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Abstract

In this paper we present the main developments in Oka theory since the publication of my book
tein Manifolds and Holomorphic Mappings (The Homotopy Principle in Complex Analysis), Second
dition, Springer, 2017. We also give several new results, examples and constructions of Oka domains in
uclidean and projective spaces. Furthermore, we show that for n > 1 the fibre Cn in a Stein family can
egenerate to a non-Oka fibre, thereby answering a question of Takeo Ohsawa. Several open problems
re discussed.
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1. Introduction: flexibility versus rigidity

A major driving force of developments in complex analytic geometry is the dichotomy
etween flexibility and rigidity phenomena.

Prime examples of holomorphic flexibility include the approximation theorems of Runge
nd Oka–Weil and the extension–interpolation theorems of Weierstrass and Oka–Cartan. These
lassical results show that complex Euclidean spaces Cn admit plenty of holomorphic maps
rom all Stein manifolds, that is, closed complex submanifolds of complex Euclidean spaces.
ka theory deals with complex manifolds which admit plenty of holomorphic maps from all
tein manifolds in a precise sense which is modelled on these classical theorems, and with
pplications of these properties to problems in complex geometry and wider.
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Opposite to flexibility, the basic rigidity phenomena are described by Picard’s theorem,
aying that every holomorphic map C → C\{0, 1} is constant, and the Schwarz–Pick lemma to

the effect that holomorphic self-maps of the disc D = {z ∈ C : |z| < 1} are distance-decreasing
n the Poincaré metric. These are instances of the main rigidity property which a complex

anifold Y may have, Kobayashi hyperbolicity, asking that the size of the derivative of a
holomorphic map f : D → Y at 0 ∈ D is locally bounded above in terms of the value f (0) ∈ Y .
In particular, there are no nonconstant holomorphic maps C → Y into a hyperbolic complex
manifold. There are several weaker notions of rigidity, such as the existence of nonconstant
bounded plurisubharmonic functions and non-dominability by Euclidean spaces.

For Riemann surfaces we have a clear dichotomy — either the surface is Oka or it is
Kobayashi hyperbolic [55, Corollary 5.6.4]. The former ones are CP1, C, C∗

= C \ {0} and
ori, while the hyperbolic ones are quotients of the disc. A majority of complex manifolds
f dimension >1 are at least somewhat rigid. In particular, a compact complex manifold of
eneral type is not dominable by Euclidean spaces (Kobayashi and Ochiai [92]), and a generic
rojective hypersurface in CPn of sufficiently large degree is hyperbolic (Brotbek [20]).

The birth of Oka theory was the paper of Kiyoshi Oka [129] (1939) in which he showed
hat the topological classification of complex line bundles on a domain of holomorphy in Cn

oincides with the holomorphic classification. In 1958, Hans Grauert [77] extended this to
omplex vector bundles of arbitrary rank and, more generally, to principal and associated fibre
undles on Stein spaces. This circle of results became known as the Oka–Grauert principle,
ith the following heuristic formulation given by Grauert and Remmert [79, p. 45]:
Analytic problems on Stein manifolds which can be cohomologically formulated have only

opological obstructions.
A major conceptual development was made by Mikhail Gromov [82] in 1989. He em-

hasized the homotopy-theoretic aspect of Oka theory and the analogies to the h-principle
n smooth geometry; see his monograph [81]. From Gromov’s viewpoint, the main question
s to find and characterize complex manifolds Y having the property that every continuous

ap X → Y from a Stein manifold X is homotopic to a holomorphic map, with natural
dditions modelled on the Oka–Weil approximation theorem and the Oka–Cartan extension
heorem for holomorphic functions on Stein manifolds. Furthermore, these properties should
old for families of maps X → Y depending continuously or smoothly on a parameter in a
uitable space. Such parametric Oka properties are very important in applications.

The central notion of Oka theory is Oka manifold,1 a term introduced in 2009 in my
aper [50] when it became clear that most Oka-type properties considered in the literature are
quivalent. The simplest characterization of this class of complex manifolds is the following
onvex approximation property (CAP) which was introduced in 2006 in [49]. For a list of
nown characterizations, see [55, Sect. 5.15] and Section 3.2 of this paper.

efinition 1.1. A complex manifold Y is an Oka manifold if every holomorphic map K → Y
rom a neigbourhood of a compact convex set K in a Euclidean space Cn (for any n ∈ N) to

Y is a uniform limit on K of entire maps Cn
→ Y .

Here is a simplified form of the main result on Oka manifolds (see [55, Theorem 5.4.4]).

Theorem 1.2. Let Y be an Oka manifold. Every continuous map f : X → Y from a Stein
manifold (or a reduced Stein space) X is homotopic to a holomorphic map f1 : X → Y . If in

1 MSC 2020 includes the new subfield 32Q56 Oka principle and Oka manifolds.
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addition f is holomorphic on a neighbourhood of a compact O(X )-convex set K ⊂ X and on
a closed complex subvariety X ′

⊂ X, then a homotopy { ft }t∈[0,1] from f = f0 to f1 can be
chosen through maps ft : X → Y having the same properties as f which agree with f on X ′

and approximate f uniformly on K and uniformly in t ∈ [0, 1].
The analogous conclusion holds for a family of maps f p : X → Y depending continuously

on a parameter p in a compact Hausdorff space P, where the homotopy f p,t (t ∈ [0, 1]) from
f p,0 = f p to a family of holomorphic map f p,1 : X → Y may be kept fixed for p in a closed
subset Q ⊂ P provided that the map f p : X → Y is holomorphic for all p ∈ Q.

It follows that the natural inclusion O(X, Y ) ↪→ C (X, Y ) of the space of holomorphic maps
X → Y into the space of continuous maps is a weak homotopy equivalence when X is a Stein
manifold and Y is an Oka manifold. The classical Oka–Grauert theory fits this framework since
complex homogeneous manifolds are easily seen to be Oka, which implies the main results of
the Oka–Grauert theory.

The proof of [55, Theorem 5.4.4] and of related results in the cited monograph (see in
particular [55, Theorems 6.2.3 and 7.2.1]) also give the following result which is useful in
applications; for simplicity we only state the basic case without parameters.

Theorem 1.3. Assume that X is a reduced Stein space, K is a compact O(X )-convex set
in X, X ′ is closed complex subvariety of X, Ω is an Oka domain in a complex manifold Y ,
and f : X → Y is a continuous map which is holomorphic on a neighbourhood of K and on
X ′ such that f (X \ K ) ⊂ Ω . Then there is a homotopy ft : X → Y (t ∈ [0, 1]) connecting
f = f0 to a holomorphic map f1 : X → Y satisfying the conclusion of Theorem 1.2 and also
ft (X \ K ) ⊂ Ω for all t ∈ [0, 1].

