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Abstract
Given a filtration function on a finite simplicial complex, stability theorem of persistent
homology states that the corresponding barcode is continuous with respect to changes in the
filtration function. However, due to the discrete setting of simplicial complexes, the simplices
terminating matched bars cannot change continuously for arbitrary perturbations of filtration
functions. In this paper we provide a sufficient condition for rigidity of a terminal simplex,
i.e., a condition on ε > 0 implying that the terminal simplex of a homology class or a bar
in persistent homology remains constant through ε-perturbations of filtration function. The
condition for a homology class or a bar in dimension n depends only on the barcodes in
dimensions n and n + 1.
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1 Introduction

Let K be a finite simplicial complex. A filtration function assigns to each simplex in K a
unique real value, such that for each simplex, the values of its faces are lower than the value
of the simplex. For each r ∈ R we define Kr as the subcomplex of K consisting of all the
simplices whose values are at most r . The collection of subcomplexes {Kr }r∈R connected
by the natural inclusions Kr → Kr ′ for each r ≤ r ′ is called a filtration of K .

Persistent homology [9, 10] is a parameterized version of homology, with the param-
eter arising from a filtration function of a simplicial complex. It is obtained by applying
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a homology to a filtration, which yields a collection of homology groups {Hn(Kr )}r∈R
and inclusion-induced maps between them. One of its fundamental features as compared
to homology is stability [8]. In particular, small perturbations of filtration functions induce
small perturbations to the lifespans (along parameter r ) of homology classes. However, the
terminal simplices and the corresponding homology representatives of persistent homology
cannot change continuously with arbitrary perturbations of filtration functions.

As simplices keep appearing in a filtration, non-trivial homology classes are either appear-
ing (if the boundary of the added simplex is homologically trivial) or terminating. A simplex
terminating a homology class (i.e., identifying the class with the trivial class) is called a
terminal simplex. A corresponding homology representative, appearing at the first possible
scale of the filtration, can be obtained from the boundary of the terminal simplex. As such, the
terminal simplices allow us to localize and determine a geometric manifestation of homology
terminating with the simplex. While finding a suitable homology representative in persistent
homology is by itself challenging [7], the fact that small perturbations of a filtration function
may yield completely different terminal simplices results in unstable representatives. There
has been an attempt to circumvent this issue in practice [5].

In this paper we study the region of parameter ε for which the terminal simplex of a
persistent homology class [α] of an injective filtration function f is rigid (i.e., constant)
through ε-perturbations of f . Let [a, b) be the lifespan interval of an n-dimensional homology
class [α]. Our main results are the following (under suitable assumptions).

(1) Theorem 9: The terminal (n + 1)-dimensional simplex of [α] is rigid for ε-perturbations
of f if

• no class of Hn+1 is born on (b, b + 2ε] and
• no class of Hn terminates on [b − 2ε, b).

(2) Theorem 11: A version of Theorem 9 for significant bars in the barcode. One of the main
advantages of this result is that rigidity can be deduced solely from the barcode, without
looking at the underlying filtration. (For details on barcodes of persistent homology see
Preliminaries.)

Theorem 9 describes the two ways in which non-rigidity of a terminal simplex may occur:
either via sequentially critical pair of simplices or independently critical pair of simplices.
As a result, we are not only able to provide bounds on the region of rigidity, but also to locate
a simplex (�2 in Theorem 9) appearing as a new terminal simplex for [α] in the region of
non-rigidity. For a demonstration within the context of persistence diagrams and barcodes
(defined in Preliminaries) see Figs. 4 and 5 following Theorem 11.

On the other hand, our results contribute to a new interpretation of the structure of persistent
homology. So far, persistent homology has been known to encode topological information of
the space at small scales [11, 12, 20], intrinsic combinatorial structure of filtrations (such as
Rips complexes) [1, 2], proximity of spaces via the stability result [18], geometric properties
of spaces [19], shortest homology basis [17], spaces of contraction [16], filling radius [13],
curvature [6], width of homology class [3], and more. Our results imply that, to a degree,
persistent homology encodes rigidity of terminal simplices.

2 Preliminaries

We first introduce the setup of persistent homology, see [9] for details. Throughout this paper
we assume that K is a finite simplicial complex and f : K → R is an injective filtration
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function on K (if σ is a face of τ then f (σ ) < f (τ ) for all σ, τ ∈ K ). As such f encodes
an order on the simplices of K . For example, in the original persistent homology algorithm
[10] such an order is used to arrange simplices in the boundary matrix. A simplex in K is
(inclusion) maximal if it is not a proper face of any simplex.

Given two injective filtration functions f and g, we define the distance between them as

|| f − g||∞ = max
σ∈K | f (σ ) − g(σ )|.

