently large.
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While κ(�) can take an arbitrary large value, a question ariseswhether the parameter
κ(�) can be bounded above in terms of η(�)where� ranges through the class of cubic
vertex-transitive graphs. More precisely, we are interested in the following:

Question 8.1 For which positive integers r does there exist an integer kr such that
κ(�) ≤ kr for all but finitely many cubic vertex-transitive graphs satisfying η(�) ≤ r?

If for some r an integer kr as above exists, then let f (r) be the smallest such
integer kr . A direct consequence of Theorem 1.1 is that f (r) can be defined at least
for r ∈ {1, 2, 3} and that f (1) = 1, f (2) = 2 and f (3) = 6. Let us conclude this
paper by posing the following:

Question 8.2 If the function f (r) is defined for all r , what is its asymptotic behaviour
as r → ∞? Is f (r) unbounded? If so, can it be bounded by a linear and/or polynomial
function of r?
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17. Marušič, D., Scapellato, R.: Permutation groups, vertex-transitive digraphs and semiregular automor-

phisms. Eur. J. Comb. 19, 707–712 (1998)
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