These results show that the CAP axiom in Definition 1.1 localizes the Oka property of a
complex manifold Y to the Runge approximation problem for holomorphic maps from simplest
possible domains to Y , namely, the convex domains in Euclidean spaces. This is often easier to
verify, and it led to several new examples and constructions of Oka manifolds described in [55].
It shows in particular that the class of Oka manifolds is invariant with respect to holomorphic
fibre bundle projections with Oka fibres; see Theorem 3.15.

It is worth mentioning that every Oka manifold Y is the image of a strongly dominating
holomorphic map Cn

→ Y with n = dim Y (see [56, Theorem 1.1]). Hence, when trying
to decide which domains Ω ⊂ Cn (n > 1) are Oka, the first quintessential question is to
understand the shapes of images of nondegenerate entire maps Cn

→ Cn .
Oka properties are also considered for holomorphic maps. The notion of an Oka map (see

Definition 3.13) was introduced by Finnur Lárusson, who developed a model category for Oka
theory [110,111] in which Oka maps are fibrations and Stein inclusions are cofibrations. In
particular, a complex manifold Y is Oka if and only if the constant map Y → point is an Oka
map, and every holomorphic fibre bundle map with an Oka fibre is an Oka map. Modern Oka
theory may thus be summarized as follows:

Analytic problems on Stein manifolds which can be formulated in terms of maps to Oka
manifolds, or liftings with respect to Oka maps, have only topological obstructions.

Oka theory is an existence theory, providing solutions to a variety of complex analytic
problems on Stein manifolds in the absence of topological obstructions. On the other hand,
Kobayashi hyperbolicity and related rigidity properties play the role of holomorphic obstruction
theory. These two theories complement one another. Many challenging complex analytic
problems lie in-between these two fields where there are no obvious obstructions to the
existence of solutions, yet rigidity obstructions appear when trying to solve them.
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The state of the art of Oka theory up to 2017 is summarized in the monograph [55] and
he surveys [54,63]; a brief historical account is included in Section 2. In the remainder of the
aper we discuss the main developments since 2017 and prove several new results.

A series of major results by Yuta Kusakabe is described in Sections 3–4. They provide a
urther unification of Oka theory through the axiom Ell1 (see Definition 3.1 and Theorem 3.3),
nd they yield new constructions and a variety of new examples of Oka manifolds and Oka
aps. Kusakabe showed that the Oka condition is Zariski local; see Theorem 3.6. He also

roved that the complement Cn
\ K of any compact polynomially convex subset K ⊂ Cn for

> 1 is an Oka manifold; see Theorem 4.2. The same holds in any Stein manifold having
arolin’s density property introduced in [150]. Such manifolds share many global complex
nalytic properties with Euclidean spaces; see [9,58,62,71,103] among others.

In Sections 4 and 5 we describe several new examples of Oka manifolds. We show in
articular that for a compact polynomially convex set K in Cn , n > 1, and considering Cn

s an affine chart in the projective space CPn , the complement CPn
\ K is Oka as well; see

orollary 5.2. Under a mild additional assumption, the same holds for complements (in Cn and
Pn) of compact sets of the form C ∪ K , where K is a compact polynomially convex set in
n and C is contained in a compact connected set of finite length; see Theorems 4.12 and 5.8.

n particular, if C is a rectifiable Jordan curve in Cn for n > 1 then Cn
\ C and CPn

\ C are
ka manifolds. Furthermore, the complement of any closed strictly convex set in Cn (n > 1)

s Oka; see Theorem 4.14 due to Wold and the author [72].
In Section 6 we describe recent progress in the study of Oka theory for algebraic maps

rom affine algebraic varieties into algebraic manifolds, due to Lárusson and Truong [114],
usakabe [95,100–102], Bochnak and Kucharz [16], and Kaliman and Zaidenberg [90].
In another direction, Luca Studer extended Oka theory to certain Oka pairs of sheaves [146],

hereby generalizing the work of Forster and Ramspott [42] from 1966. He also developed an
bstract homotopy theorem based on Oka theory [145]. See Section 7.

In Section 8 we describe new approximation theorems of Carleman and Arakelian type for
aps to Oka manifolds, due to Brett Chenoweth [29] and the author [57].
In Section 9 we present a generalization of the Docquier–Grauert tubular neighbourhood

heorem for Stein manifolds (see Theorem 9.3), and an application to the construction of large
uclidean domains in complex manifolds; see Theorem 9.4.

In Section 10 we give an example of a Stein submersion X → C which is a trivial
olomorphic fibre bundle with fibre C2 over C∗

= C \ {0} but whose fibre over 0 ∈ C is the
roduct of the disc with C, so it fails to be Oka (see Theorem 10.1). This answers a question
sked by Takeo Ohsawa in [127, Q3] (2020).

In Section 11 we discuss the possible connections between Oka manifolds and special
anifolds in the sense of Campana, and we pose several problems regarding the relationship

etween Oka properties and positivity of complete Kähler metrics.
The paper contains an Appendix with a summary of results on holomorphic convexity of

ompact sets in affine domains in projective spaces, based on Oka’s criterion for polynomial
onvexity. These results are used in Sections 4 and 5.

Among the recent results not discussed in this survey, we mention the development of
quivariant version of modern Oka theory by Frank Kutzschebauch, Finnur Lárusson, and
erald Schwarz [104–108]. They introduced the notion of a G-Oka manifold where G is a

eductive complex Lie group. Kusakabe (see [95, Appendix]) characterized G-Oka manifolds
y a G-equivariant version of his characterization of Oka manifolds by condition Ell1; see

efinition 3.1(b). A recent survey of this topic is available in [108].
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There were important developments in other areas of analysis and geometry closely
ntertwined with Oka theory. One of them is the Andersén–Lempert–Varolin theory, which
oncerns Stein manifolds with large holomorphic automorphism groups. This subject has a
ajor impact on Oka theory. The main link is provided by the fact that every Stein manifold on
hich complete holomorphic vector fields densely generate the Lie algebra of all holomorphic
ector fields (Varolin’s density property, see [149,150]) is an Oka manifold, and it is also Oka
t infinity (see Definition 4.3). Furthermore, the Oka principle holds for proper holomorphic
aps, immersions and embeddings of Stein manifolds of suitable dimension into such a
anifold. This subject is treated in [55, Chapter 4] and in the recent surveys [62,103].
Results and methods of Oka theory have lately found new applications. Foremost among

hem pertain to the study of minimal surfaces in Euclidean spaces [3,6,7] and holomorphic
egendrian curves in complex contact manifolds [2,4,5,65]. Results on the latter topic were
pplied to the construction of superminimal surfaces in self-dual or anti-self-dual Einstein four-
anifolds [59,61] by exploring the Bryant correspondence, based on Penrose twistor spaces,

etween superminimal surfaces in this class of Riemannian four-manifolds and holomorphic
egendrian curves in three-dimensional complex contact manifolds. Another recent application
re Vaserstein-type results on factorization of holomorphic maps in the complex symplectic
roup Sp2n(C); see Ivarsson et al. [86] and Schott [138]. Earlier work on the related problem

for maps to SLn(C) was done by Ivarsson and Kutzschebauch [85] in 2012.
These applications might indicate the beginning of the development of the Oka principle

for holomorphic partial differential relations. I have in mind a range of complex analytic
problems where not only values of maps, but also their jets must satisfy certain relations.
These include holomorphic differential equations and a variety of open differential conditions.
The aforementioned applications to minimal surfaces and directed holomorphic curves, such
as null curves and Legendrian curves, are of this kind. The study of regular holomorphic maps
such as immersions and submersions also fits in this framework. In this direction, the Runge
approximation problem for locally biholomorphic self-maps of Euclidean spaces Cn for n > 1
remains a mystery, and understanding this subject would have major implications.