Function g corresponds to some permutation of the ordering of simplices encoded by f .
The sublevel sets of f are subcomplexes of K defined for all r ∈ R as the pre-images

K f
r = f −1((−∞, r ]). We can also define K f∞ = f −1((−∞,∞)) = K . The notation

K f denotes the standard sublevel filtration of K obtained through f , i.e., the collection of
subcomplexes {K f

r }r∈R along with the natural inclusions

ιq,r : K f
q → K f

r

for all q ≤ r . Applying homology Hn as a functor to a filtration we obtain a persistence
module, i.e., a collection of vector spaces {Hn(K

f
r )}r∈R along with the inclusions induced

linear maps

ι∗q,r : Hn(K
f
q ) → Hn(K

f
r )

for all q ≤ r . All homology groups are assumed to be with coefficients in a fixed field F and
therefore not mentioned in the notation for homology.

Given a non-trivial homology element [α] ∈ Hn(K
f
r ) for some r , we define:

birth a ∈ R of [α] as the infimum of levels q ≤ r , for which there exists
[αq ] ∈ Hn(K

f
q ) such that ι∗q,r [αq ] = [α]. We say that [α] is born at a.

termination scale b ∈ R∪ {∞} of [α] as the infimum of levels q ≥ r , for which ι∗r ,q [α] = 0,
or ∞ if such levels do not exist. We say that [α] is terminated at b.

Note that the termination scale is defined differently than death in [9]. Given our setup of
sublevel complexes defined through preimages of closed intervals, the infima in the definition
of birth and termination scale are always attained if finite. Since f is injective, at most one
simplex is added at each level r . Consequently each (n + 1)-simplex either gives birth to a
non-trivial homology class in dimension n + 1 or terminates a non-trivial homology class in
dimension n.

We next state the stability theorem and introduce the corresponding notation, see [4] for
details. Each persistence module obtained in our setting decomposes as a finite direct sum
of interval modules F[ai ,bi ), where persistence module F[a,b) for a < b is a collection of
vector spaces {Vr }r∈R, with:
• Vr = F for r ∈ [a, b),
• Vr = 0 for r /∈ [a, b) and
• the bonding linear maps Vr → Vr ′ being identities for parameters r < r ′ from [a, b).

Note that the type of endpoints of intervals (closed on the left, open on the right) is a conse-
quence of our setup of a filtration, i.e., a sublevel filtration of an injective filtration function
on a finite simplicial complex. The collection of intervals [ai , bi ) is called a barcode and a
single interval in this setting is referred to as a bar.

Given injective filtration functions f and g and n ∈ {0, 1, . . .}, assume

M = {Hn(K
f
r )}r∈R =

⊕

i∈I
F[ai ,bi )
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and

M′ = {Hn(K
g
r )}r∈R =

⊕

j∈J

F[a′
j ,b

′
j )

are decompositions of persistencemodulesM andM′ into interval modules. The bottleneck
distance between M and M′ is the infimum of ε > 0, for which there exists a bijection
ϕ : I ′ → J ′ for subsets I ′ ⊆ I and J ′ ⊆ J such that:

• |ai − a′
ϕ(i)| ≤ ε and |bi − b′

ϕ(i)| ≤ ε for all i ∈ I ′,
• |ai − bi | ≤ 2ε for all i ∈ I \ I ′ and
• |a′

j − b′
j | ≤ 2ε for all j ∈ J \ J ′.

The stability theorem states that if || f − g||∞ ≤ ε, then the bottleneck distance betweenM
and M′ is at most ε, see [9] for details.

2.1 Filtrationmanipulation

The following propositions explain local adjustments to filtration functions that result in a
predetermined permutation of a collection of simplices.

Proposition 1 Let σ1 and σ2 be two n-dimensional simplices in a finite simplicial complex
K and let f be an injective filtration function on K . Assume that for some ε > 0 we have

f (σ1) < f (σ2) < f (σ1) + 2ε.

Then there exists an injective filtration function g on K such that || f − g||∞ ≤ ε and
g(σ2) < g(σ1).

Proof Without loss of generality we can slightly decrease ε so that the assumptions of the
proposition still hold and that

ε /∈ {| f (σ ) − f (τ )| ; σ, τ ∈ K } and 2ε /∈ {| f (σ ) − f (τ )| ; σ, τ ∈ K }. (1)

LetU = Upper(σ1) ⊆ K denote the subset of all simplices in K that contain σ1 as a face
(the upper set of σ1 in the Hasse diagram of K ), and let L = Lower(σ2) ⊆ K denote the
subset of all faces of σ2 (the lower set of σ2 in the Hasse diagram of K ). Note that σ1 ∈ U
and σ2 ∈ L .

If μ ∈ U , set g(μ) = f (μ) + ε. If μ ∈ L , set g(μ) = f (μ) − ε. For all other simplices
μ let g(μ) = f (μ).

Since σ1 and σ2 are two distinct simplices of the same dimension, we haveU ∩ L = ∅, so
g is well-defined. It is also obvious that |g(μ)− f (μ)| ≤ ε for allμ ∈ K , so ||g− f ||∞ ≤ ε.
Finally, if the value at a simplex μ has decreased (or increased) by ε, then the same was true
for all the faces (or cofaces) of μ, so g is a filtration function. The function g defined this
way is injective by the condition (1). 
�

Given a collection of k simplices of dimension n and an arbitrary permutation π ∈ Sk ,
we do not have to switch the order of one pair at a time but can instead mix them up all at
once. Corollary 2 shows one way of doing this.