2. A brief history of Oka theory up to 2017

Oka theory evolved from the works of Kiyoshi Oka [129] (1939), Hans Grauert [77] (1958),
and Mikhail Gromov [82] (1989). The principal motivation behind the works of Grauert and
other contributors to the classical theory, most notably Otto Forster and Karl Josef Ramspott
and later also Gennadi Khenkin and Jürgen Leiterer, was to understand the classification of
principal bundles and their associated bundles (in particular, vector bundles) on Stein spaces.
The main result of the classical Oka–Grauert theory asserts that the holomorphic classification
of such bundles agrees with their topological classification. Problems of this type typically
reduce to questions about maps to classifying spaces, and hence it became of interest to
understand the class of complex manifolds having the property that every continuous map from
a Stein manifold or a Stein space to the given manifold is homotopic to a holomorphic map,
with natural additions concerning approximation on compact holomorphically convex sets and
interpolation on closed complex subvarieties. Although this observation was known from the
beginning, as can be seen in particular from Cartan’s exposition [28] of Grauert’s work [77],
the cohomological viewpoint prevailed in this early period.

It took almost three decades till Gromov [82] proposed a more general viewpoint and
developed new approaches, thereby releasing the theory from the constraints of complex Lie

groups and homogeneous manifolds. The emphasis shifted from the cohomological to the
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homotopy-theoretic viewpoint. Gromov introduced geometric sufficient conditions for validity
of the Oka principle for maps from Stein manifolds in terms of the existence of dominating
holomorphic sprays on the target manifold. In particular, he introduced the notion of an elliptic
complex manifold and of an elliptic submersion, and he outlined the proof of the Oka principle
under these assumptions. The first major application of Gromov’s new methods was a solution
of the optimal embedding problem for Stein manifolds in Euclidean spaces by Eliashberg
and Gromov in 1992 [37], with a subsequent improvement for odd dimensional manifolds
by Schürmann [139]; see the exposition in [55, Secs. 9.3–9.4]. Numerous other applications
re described in [55, Chaps. 8–10].

After Gromov’s seminal paper [82], the first steps to understand and develop his ideas
ere made in my joint papers with Jasna Prezelj [66–68] during 2000–2002. These papers
rovide detailed proofs and some extensions of the main results from [82]. A weaker sufficient
ondition for the Oka principle, subellipticity, was already discussed by Gromov and formally
ntroduced in [43]. The study of the Oka principle for sections of branched holomorphic maps
as initiated in [45]. In the same period, Finnur Lárusson developed an abstract homotopy-

heoretic approach which culminated in his construction of a model category for Oka theory;
ee [109–111], [54, Appendix], and [55, Sect. 7.5].

Subsequent developments focused on finding necessary and sufficient conditions on a
omplex manifold Y to satisfy the Oka principle for maps X → Y from Stein manifolds and
tein spaces. Gromov asked in [82] whether a Runge approximation property for maps from
imple domains in Euclidean spaces might suffice. This question was answered affirmatively in
y paper [49] in 2006. In this paper, the convex approximation property (CAP) of a complex
anifold Y was introduced (see Definition 1.1), and it was shown that CAP implies the basic
ka property with approximation for maps from Stein manifolds to Y . Interpolation on closed

omplex subvarieties was added in [47]. It took a few more years to understand that CAP also
mplies the parametric Oka properties [50], and that various Oka-type conditions considered in
he literature, including their parametric versions, are pairwise equivalent. This motivated the
ntroduction of the class of Oka manifolds as complex manifolds satisfying all these equivalent
onditions; see [50]. The Oka property for sections of stratified subelliptic submersions onto
educed Stein spaces was established in [52] (2010), extending the result of Gromov [82] for
ections of elliptic submersions onto Stein manifolds. The stratified case was first considered
ith lesser precision in [67, Sect. 7]. Most known applications of the Oka principle are in the

ontext of stratified (sub-) elliptic submersions.
The related concept of an Oka map was introduced by Lárusson [110] in 2004; see also [51].
holomorphic map Z → Y between complex manifolds is said to be an Oka map if it is a

opological fibration and it enjoys the Oka properties for lifts of holomorphic maps f : X → Y
rom reduced Stein spaces X to holomorphic maps F : X → Z ; see Definition 3.13. (By a
opological fibration, we mean a Serre fibration or a Hurewicz fibration; these conditions are
quivalent for maps between manifolds, and they refer to the homotopy lifting property.) For
precise definition, see Lárusson [110] and [55, Definition 7.4.7]. In particular, a complex
anifold Y is an Oka manifold if and only if the map Y → point is an Oka map.
These developments are summarized in the two editions (2011, 2017) of my monograph

53,55] and in the surveys [54,63]. The remainder of the article is mainly devoted to the
xposition of results obtained after 2017. Among them, we emphasize new characterizations
f Oka manifolds and Oka maps due to Yuta Kusakabe [98,99]; see Section 3. The ellipticity
ondition involved in his characterizations was introduced by Gromov [82] in 1989.

Oka manifolds are the very opposite of Kobayashi hyperbolic manifolds, the latter not
dmitting any nonconstant holomorphic maps from C. A majority of complex manifolds have
372
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at least some holomorphic rigidity. This holds in particular for compact complex manifolds
of general type — these are not dominable by Euclidean spaces according to Kobayashi and
Ochiai [92], and hence are not Oka. For a long time it seemed that Oka manifolds are few
and very special. However, it recently became clear that they are much more plentiful than
previously thought, at least among noncompact complex manifolds; see Sections 4 and 5. These
results opened new vistas of possibilities that remain to be fully explored.

3. Elliptic characterization of Oka manifolds and Oka maps

In this section we present a new conceptual unification of Oka theory, due to Yuta
usakabe [98] (2021). He proved that a restricted version Gromov’s ellipticity condition Ell1

or holomorphic maps from compact convex sets in Euclidean spaces to a given complex
anifold Y implies the convex approximation property (CAP) of Y ; see Definition 3.1(b) and
heorem 3.3. It has been known since 2009 [50] that CAP is equivalent to the validity of all
ka properties of Y (see also [55, Theorem 5.4.4]), and that it also implies condition Ell1.
his provides an affirmative answer to a question of Gromov [81, p. 72]. Another result of
usakabe [99] gives the analogous characterization of Oka maps by convex ellipticity; see
heorem 3.20. An important consequence is a localization theorem for Oka manifolds (see
heorem 3.6), which has already led to many new examples. A fascinating application of

hese new techniques is Kusakabe’s result that the complement of every compact polynomially
onvex set in Cn for n > 1 is Oka (see Section 4). Furthermore, it was recently shown by Wold
nd the author [72] that for most closed convex set E ⊂ Cn (n > 1) which are smaller than
halfspace, the complement Cn

\ E is an Oka domain (see e.g. Theorem 4.14). In particular,
here are concave Oka domains in Cn for n > 1 which are only slightly bigger than a halfspace.
esults of this kind seemed totally unimaginable a few years ago.

.1. Ellipticity conditions

In [81,82] Gromov introduced several ellipticity conditions for complex manifolds and
olomorphic maps, which provide geometric sufficient conditions for Oka properties. These
onditions are based on the notion of a dominating spray, a prime example of which is the
xponential map on a complex Lie group.

Let X and Y be complex manifolds. A (holomorphic) spray of maps X → Y is a
olomorphic map F : X × CN

→ Y for some N ∈ N. The map f = F(· , 0) : X → Y
s the core of F , and F is called a spray over f . The spray F is said to be dominating if

∂

∂w

⏐⏐⏐
w=0

F(x, w) : CN
→ T f (x)Y is surjective for every x ∈ X.

ore generally, F is dominating on a subset U ⊂ X if the above condition holds for every
oint x ∈ U . A more general type of a spray is a holomorphic map F : E → Y from the total
pace E of a holomorphic vector bundle π : E → X ; its core is the restriction of F to the
ero section of E (which we identify with X ), and the domination condition is defined in the
ame way by considering the derivative in the fibre direction. In particular, a dominating spray
n a complex manifold Y over the identity map IdY is a holomorphic map F : E → Y from
he total space of a holomorphic vector bundle E → Y such that

F(0y) = y and d F0y (Ey) = TyY for every y ∈ Y . (3.1)

If Y is a homogeneous manifold of a complex Lie group G and e : g → G is the exponential
ap on G, then the map Y × g → Y given by (y, v) ↦→ ev y is a dominating spray on Y .
373
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Definition 3.1. Let Y be a complex manifold.

(a) (Gromov [82, 0.5, p. 8.5.5]; see also [55, Definition 5.6.13].) The manifold Y is elliptic
if it admits a dominating holomorphic spray F : E → Y over IdY , and is special elliptic
if such a spray exists on a trivial bundle E = Y × CN .

(b) (Gromov [81, p. 72].) The manifold Y enjoys condition Ell1 if every holomorphic
map X → Y from a Stein manifold is the core of a dominating holomorphic spray
X × CN

→ Y .
(c) The manifold Y enjoys condition C-Ell1 if for every compact convex set K ⊂ Cn

(n ∈ N), open set U ⊂ Cn containing K , and holomorphic map f : U → Y there are an
open set V with K ⊂ V ⊂ U and a dominating holomorphic spray F : V × CN

→ Y
over f |V .

Every elliptic Stein manifold Y is also special elliptic. Indeed, by an extension of Cartan’s
Theorem A (see Forster [41, Corollary 4.4] or Kripke [93]), every holomorphic vector bundle
π : E → Y over a Stein manifold admits finitely many (say N ) holomorphic sections which
span the fibre Ey = π−1(y) over each point y ∈ Y . This gives a surjective holomorphic vector
bundle map φ : Y ×CN

→ E , and precomposing a dominating spray F : E → Y by φ yields
a dominating spray Y × CN

→ Y . This fails on non-Stein manifolds: every compact special
elliptic manifold is complex homogeneous (see [57, Proposition 6.2]).

Condition Ell1 obviously implies C-Ell1, the latter being a restricted version of Ell1 applied
to compact convex sets in Euclidean spaces, and we ask that a dominating spray exists over a
smaller neighbourhood of the set (this comes handy in applications).

One of Gromov’s main results in [82] is that every elliptic manifold is Oka (see
also [55, Corollary 5.6.14]). In fact, ellipticity easily implies CAP (see Definition 1.1); this
is a special case of [55, Theorem 6.6.1] which gives a Runge approximation theorem for
homotopies of holomorphic maps. Conversely, every Stein Oka manifold is easily seen to be
elliptic [55, Proposition 5.6.15]. Kusakabe [96] gave the first known examples of Oka manifolds
which fail to be elliptic or even just (weakly) subelliptic, thereby negatively answering a
question on Gromov. (See the discussion on [55, p. 325].) The results in Sections 4 and 5
provide a plethora of such examples. However, the following problem seems to remain open.

Problem 3.2. Is there a compact Oka manifold which fails to be elliptic or subelliptic?

3.2. Characterization of Oka manifolds by condition Ell1

It is easily seen that every Oka manifold satisfies condition Ell1 (see [55, Corollary 8.8.7]).
It came as a genuine surprise that the converse holds as well. The following result is due to
Kusakabe [98, Theorem 1.3].

Theorem 3.3. A complex manifold which satisfies condition C-Ell1 is an Oka manifold. Hence,
the following conditions on a complex manifold are equivalent:

Oka ⇐⇒ Ell1 ⇐⇒ C-Ell1.

It follows that conditions Ell1, Ell2 and Ell∞ introduced by Gromov in [82] are pairwise
equivalent, and they characterize the class of Oka manifolds. See also [98, Conjecture 4.6 and
Corollary 4.7] for a more precise description of Gromov’s conjectures.
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Theorem 3.3 enables the construction of many new examples of Oka manifolds; see in
articular Theorem 3.6 and the examples in Sections 4 and 5. The main point is that it is often
asier to construct sprays whose domain is a Stein manifold, or even just a convex domain in
Euclidean space, rather than a general complex manifold.
Due to its importance, we include a proof of Theorem 3.3. The main point is to show that

-Ell1 implies CAP; the rest follows from previously known results (see Theorem 1.2).
We begin with preparations. Given a compact set K in a complex manifold X and a complex

anifold Y , we denote by O(K , Y ) the space of germs on K of holomorphic maps from open
neighbourhoods U ⊂ X of K to Y . Thus, O(K , Y ) is the colimit (also called the direct limit)
of the system O(U, Y ) over open sets U ⊂ X containing K , with the natural restrictions maps

U,V : O(V, Y ) → O(U, Y ) given for any pair U ⊂ V by rU,V ( f ) = f |U . The space O(K , Y )
arries the colimit topology defined as follows. Fix a distance function dist on Y inducing the
atural manifold topology. A basic open neighbourhood of an element of O(K , Y ), represented
y a map f ∈ O(U, Y ), is a set of the form