Corollary 2 Let σ1, . . . , σk be a selection of n-dimensional simplices in a finite simplicial
complex K , π ∈ Sk an arbitrary permutation of the indices {1, 2, . . . , k} and f an injective
filtration function on K . Assume that for some ε > 0 we have

f (σ1) < f (σ2) < · · · < f (σk) < f (σ1) + 2ε.
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Then there exists an injective filtration function g on K such that || f − g||∞ ≤ ε and

g(σπ(1)) < g(σπ(2)) < . . . < g(σπ(k)).

Proof If we write a = f (σk) − ε and b = f (σ1) + ε, then (a, b ] is an interval of length
δ < 2ε. Divide this interval into k + 1 equal pieces of length δ

k+1 and define

g(σπ(1)) = a + δ

k + 1
,

g(σπ(2)) = a + 2δ

k + 1
,

...

g(σπ(k−1)) = a + (k − 1)δ

k + 1
,

g(σπ(k)) = a + kδ

k + 1
.

It is not difficult to show that |g(σi ) − f (σi )| ≤ ε − δ
k+1 . Define

I+ = {i ∈ {1, 2, . . . , k}; g(σi ) − f (σi ) > 0},
I− = {i ∈ {1, 2, . . . , k}; g(σi ) − f (σi ) < 0},
ε+ = max{g(σi ) − f (σi ); i ∈ I+},
ε− = max{|g(σi ) − f (σi )|; i ∈ I−},
U =

⋃

i∈I+
Upper(σi ) and L =

⋃

i∈I−
Lower(σi ).

It is easy to see that ε+ < ε and ε− < ε. For allμ ∈ U\{σ1, . . . , σk} let g(μ) = f (μ)+ε+.
For all μ ∈ L\{σ1, . . . , σk} let g(μ) = f (μ) − ε−. Finally, for all other μ ∈ K set
g(μ) = f (μ). Then g is a filtration function with all the desired properties except (perhaps)
injectivity, but it can be made injective either with a small perturbation of values (upholding
the property of being a filtration function), or with a minor decrease in ε at the beginning (as
was done in the proof of Proposition 1). 
�

3 Rigidity for homology classes

As before, let f be an injective filtration function on a simplicial complex K and let n be a
positive integer. Assume that an n-cycle α is created when its last n-dimensional simplex is
added at level a, and that the homology class [α] ∈ Hn(K

f
a ) is born at a and terminated at

b. A nullhomology of α at b is an (n + 1)-chain in K f
b , whose boundary is α.

Choose ε < b−a
2 . Then for each ε-perturbation g of f the class [α] exists and is non-trivial

in Hn(K
g
r ) at least for r ∈ [a + ε, b − ε).

For every injective filtration function g at distance at most ε < b−a
2 from f let �g,α

denote the (n + 1)-simplex in Kg that terminates [α]. Define
�ε = {�g,α; g an injective ε − perturbation of f }.

Note that g(�g,α) ∈ [b − ε, b + ε] and f (�g,α) ∈ [b − 2ε, b + 2ε]. We say that [α] is
ε-terminally-rigid if |�ε| = 1.
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Since f is injective and K is finite, we can define

ir( f ) = min{| f (σ ) − f (τ )|; σ �= τ ∈ K } > 0,

the injectivity radius of f .
The aim of this paper is to study algebraic effects of terminal non-rigidity. Homology

class [α] as defined above is ε-terminally-rigid for small ε, certainly for ε <
ir( f )
2 since

ir( f )
2 -perturbations of f retain the order of simplices appearing in the filtration of K . For

larger ε the class [α] is typically not terminally-rigid. We intend to focus on the region of ε

in which the initial form of non-rigidity occurs.
Let d = dim(K ) and let σ

(i)
j for j = 1, . . . , ki be the simplices of K of dimension i .

Then f determines a linear ordering on the set

{σ (0)
1 , . . . , σ

(0)
k0

, . . . , σ
(d)
1 , . . . , σ

(d)
kd

}
of all simplices of K . We can encode this ordering as a permutation π f ∈ Sk0+k1+...+kd of the
pre-determined ordering of simplices given above. A different injective filtration function h
defines a potentially different ordering of the simplices of K , corresponding to a potentially
different permutation πh . Note that not all permutations in the symmetric group Sk0+k1+...+kd
correspond to filtration functions.

If we limit ourselves to only the simplices of a single dimension, however, all possible
permutations of those simplices can be realized by Corollary 2. Our filtration function f
determines a permutation π

f
n+1 ∈ Skn+1 , defined by the induced linear ordering of the set

{
σ

(n+1)
1 , . . . , σ

(n+1)
kn+1

}

of (n + 1)-dimensional simplices of K . We will assume that the simplices of K have been
ordered in such a way that π

f
n+1 is the identity permutation. To unburden the notation we

will write π
f
n+1 = π f and m = kn+1 from now on.