V ( f,U ′, K ′, ϵ) =
{
g ∈ O(U ′, Y ) : sup

z∈K ′

dist( f (z), g(z)) < ϵ
}

(3.2)

here K ′ is a compact set containing K in its interior, U ′ is an open set with K ′
⊂ U ′ ⋐ U ,

nd ϵ > 0. Equivalently, let (Uk)k≥1 be a decreasing basis of open neighbourhoods of K such
hat Uk+1 is relatively compact in Uk for all k ≥ 1. The colimit topology on O(K , Y ) is the
nest topology that makes all maps O(Uk, Y ) → O(K , Y ) continuous. By saying that a map

K → Y is holomorphic, we mean that it belongs to O(K , Y ).
A (convex) polyhedron in RN is a compact set which is the intersection of finitely many

losed affine half-spaces. Recall the following definition (cf. [55, Definition 5.15.3]).

efinition 3.4. A pair K ⊂ L of compact convex sets in RN is a special polyhedral pair if
L is a polyhedron and K = {z ∈ L : λ(z) ≤ 0} for some affine linear function λ :RN

→ R.

The following observation is due to Kusakabe [94] (see [55, Lemma 5.15.4]).

emma 3.5. Suppose that Y is a complex manifold such that for each special polyhedral pair
K ⊂ L in Cn (n ∈ N), every holomorphic map K → Y can be approximated uniformly on K
y holomorphic maps L → Y . Then Y enjoys CAP and hence is an Oka manifold.

roof of Theorem 3.3. Let K ⊂ L be a special polyhedral pair in Cn . Since K is convex and
Y is connected, the space O(K , Y ) is connected. Indeed, every map f ∈ O(K , Y ) is homotopic
o the constant map K → f (p) for any p ∈ K . Denote by A the set of all f ∈ O(K , Y ) which
an be approximated uniformly on K by maps in O(L , Y ). Clearly A is nonempty (since it
ontains constant maps) and closed in O(K , Y ). In view of Lemma 3.5 and connectedness of
(K , Y ) it remains to show that A is also open in O(K , Y ), so A = O(K , Y ).
Fix f ∈ A and represent it by a map f ∈ O(U, Y ) from an open set U ⊂ Cn containing K .

ondition C-Ell1 gives a convex open set V , with K ⊂ V ⊂ U , and a dominating holomorphic
pray F : V × CN

→ Y with F(· , 0) = f |V . By factoring out the kernel of

∂F(z, w)/∂w|w=0 : CN
→ T f (z)Y, z ∈ V

which is a trivial holomorphic subbundle of V × CN with trivial quotient) we may assume

hat N = dim Y and the above map is an isomorphism for every z ∈ V . Hence, up to
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shrinking V around K if necessary, there is an open ball 0 ∈ W ⊂ CN such that the map
F̃ = (Id, F) : V × CN

→ V × Y given by

F̃(z, w) = (z, F(z, w)), z ∈ V, w ∈ CN (3.3)

aps V × W biholomorphically onto its image in V × Y . Since f ∈ A, there are a
eighbourhood Ω ⊂ Cn of L and a map g ∈ O(Ω , Y ) whose graph {(z, g(z)) : z ∈ K }

ver K belongs to F̃(V × W ). Up to shrinking Ω around L , [55, Lemma 5.10.4] provides a
ocal dominating holomorphic spray G : Ω × W → Y over G(· , 0) = g. Replacing G(z, w)
y G(z, tw) for a small t > 0 we may assume that the map G̃(z, w) = (z,G(z, w)) satisfies

G̃(K × W ) ⋐ F̃(V × W ). Hence, there is an open convex set U1 ⊂ Cn with K ⊂ U1 ⋐ V ∩Ω
such that G̃(U1 × W ) ⋐ F̃(V × W ). Since the map F̃ (3.3) is biholomorphic on V × W , there
is a unique holomorphic map H : U1 × W → W such that

F(z, H (z, w)) = G(z, w) for all (z, w) ∈ U1 × W . (3.4)

Pick a slightly larger polyhedron L ′ containing L in its interior and a small ϵ > 0 and set

A = {z ∈ L ′
: λ(z) ≤ 2ϵ} ⊂ U1, B = {z ∈ L ′

: λ(z) ≥ ϵ} ⊂ Ω .

The polyhedra A and B form a Cartan pair (see [55, Definition 5.7.1]) with A ∪ B = L ′ and
:= A ∩ B = {z ∈ L ′

: ϵ ≤ λ(z) ≤ 2ϵ}. Let

K ′
= {z ∈ L ′

: λ(z) ≤ ϵ/2}.

Pick a convex open set U0 ⊂ Cn such that K ′
⊂ U0 ⊂ U1 and U 0 ∩ C = ∅. Choose any

olomorphic map φ : U0 → CN . Since K ′ and C are disjoint compact convex sets in Cn ,
their union is polynomially convex. Hence, the Oka–Weil theorem furnishes a holomorphic
map φ̃ : A × W → CN which approximates φ(z) on (z, w) ∈ K ′

× W (with φ independent of
) and approximates H on C × W . In view of (3.4), the holomorphic map Φ : A × W → Y

defined by

Φ(z, w) = F(z, φ̃(z, w)) for z ∈ A and w ∈ W

then approximates G on C × W , while on K ′
× W it is close to the map

(z, w) ↦→ fφ(z) := F(z, φ(z)) for z ∈ K ′ and w ∈ W . (3.5)

Recall that the spray G is dominating over C . Hence, if the approximations are close enough,
we can apply [55, Proposition 5.9.2] on the Cartan pair (A, B) to glue Φ and G into a
holomorphic spray Θ : L ′

× W ′
→ Y for a smaller parameter ball 0 ∈ W ′

⊂ W . By the
construction, its core f̃ := Θ(· , 0) : L ′

→ Y then approximates the map fφ given by (3.5) on
K ′, which shows that fφ ∈ A. Since the map F̃ in (3.3) is injective holomorphic on V × W ,
every holomorphic map K ′

→ Y sufficiently uniformly close to f on K ′ is of the form fφ in
(3.5) for a suitable choice of φ, and hence it belongs to the set A of approximable maps. This
shows that the set A is open as claimed, and therefore A = O(K , Y ). □

3.3. A localization theorem for Oka manifolds

A domain U in a complex manifold Y is said to be Zariski open if Y \U is a closed complex
subvariety of Y . An important application of Theorem 3.3 is the following localization criterion
for Oka manifolds.
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Theorem 3.6 (Kusakabe, [98, Theorem 1.4]). If Y is a complex manifold which is a union of
Zariski open Oka domains, then Y is an Oka manifold.

This is one of the most important new results in Oka theory and a wonderful tool for
constructing new examples of Oka manifolds. Several of them are described in Kusakabe’s
paper [98], and many more will be pointed out in the sequel. Previously, a localization
theorem was known only for algebraically subelliptic manifolds (see [82, Lemma 3.5B] or [55,
Proposition 6.4.2]). The following is an immediate corollary to Theorem 3.6.

Corollary 3.7. Assume that Y is a complex manifold and Y ′ is a closed complex subvariety
of Y such that Y \ Y ′ is an Oka domain. If for every point y ∈ Y ′ there exists a holomorphic

utomorphism φ ∈ Aut(Y ) such that y /∈ φ(Y ′), then Y is an Oka manifold.

The proof of Theorem 3.6 uses the following corollary to [55, Theorems 7.2.1 and 8.6.1].

roposition 3.8 (Proposition 3.1 in [98]). Let Ω be a Zariski open Oka domain in a complex
anifold Y . Given a Stein manifold X and a holomorphic map f : X → Y , there is a

holomorphic spray F : X × CN
→ Y over f which is dominating on f −1(Ω ).

roof of Theorem 3.6. By Theorem 3.3 it suffices to show that Y enjoys condition C-Ell1.
Let K be a compact convex set in Cn and f ∈ O(U, Y ) be a holomorphic map on an open
neighbourhood U ⊂ Cn of K . Let Ωi be a collection of Zariski open domains in Y with⋃

i Ωi = Y . Since K is compact, f (K ) is contained in the union of finitely many Ωi ’s;
call them Ω1, . . . ,Ωm . Proposition 3.8 furnishes a spray F1 : U × CN1 → Y with the core
f which is dominating on f −1(Ω1). Applying Proposition 3.8 to F1 furnishes another spray
F2 : (U × CN1 ) × CN2 → Y with the core F1 which is dominating on F−1

1 (Ω2). Considering
F2 as a spray over f : U → Y , it is dominating on f −1(Ω1 ∪ Ω2) (since F1 is dominating on
f −1(Ω1)). After m steps of this kind we obtain a spray F : U × CN

→ Y over f which is
ominating on a neighbourhood of K . □

.4. Sprays generating tangent spaces

Theorem 3.3 implies several other criteria for a manifold Y to be Oka. The following result
ombines Corollaries 4.1 and 4.2 in Kusakabe’s paper [98].

orollary 3.9. The following conditions are equivalent for every complex manifold Y .

(a) The manifold Y is Oka.
(b) For every Stein manifold X, holomorphic map f : X → Y , and holomorphic section V

of f ∗T Y → X there is a holomorphic spray F : X × C → Y over f such that

∂t |t=0 F(x, t) = V (x) ∈ T f (x)Y for all x ∈ X .

(c) For every Stein manifold X, holomorphic map f : X → Y and point x ∈ X there are
finitely many holomorphic sprays F j : X × CN j → Y ( j = 1, . . . , k) over f such that

k∑
j=1

∂t |t=0 F j (x, t)(CN j ) = T f (x)Y.

(d) Condition (c) holds for every convex domain X ⊂ Cn , n ∈ N.
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Proof. (a)⇒(b): If Y is Oka then by [55, Corollary 8.8.7] there is a dominating holomorphic
pray G : X × CN

→ Y over f = G(· , 0) for some N ∈ N. This means that

Θ := ∂w|w=0G(· , w) : X × CN
→ f ∗T Y

is a surjective holomorphic vector bundle map, so there is a holomorphic map W : X → CN

such that Θ(x,W (x)) = V (x) for all x ∈ X (see [55, Corollary 2.6.5]). The holomorphic spray
F : X × C → Y defined by F(x, t) = G(x, tW (x)) then satisfies condition (b).

The implications (b)⇒(c)⇒(d) are obvious.
(d)⇒(a): Let K ⊂ Cn be a compact convex set, X ⊂ Cn be an open convex set containing

K , and f ∈ O(X, Y ). Fix x ∈ K . By condition (d) there is a spray F1 : X×C → Y over f such
that the vector V1 := ∂t |t=0 F1(x, t) ∈ T f (x)Y is nonzero. Applying condition (d) to F1 gives a
spray F2 : X × C × C → Y over F1 such that the vector V2 := ∂t |t=0 F2(x, 0, t) ∈ T f (x)Y is
linearly independent from V1. Continuing in this way we obtain after d = dim Y steps a spray
F : X × Cd

→ Y over f which is dominating at x , and hence on a neighbourhood of x . A
repetition of this process over other points of K gives a holomorphic spray over f which is
dominating on an open neighbourhood of K in X . Thus, Y enjoys condition C-Ell1 and hence
is Oka by Theorem 3.3. □

3.5. C-connectedness

In [94], Kusakabe characterized Oka manifolds by the following C-connectedness property
of the space of holomorphic maps from Stein manifolds.

Theorem 3.10 ([94, Theorem 3.2]). For a complex manifold Y the following are equivalent.

(a) Y is an Oka manifold.
(b) For every Stein manifold X and homotopic holomorphic maps f0, f1 : X → Y there is

a holomorphic map F : X × C → Y such that F(· , 0) = f0 and F(· , 1) = f1.
(c) Condition (b) holds for every bounded convex domain X in Cn , n ∈ N.

This result and its proof are also presented in [55, Theorem 5.15.2]. The implication (a)⇒(b)
follows from the 1-parametric Oka principle for holomorphic maps into Oka manifolds, and
(b)⇒(c) is obvious. The proof of the main implication (c)⇒(a) reduces to showing that
ondition (c) implies CAP on special polyhedral pairs (see Lemma 3.5). This uses a similar
dea as the proof of Theorem 3.3.

We mention the following open problem; see [55, Problem 7.6.4].

roblem 3.11 (The Union Problem for Oka Manifolds). Let Y be a complex manifold and
Y ′

⊂ Y be a closed complex submanifold. If Y ′ and Y \ Y ′ are Oka, is Y Oka? In particular,
f Y is a complex manifold and p ∈ Y is such that Y \ {p} is Oka, is the blowup BlpY Oka?

This situation occurs in Kummer surfaces: every such surface admits 16 pairwise disjoint
mbedded rational curves such that the complement of their union is Oka (see [55, Sect. 7.2]).
n an attempt to approach this problem, Kusakabe combined Theorem 3.10 with [55, Theorem
.2.1] to show the following (see [98, Theorem 4.4]).

heorem 3.12. Given a complex manifold Y with a Zariski open Oka domain U ⊂ Y , the

ollowing conditions are equivalent.
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(a) Y is an Oka manifold.
(b) For every Stein manifold X and map f ∈ O(X, Y ) which is homotopic to a continuous

map X → U there exists F ∈ O(X × C, Y ) with F(· , 0) = f and F(· , 1) ∈ O(X,U ).
(c) For every bounded convex domain X in Cn (n ∈ N) and map f ∈ O(X, Y ) there is a

holomorphic map F : X × C → Y such that F(· , 0) = f and F(· , 1) ∈ O(X,U ).