Any injective filtration functions that correspond to the same permutation generate the
same boundary matrices in the classical matrix reduction algorithm for persistent homology,
although the labels (function values) of simplices generally differ.

Also recall that for each ε ∈ D = (0, b−a
2 ] and each injective filtration function g with

|| f − g||∞ ≤ ε the class [α] has a non-trivial lifespan in Kg .
Now, let us consider

• the function ε �→ �ε defined on D that returns the collection of all terminal simplices
of ε-perturbations of f that terminate [α] and

• the function ε �→ �ε defined on D that returns the collection of all permutations corre-
sponding to ε-perturbations of f .

The functions ε �→ |�ε| and ε �→ |�ε| defined on D

(1) are increasing,
(2) have values in the discrete sets {1, 2, . . . ,m} and {1, 2, . . . ,m!}, respectively, and
(3) attain the value of 1 for small ε (at least for all ε <

ir( f )
2 ).

As a result, both functions are increasing step functions on D as each of them partitions
D into finitely many intervals, such that the function is constant on each interval of that
partition. It is also apparent that a change in �ε may occur at some ε only if �ε also changes
at the same parameter. The next lemma shows that |�ε| and |�ε| are lower semi-continuous
(the intervals of the two partitions of D are open on the left and closed on the right).
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Lemma 3 Assume f is an injective filtration function on a finite simplicial complex K and
assume that for the n-cycle α appearing in the filtration at level a the homology class [α] ∈
Hn(K

f
a ) is born at a and terminated at b. For each t ∈ D = (

0, b−a
2

]
there exists δ > 0

such that �ε and �ε are constant on (t − δ, t].
Proof Choose finitely many injective filtration functions generating�t . Each of them can be
brought a bit closer to f because of injectivity. 
�

We next discuss potential points of discontinuity of |�ε| and |�ε|. The following lemma
shows that they always correspond to exactly half the distance between two (not necessarily
consecutive) values of f .

Lemma 4 Assume f is an injective filtration function on a finite simplicial complex K and
assume that for the n-cycle α appearing in the filtration at level a the homology class [α] ∈
Hn(K

f
a ) is born at a and terminated at b. Suppose t ∈ D

(
0, b−a

2

]
is a point of discontinuity

of �ε . Then there exist i �= j such that 2t = | f (σi ) − f (σ j )|.
Proof As a consequence of Lemma 3 there exists a δ > 0 such that�ε is constant on (t, t+δ].
Since t is the point of discontinuity, there exists a permutation ν ∈ �t+δ\�t . For each N ∈ N

choose an injective filtration function gN inducing ν and satisfying || f − gN ||∞ ≤ t + 1/N .
Without loss of generality we may assume that {gN (σi )}N∈N converges for each i and define
f∞ as the limiting function (if any of them do not converge we can choose a converging
subsequence). Note that while f∞ is a filtration function, it cannot be injective, because it
would have corresponded to the premutation ν which is not in �t while || f − f∞||∞ ≤ t
by definition. Let us try fixing the values of f∞ to make it injective and see where exactly
that fails.

Assume that q is a value attained by f∞ at more than one simplex. Let Aq denote the
collection of such simplices. If there exist two distinct σi , σ j such that q = f (σi ) − t =
f (σ j ) + t , then we have found two simplices that satisfy the desired condition. If not, there
are two possible reasons for that.

• If there is no i such that q = f (σi ) − t , then the f -values of all simplices in Aq lie
on [q − t, q + t). In this case the f∞ values of all the simplices in Aq can be slightly
decreased by Corollary 2 so that:

– f∞(σ ) �= f∞(σ ′) for all σ �= σ ′ in Aq ,
– the relative position of each simplex of Aq to the simplices outside of Aq is the same

as in ν,
– simplices of Aq appear in the same order as in ν and
– the resulting filtration function f ′∞ satisfies || f − f ′∞||∞ ≤ t .

Since this wouldmake f∞ injective, it cannot happen for all q and theremust be a simplex
σi such that q = f (σi ) − t .

• The case where there is no j such that q = f (σ j ) + t and the f -values of simplices
from Aq all lie on (q − t, q + t] can be handled similarly by a small local increase of the
values of f∞.

We can conclude that there exist i �= j such that q = f (σi ) − t = f (σ j ) + t . 
�
Definition 5 An injective filtration function f is called generic if

| f (σi ) − f (σ j )| = | f (σi ′) − f (σ j ′)|
implies {i, j} = {i ′, j ′}.
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Proposition 6 Let f be a generic injective filtration function on a finite simplicial complex K .
Assume that for the n-cycle α appearing in the filtration at level a the homology class [α] ∈
Hn(K

f
a ) is born at a and terminated at b and let D

(
0, b−a

2

]
. Let t0 = max{x ∈ D; |�x | = 1}

and�t0 = {�1}. By Lemma 4 there exist indices i, j satisfying q = f (σ j )− t0 = f (σi )+ t0.
Choose t > t0 such that |�t | is as small as possible, i.e., |�t | = limx↘t0 |�x |. Then:
(1) �1 ∈ {σi , σ j }.
(2) �1 is a maximal simplex in K f

f (�1)+2s for all s < t0.