It is not clear how to find a map F satisfying condition (c) if f (X ) intersects both U and
he subvariety Y ′

= Y \ U . If X is convex and f (X ) ⊂ (Y ′)reg, then such a map exists by
64, proof of Theorem 2] (see also [55, proof of Theorem 7.1.8]).

.6. Elliptic characterization of Oka maps

The main new result presented in this section is Kusakabe’s characterization in [99] of the
ka property of holomorphic submersions by convex ellipticity; see Theorem 3.20. We begin
ith some background.
A holomorphic map h : Y → Z of reduced complex spaces is said to enjoy the parametric

ka property with approximation and interpolation (POPAI) if for every holomorphic map
f : X → Z from a reduced Stein space, each continuous lift F0 : X → Y is homotopic
through lifts of f ) to a holomorphic lift F = F1 : X → Y as in the following diagram,

Y

h
↓↓

X
f →→

F
↗↗

Z

with approximation on a compact O(X )-convex subset of X and interpolation on a closed
omplex subvariety of X on which F0 is holomorphic. Furthermore, the analogous conditions
ust hold for families of maps f p : X → Z depending continuously on a parameter p in a

ompact Hausdorff space; see [55, Definitions 7.4.1 and 7.4.7] for the details. When Z is a
ingleton, these are the usual Oka properties of the complex manifold Y .

efinition 3.13. A holomorphic map h : Y → Z between reduced complex spaces is an Oka
ap if it enjoys POPAI and is a Serre fibration (see [51,110] and [55, Definition 7.4.7]).

For a holomorphic submersion h : Y → Z , POPAI is a local condition in the sense that it
olds if (and only if) every point z0 ∈ Z has an open neighbourhood U ⊂ Z such that the
estricted submersion h : h−1(U ) → U enjoys POPAI (see [52, Theorem 4.7] or [55, Definition
.6.5 and Theorem 6.6.6]). Furthermore, for such h the basic Oka property (referring to lifts
f single maps f : X → Z ) implies POPAI; see [51].

Since a holomorphic fibre bundle projection is a Serre fibration, the above localization
rgument shows that it is an Oka map if and only if the fibre is an Oka manifold. Furthermore,
very stratified subelliptic holomorphic submersion satisfies POPAI, so it is an Oka map
rovided that it is a Serre fibration (see [55, Corollary 7.8.4]).

Let us look more closely at Oka maps between complex manifolds.

roposition 3.14. Let h : Y → Z be an Oka map between complex manifolds with Z
onnected. Then, h is a surjective submersion and the fibres h−1(z) for z ∈ Z are Oka
anifolds.
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Proof. Let z0 = h(y0) ∈ h(Y ) for some y0 ∈ Y . Since Z is connected, there is a path γ from
z0 to any given point z ∈ Z . Since h enjoys the homotopy lifting property, we can lift γ to a
path in Y starting at y0; its terminal point y then satisfies h(y) = z. Hence, h is surjective. By

similar argument, given a point y0 ∈ Y there are a contractible open neighbourhood U ⊂ Z
f z0 = h(y0) and a continuous section f0 : U → Z with f0(y0) = z0 and h ◦ f0 = IdU .
ince h is an Oka map, we can deform f0 to a holomorphic section f : U → Y |U of h with

f (z0) = y0. The restriction h : f (U ) → U is then a biholomorphism, which shows that h is a
ubmersion at y0. The fact that the fibres of h are Oka manifolds follows from the definition
f an Oka map (and it holds if h enjoys POPAI). □

The following result gives many new examples of Oka manifolds from the existing ones.
he special case concerning holomorphic fibre bundles with Oka fibres was proved in [49]; see
lso [55, Theorem 5.6.5]. Both proofs contain a minor glitch related to the (non-) existence of
tein neighbourhoods of certain sets, and we give a correct proof here.

heorem 3.15. If h : Y → Z is an Oka map of complex manifolds with Z connected, then Y
is an Oka manifold if and only if Z is an Oka manifold. This holds in particular if h : Y → Z
is a holomorphic fibre bundle with an Oka fibre.

Proof. Assume first that Y is an Oka manifold and let us prove that so is Z . We shall verify
CAP. Let K be a compact convex in Cn , and let f0 : U → Z be a holomorphic map from
an open convex neighbourhood U ⊂ Cn of K . Since h is an Oka map and U is contractible,
f0 lifts to a holomorphic map g0 : U → Y with h ◦ g0 = f0. Since Y is Oka, we can
approximate g0 as closely as desired uniformly on K by a holomorphic map g : Cn

→ Y . The
map f = h ◦ g : Cn

→ Z then approximates f0 on K , so Z enjoys CAP and hence is Oka.
To proves the converse part, we shall need the following lemma.

Lemma 3.16 (Lemma 3.4 in [46]). Let h′
: Y ′

→ Z ′ be a holomorphic submersion of a Stein
manifold Y ′ onto a complex manifold Z ′. Then there are an open Stein domain W ⊂ Z ′

× Y ′

ontaining the submanifold S := {(z′, y′) ∈ Z ′
×Y ′

: h′(y′) = z′
} and a holomorphic retraction

ρ̃ : W → S of the form ρ̃(z′, y′) = (z′, ρ(z′, y′)) for (z′, y′) ∈ W .

The proof of Theorem 3.15 can now be completed as follows. Assuming that Z is an
ka manifold, we shall verify that Y enjoys CAP and hence is Oka. Consider the manifolds

Ỹ = Cn
× Y , Z̃ = Cn

× Z and the projection h̃ : Ỹ → Z̃ given by h̃(ζ, y) = (ζ, h(y)) for
∈ Cn and y ∈ Y . By Proposition 3.14, h̃ is a surjective holomorphic submersion. Let U ⊂ Cn

e an open convex neighbourhood of a compact convex set K ⊂ Cn and f0 : U → Y be a
olomorphic map. Set g0 = h ◦ f0 : U → Z . The graphs

Γ f0 = {(ζ, f0(ζ )) : ζ ∈ U } ⊂ Ỹ and Γg0 = {(ζ, g0(ζ )) : ζ ∈ U } ⊂ Z̃

re locally closed Stein submanifolds of Ỹ and Z̃ , which by Siu’s theorem [142] admit open
tein neighbourhoods Y ′

⊂ Ỹ and Z ′
⊂ Z̃ , respectively. These neighbourhoods can be

hosen such that h̃|Y ′ : Y ′
→ Z ′ is a surjective holomorphic submersion. For every point

p ∈ Z ′, Lemma 3.16 furnishes a holomorphic retraction ρp from a neighbourhood of the fibre
Y ′

p = Y ′
∩ h̃−1(p) onto Y ′

p, depending holomorphically on p ∈ Z ′.
Since Z is Oka, we can approximate the map g0 : U → Z uniformly on K by a holomorphic

ap g : Cn
→ Z . If the approximation is close enough then for all ζ in a neighbourhood