(3) �1 = σ j implies {σi , σ j } ⊆ �t and σi terminates a class in H∗(K f ).
(4) �1 = σi implies {σi , σ j } ⊆ �t and σ j creates a class in H∗(K f ).

Definition 7 In case (3) of Proposition 6 (i.e., when �1 = σ j ) we say simplices σi and σ j

are sequentially critical, see Fig. 1.
In case (4) of Proposition 6 (i.e., when �1 = σi ) we say simplices σi and σ j are inde-

pendently critical, see Fig. 2.

Proof Without loss of generality we may choose t so that no element of the form 1
2 | f (σi ) −

f (σ j )| lies on (t0, t]. We will further develop the limiting argument presented in Lemma
4. Choose ν ∈ �t\�t0 . For each N ∈ N choose a filtration function gN inducing ν and
satisfying || f −gN ||∞ ≤ t0 +1/N . Without loss of generality we may assume {gN (σi )}N∈N
converges for each i and define f∞ as the limiting function. Using local modifications as in
the proof of Lemma 4 we may assume that f −1∞ (x) contains at most one simplex for each
x �= q . Define Aq = f −1∞ (q). Choose an open interval H around q such that

H ⊆
⎛

⎝
⋂

σ∈{σi ,σ j }
( f (σ ) − t, f (σ ) + t)

⎞

⎠ ∩
⎛

⎝
⋂

σ∈Aq\{σi ,σ j }
( f (σ ) − t0, f (σ ) + t0)

⎞

⎠

and H ∩ im( f∞) = {q}.
Redefining f∞ on Aq by any injective assignment of values in H respecting dimension

(i.e., faces of a simplex are assigned smaller values than the simplex) we obtain an injec-
tive filtration function at a distance at most t from f . As a result, any dimension-respecting
permutation of elements in Aq , nested between other simplices as determined by f∞, deter-
mines a permutation in�t . Wewill call such a permutation a local Aq -perturbation of ν. On
the other hand, redefining f∞ on Aq by any injective assignment of values in H respecting
dimension such that f∞(σi ) < q < f∞(σ j ), we obtain an injective filtration function at
distance at most t0 from f . As a result, any dimension respecting permutation of elements
in Aq nested between other simplices as determined by f∞, in which σi appears before σ j ,
determines a permutation in �t0 . We will call such a permutation a restricted local Aq -
perturbation of ν. Roughly speaking, the difference between �t0 and �t is that the later
may swap σi and σ j . Observe also that f (Aq) ⊂ [ f (σi ), f (σ j )].

Recall that �t0 = {�1} and fix a permutation ν ∈ �t \ �t0 (and the corresponding
adjusted limit f∞ of filtration functions) such that the corresponding simplex terminating α

is �2 �= �1. Observe that ν swaps σi , σ j , i.e., σi appears after σ j in this permutation.

(1) We will now show that �1 ∈ {σi , σ j }. Assume that �1 /∈ {σi , σ j }.
(a) Then �1 may appear as the first of the simplices of Aq in some restricted local Aq

perturbation of ν. In particular, �1 and the simplices appearing before Aq contain a
nullhomology of [α].
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(b) On the other hand,�1 may appear as the last of the simplices of Aq in some restricted
local Aq perturbation of ν. In particular, Aq \{�1} and the simplices appearing before
Aq do not contain a nullhomology of [α].

As a result, �t can only contain �1 as in permutation ν, class [α] becomes trivial by the
time �1 is added (by (a)) but not before (by (b)). This is a contradiction. This proves our
claim.

(2) If �1 was not maximal but rather a codimension 1 face of a simplex �̂ in K f
f (�1)+2s ,

then by Corollary 2 we could construct an injective filtration function g of K with
|| f −g||∞ < t0 in which the boundary of �̂would appear before�1, while the simplices
in K f appearing before �1 would also appear before �1 in Kg . This would mean that
�1 would not be the simplex terminating [α] in Kg as it could be replaced by the same-
dimensional simplices of ∂�̂. This contradicts the fact that �t0 = {�1}.

(3) Let �1 = σ j .

(a) There is a restricted local Aq perturbation of ν in which σ j appears as the last simplex.
As �t0 = {σ j }, the simplices of Aq \ {σ j } and all the simplices appearing before
them do not contain a nullhomology of α, i.e., each nullhomology induced by a local
Aq -perturbation of ν contains σ j .

(b) On the other hand, there is a restricted local Aq perturbation of ν in which σ j appears
as the second simplex, right after σi . This means that σi , σ j and the simplices appear-
ing before Aq contain a nullhomology of α.

(c) There is a local Aq -perturbation of ν in which σi appears as the second simplex,
right after σ j . By (2) the terminal simplex of α in this perturbation is either σi or
σ j . If σ j was the terminal simplex of α in this perturbation, σ j and the simplices
appearing before Aq would contain a nullhomology of α. Consequently (a) would
imply the terminal simplex of α in any local Aq perturbation of ν is σ j implying
|�t | = 1, a contradiction. According to (b), σi appears as the terminal simplex for
this permutation implying {σi , σ j } ⊆ �t .

If σi was a birth simplex, the term ∂σi could have been replaced by a combination of
boundaries of simplices appearing before Aq .Wewould thus transform the nullhomology
mentioned in (c), which consists of terms containing σi , σ j and simplices appearing
before Aq , into a nullhomology consisting of terms σ j and simplices appearing before
Aq . Such a nullhomology does not exist, as wasmentioned in (c), so σi must be a terminal
simplex in K f .

(4) Let �1 = σi .

(a) There is a restricted local Aq -perturbation of ν in which σ j appears as the last simplex
and σi appears as the second simplex from the last. As �t0 = {σi }, the simplices of
Aq \{σi , σ j } and all the simplices appearing before them do not contain a nullhomol-
ogy of α, i.e., each nullhomology induced by a local Aq -perturbation of ν contains
σ j or σi .

(b) On the other hand, there is a restricted local Aq -perturbation of ν in which σi appears
as the first simplex. This means that σi and the simplices appearing before Aq contain
a nullhomology of α.

(c) There is a local Aq -perturbation of ν in which σi appears as the last simplex and σ j

appears as the second simplex from the last. By (a) the terminal simplex of α in this
perturbation is either σi or σ j . If σi was the terminal simplex of α in this perturbation,
then simplices of Aq \{σi } and all the simplices appearing before them do not contain
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Fig. 1 Consider the filtrations K f and Kg shown above. Let α = [B − A] ∈ H0(K ), �1 = DF and
�2 = EF . Assume that | f − g| < ε, t2 − t1 < 2ε and t ′2 − t ′1 < 2ε. Then �ε = {�1, �2}. In the first case
α is terminated by �1 at t = t2. In the second case α is terminated by �2 at t = t ′2. We say that �1 and �2
are sequentially critical: both need to be present to terminate α, the one that appears first terminates another
class in the same dimension and the one that appears second is the one that terminates α

a nullhomology of α. By (b) this would mean |�t | = 1, a contradiction. Thus σ j

appears as the terminal simplex for this permutation implying {σi , σ j } ⊆ �t .

It remains to prove that σ j is a birth simplex in K f .
By (b) we have

α = ∂μ1σi + ∂
∑

k

λkτk,

with μ1 �= 0 and τk being simplices appearing before Aq . On the other hand, (c) implies

α = ∂μ2σ j + ∂
∑

l

λ′
lτ

′
l ,

with μ2 �= 0 and each τ ′
l being a simplex from Aq or appearing before Aq . Subtracting

the equations we obtain

∂μ2σ j = ∂
(

−
∑

l

λ′
lτ

′
l + μ1σi +

∑

k

λkτk

)
.

Recall that f (Aq) ⊂ [ f (σi ), f (σ j )] and thus the f -values of simplices τk , τ ′
l and σi are

below f (σ j ). The last equality thus implies σ j is a birth simplex in K f .


�
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Fig. 2 Consider the filtrations K f and Kg shown above. Let α = [B − A] ∈ H0(K ), �1 = AB and
�2 = DE . Assume that | f − g| < ε, t2 − t1 < 2ε and t ′2 − t ′1 < 2ε. Then �ε = {�1, �2}. In the first case
α is terminated by �1 at t = t1. In the second case α is terminated by �2 at t = t ′1. We say that �1 and �2
are independently critical. One of them terminates α and the other creates a new class in dimension above

Example 8 Consider the following example with α = [B − A], �1 = AB, �2 = AC and
�3 = BC . If the order of the simplices is

A, B,C, AB, BC, AC,

then α is terminated by �1. If we assume f assigns to the simplices the values 1, 2, 3, 4, 5
and 6 in this order, then for ε ≤ 1 we have �ε = {�1}. If the another function changes the
order to any where �1 occurs after �2 and �3, namely

A, B,C, BC, AC, AB or A, B,C, AC, BC, AB,

then α is terminated by�2 and�3, respectively, and in both cases�ε = {�1,�2,�3}when
ε > 1. In this case it is not possible for�ε to have exactly two elements and |�ε| jumps from
1 to 3. An analoguous example with n + 2 vertices and n + 2 edges (see Fig. 3) shows that
|�ε| can jump from 1 to n + 2 for any positive integer n.

3.1 Sufficient conditions for rigidity of homology classes

Theorem 9 Given an injective filtration function f on a simplicial complex K andahomology
class [α] ∈ Hn(K

f
a ) born at a and terminating at b, let:

• Ru = min{| f (τ ) − b|; τ a birth(n+1)−simplex with f (τ ) > b} or ∞ if undefined;
• Rl = min{| f (τ ) − b|; τ a terminal(n+1)−simplex with f (τ ) < b} or ∞ if undefined.
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Fig. 3 Example 8: |�ε | can increase by more than 1

Then [α] is ε-terminally-rigid for ε = 1
2 min{b − a, Ru, Rl}.

Proof For a generic f the conclusion follows from Proposition 6.
Assume f is not generic. For a positive δ < max{ir( f )/2, ε/2} choose a generic function

fδ such that || f − fδ|| ≤ δ. Quantities b − a, Ru, Rl for this new function are at most 2δ
smaller than the original quantities for f and hence [α] in K fδ is (ε − δ)-terminally-rigid.
As any (ε − 2δ)-perturbation of f is also an (ε − δ)-perturbation of fδ , we conclude f is
(ε − 2δ)-terminally-rigid. As δ may be arbitrarily small, Lemma 3 concludes the proof. 
�

4 Rigidity for barcodes

In the previous sections we assumed ε < (b− a)/2, which ensures that any ε-perturbation g
of f still contains a non-trivial homology class [α] in Kg . Our main results so far described
the change of the terminal simplex of [α] with ε-perturbations. The situation is a bit more
problematic with barcodes. While the barcodes induced by f and g are at the bottleneck
distance at most ε, there is no natural way to define the underlyingmatching [4]. In particular,
if [α] represents a bar, the bar matched to it by the isometry theorem may not be represented
by [α]. On a similar note, given a homology class [α] that is born at a and terminates at b,
there may be no bar of the form [a, b), see Remark 10 for more details.

Remark 10 Let f be an injective filtration function on a simplicial complex K and let n
be a positive integer. Assume that for some a, b ∈ R an n-cycle α is created, so that the
corresponding homology class [α] ∈ Hn(K

f
r ) is born at a and terminates at b. The creation

of α causes the birth of a bar in the persistence diagram. A while later, α might become
homologuous to an older cycle α′ at a time c ∈ (a, b), at which point the bar born at a would
be terminated according to the elder rule. The class [α] becomes trivial in Hn(K

f
b ) however,

so there must exist a bar in the persistence diagram that begins at or before a and dies exactly
at b. In other words, the starting point of such a bar might be ambiguous, but the moment of
its termination is certain.

This leads us to focus on a setting in which the same homology class determines the
endpoint of a designated bar and of its matched bar arising from ε-perturbation.

Theorem 11 Let f be an injective filtration function on a simplicial complex K . Assume
[a, b) is a bar of {Hn(K

f
r )}r∈R represented by [α] ∈ Hn(K

f
a ) (a homology class born at a

and terminating at b). Choose ε < (b − a)/4 and assume that for all other bars [ai , bi ) of
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{Hn(K
f
r )}r∈R either ai > a + 2ε or bi < b − 2ε. Let g be an injective filtration function

satisfying || f − g||∞ ≤ ε, and assume the induced matching matches the bar [a, b) of
{Hn(K

f
r )}r∈R to a bar [a′, b′) of {Hn(K

g
r )}r∈R. Then

(1) [α] as a homology class in {Hn(K
g
r )}r∈R terminates at b′ and

(2) the simplex in K f terminating the bar [a, b) is the same as the simplex in K g terminating
the bar [a′, b′) if ε ≤ 1

2 min{Ru, Rl}, where:
• Ru = min{| f (τ )−b|; τ a birth (n + 1)-simplex with f (τ ) > b} or∞ if undefined;
• Rl = min{| f (τ ) − b|; τ a terminal (n + 1)-simplex with f (τ ) < b} or ∞ if unde-

fined.

Proof Let

{Hn(K
g
r )}r∈R =

⊕

j∈J

F[a′
j ,b

′
j )

be the decomposition into interval modules, indexed so that [a′, b′) corresponds to [a′
0, b

′
0).

Our assumption on the barcode of {Hn(K
f
r )}r∈R and the stability theorem imply the follow-

ing: if a + ε ∈ [a′
j , b

′
j ) then either j = 0 or b′

j < b− ε. For each j let [α j ] be the homology
class corresponding to the bar [a′

j , b
′
j ), i.e., [α j ] is born at a′

j and terminates at b′
j .

The homology class

[β] =
∑

j∈J

λ j [α j ] ∈ Hn(K
g
a+ε)

terminates either at:

• b′, if λ0 �= 0, or
• before b − ε, if λ0 = 0.

We now apply this observation to [α]. By stability theorem it represents an element of
Hn(K

g
a+ε) and does not terminate before b − ε, so it terminates at b′ and this concludes the

proof of (1).
Bars [a, b) of {Hn(K

f
r )}r∈R and [a′, b′) of {Hn(K

g
r )}r∈R both terminate when [α] termi-

nates. Conclusion (2) now follows from Theorem 9. 
�

Remark 12 Theorem 11 provides a sufficient condition on the structure of the barcode that
guarantees that the simplex terminating the bar matched to the designated bar [a, b) remains
constant through ε-perturbations of the filtration function f . Going beyond the region of
unique terminal simplex within the setting of Theorem 11, let ε0 be the maximal ε for which
the terminal simplex terminating the bar matched to the designated bar [a, b) remains unique
�1 through ε-perturbations of the filtration function f . Proposition 6 allows us to deduce
at least one additional simplex �2 that appears as the terminal simplex terminating the bar
matched to the designated bar [a, b) for some ε-perturbations of the filtration function f with
ε > ε0. Namely, �2 is an n-simplex with the function value f (�1) ± 2ε0. If f is generic
there is only one such simplex.

To put it differently, we may identify potential simplices generating non-rigidity from the
structure of the barcode. For a demonstration see Figs. 4 and 5.
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Fig. 4 The figure represents persistent homology barcodes of filtration K f in dimensions n and n + 1. From
the barcodes we can deduce (using Theorem 11) that the critical simplex terminating the bar matched with the
bar [a, b) is constant (rigid) through all ε-perturbation of the filtration function f . This conclusion follows
from the following facts: (i) no (n + 1)-dimensional bar is born (in the green area) between b and b + 2ε, (ii)
no n-dimensional bar ends (in the blue area) between b − 2ε and b (except α at b), and (iii) α is the only bar
that lives through a + 2ε and b − 2ε

Fig. 5 If ε is the scale by which rigidity is broken, we can find a bar in dimension n + 1 starting at b + 2ε
or a bar in dimension n ending at b − 2ε. In this case, for each ε′ > ε at least one of the corresponding
simplices (appearing at the black dots) appears as the terminal simplex of a bar matched with [a, b) in some
ε′ perturbation of f

5 Related work

After the publication of the first version of this paper we were made aware that a precise
relationshipwith [8] and [14]would be helpful. In theseworks the authors considerwhat in our
terminology would be phrased as a rigidity of persistence pairs (birth simplex, death simplex)
with respect to transpositions of adjacent simplices. On the other hand, we consider rigidity of
the terminal simplex of a homology class or a bar with respect of ε-perturbations of filtration
functions.The concepts are different insofar as thefirst onedependsonlyon thepermutationof
simplices, treats single transpositions of simplices and looks to preserve pairing in persistent
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Fig. 6 Two simplicial complexes with the labels above the simplices indicating filtration values. Let ε ∈ (0, 1).
The only persistence pair in the left filtration is (A, AB) while an ε-perturbation may change it to (B, AB).
On the other hand, the only homology class that is terminated is [A] − [B] and its terminal simplex is always
AB, hence [A] − [B] is ε-rigid. On the right we see a filtration whose two persistence pairs are rigid with
respect to ε-perturbations despite the terminal simplex of [A] − [C] changing from AB to AC . The concepts
of rigidity of persistence pairs and rigidity of the terminal simplex of a homology class thus differ

homology; on the other hand, our concept treats only the terminal simplices of a homology
class, and considers all homology classes (not just the ones generating bars) and all ε-
perturbations. The mentioned concepts of rigidity are different, as is demonstrated by Fig. 6.

The approach of [8] and [14] is algorithmic, has been used to demonstrate change in
persistence diagrams via one-parameter modification of filtration functions and yields a proof
of stability theorem. The technical treatment is based on the analysis of the matrix reduction
based persistence algorithm.

Our approach is to look more generally at any single homology class and consider all ε-
perturbationswithin our direct treatment of homology classes.Along thewaywedescribe how
ε-perturbations affect permutations of simplices (Sect. 2.1), at what values of ε do terminal
simplices potentially change and how (Proposition 6), and demonstrate that their number
might increase by more than one despite a “single new transposition” in an incremental
increase of ε (Example 8).

Different rigidity concepts understandably generate different results. Sufficient conditions
for rigidity of pairings are given by Nested-Disjoint Lemma in [14], while sufficient condi-
tions for rigidity of terminal simplices in barcodes are presented in Theorem 11. Note that
example in Fig. 4 satisfies only the conditions of Theorem 11. We do believe though that the
treatment of [14] could be expanded and combined with our results on ε-perturbations to
yield another proof of Theorem 11. On the other hand, such treatment would not suffice for
our main and most general result: Theorem 9.

A different treatment of instability of information provided by persistent homology is
given in [5]. There, the authors recast an unstable output of persistent homology as a real
valued function and average it over small perturbations to obtain a stable output. For example,
while the cycle generating a persistent homology class is unstable, the approach of [5] yields,
roughly speaking, a distribution of generating cycles over small perturbations. As such, this
approach is aimed at stabilizing the potentially unstable outputs of persistent homology. On
the other hand, our work aims to detect the instability of terminal simplices from the structure
of filtration or persistence diagram.

6 Conclusions and further work

In this paper we have established sufficient conditions for the rigidity of terminal simplices.
One of the main advantages of our result is that the conditions only depend on the persistence
diagram. In our subsequent work we intend to extend our approach to a more geometric
setting, treating persistence diagrams arising from the popular Vietoris-Rips filtrations on
metric spaces. In this setting the instability of terminal simplices should be measured by
the distance between terminal simplices in the metric space, as opposed to “combinatorial”
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proximity of this paper. In particular we plan to explore the instability in case of persistence
diagrams arising from Vietoris-Rips filtrations of geodesic spaces. Recent results on S1 [1,
15] indicate that in this case, the terminal simplices of 1-dimensional homology form a 1-
parameter family which consequently generates a 3-dimensional homology class. We intend
to provide a general treatment of this phenomenon.
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