V ⊂ U of K the point (ζ, f (ζ )) ∈ Y ′ lies in the domain of the retraction ρ . For ζ ∈ V let
0 (ζ,g(ζ ))
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f1(ζ ) ∈ Y denote the projection of the point ρ(ζ,g(ζ ))(ζ, f0(ζ )) to Y . Then, the map f1 : V → Y
s holomorphic, uniformly close to f0 on K , and it satisfies h ◦ f1(ζ ) = g(ζ ) for ζ ∈ V . Since

h : Y → Z is an Oka map, g : Cn
→ Z is a holomorphic map, and f1 is a holomorphic lift of

g over V ⊃ K , we can approximate f1 uniformly on K by a holomorphic map f : Cn
→ Y

atisfying h ◦ f = g. Hence, Y enjoys CAP and so is an Oka manifold. □

emark 3.17. Knowing that Oka maps are fibrations in the model structure constructed by
árusson [110] helps us understand and predict their behaviour. For example, it is immediate
y abstract nonsense that the composition of Oka maps is Oka, that a retract of an Oka map is
ka, and that the pullback of an Oka map by an arbitrary holomorphic map is Oka. Also, in

ny model category, the source of a fibration with a fibrant target is fibrant. It follows that the
ource of an Oka map with an Oka target is Oka. On the other hand, the fact that the image
f an Oka map with an Oka source is Oka is a surprising feature of Oka theory not predicted
y abstract nonsense, and its proof depends on the fact that the Oka property can be detected
sing the CAP property, which pertains to approximation of maps from contractible sets.

We have already remarked that if h : Y → Z is a holomorphic submersion enjoying POPAI
hen every fibre of h is an Oka manifold. The converse fails in general. For example, let

g : Z → C be a continuous function on a domain Z ⊂ C and consider the map

h : Y = {(z, w) ∈ Z × C : w ̸= g(z)} → Z , h(z, w) = z.

very fibre of h is the Oka manifold C∗, h is a topological fibre bundle and a Serre fibration,
ut h is an Oka map if and only if g is a holomorphic function (see [55, Corollary 7.4.10]).

The following result of Kusakabe [97, Lemma 5.1] shows that a manifold is Oka if it admits
ufficiently many submersive projections having the Oka property.

roposition 3.18. Assume that for every point y in a complex manifold Y there exist complex
anifolds Z1, . . . , Zk and holomorphic submersions h j : Y → Z j ( j = 1, . . . , k) enjoying
OPAI such that TyY =

∑k
j=1 Ty

[
h−1

j (h j (y))
]
. Then Y is an Oka manifold.

roof. Let f : X → Y be a holomorphic map from a Stein manifold X . Fix a point
x ∈ X and let h j : Y → Z j be submersions satisfying the hypothesis in the proposition
t y = f (x) ∈ Y . The Oka property of h j furnishes a fibre dominating holomorphic
pray F j : X × CN j → Y over f with h j ◦ F = h j ◦ f (see [55, Corollary 8.8.7]).
n particular, ∂t |t=0 F j (x, t)(CN j ) = Ty

[
h−1

j (h j (y))
]
. Since

∑k
j=1 Ty

[
h−1

j (h j (y))
]

= TyY , the

prays F1, . . . , Fk dominate TyY . Hence, Y is Oka by Corollary 3.9 (the equivalence of (a)
nd (c)). □

As pointed out in the introduction to Kusakabe’s paper [99], the two main types of maps
hich are known to satisfy POPAI are (stratified) fibre bundles with Oka fibres and (stratified)

ubelliptic submersions. None of these two families is a subfamily of the other one: there are
ka manifolds which fail to be subelliptic (see Section 4), and there are subelliptic submersions
hich are not locally trivial at any base point, e.g. a complete family of complex tori [112,
heorem 16]. Kusakabe also gave an example of a holomorphic submersion enjoying POPAI
hich does not belong to any of these two classes [99, Proposition 5.10]. It is therefore of

nterest to find a characterization of POPAI which unifies the theory in the same way as CAP
nd Ell1 characterize Oka manifolds (cf. Theorem 3.3). To this end, Kusakabe introduced the
ollowing notion (see [99, Definition 1.2]).
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Definition 3.19. A holomorphic submersion h : Y → Z of complex spaces is convexly elliptic
f there exists an open cover {Ui }i∈I of Z such that for every compact convex set K ⊂ Cn

n ∈ N) and holomorphic map f ∈ O(K , Y ) with f (K ) ⊂ h−1(Ui ) for some i ∈ I there are a
eighbourhood V ⊂ Cn of K and a holomorphic map F : V × CN

→ Y satisfying

(i) F(· , 0) = f ,
(ii) h ◦ F(z, t) = h ◦ f (z) for all z ∈ V and t ∈ CN , and

(iii) F(z, · ) : CN
→ h−1(h( f (z))) is a submersion at 0 ∈ CN for all z ∈ V .

A map F as in the above definition is called a fibre dominating spray over f . Note that
convex ellipticity is a fibred version of condition C-Ell1 (cf. Definition 3.1(c)).

Theorem 3.20 (Kusakabe [99, Theorem 1.3]). A holomorphic submersion of complex spaces
enjoys POPAI if and only if it is convexly elliptic. In particular, a holomorphic submersion is
an Oka map if and only if it is a convexly elliptic Serre fibration.

In view of the fact that a complex manifold Y is an Oka manifold if and only if the constant
map Y → point is an Oka map, Theorem 3.20 generalizes Theorem 3.3, the latter characterizing
Oka manifolds by condition C-Ell1.

The proof of Theorem 3.20 in [99, Sections 3-4] is similar to the proof of Theorem 3.3. First,
the problem is reduced to the main special case which pertains to sections of a holomorphic
submersion h : Y → Z . In this case, and assuming that the base Z is Stein, an axiomatic
characterization of POPAI is provided by the homotopy approximation property, HAP, first
introduced in [51, Proposition 2.1]. (See also [55, Definition 6.6.5 and Theorem 6.6.6].)2 This
condition, which is local on the base, is an axiomatization of the homotopy Runge theorem
(see [55, Theorem 6.6.2]). The gist of Kusakabe’s proof of Theorem 3.20 is to show that HAP
is implied by convex ellipticity in a similar way as CAP is implied by condition C-Ell1 (see
Theorem 3.3 for the latter). We refer to [99] for the details.

4. Oka domains in Euclidean spaces and in Stein manifolds with the density property

A long-standing problem in Oka theory asked whether the complement of every compact
convex set K in Cn for n > 1 is an Oka manifold (see [55, Problem 7.6.1]). In 2020,
Kusakabe [97] answered this problem affirmatively and in a much greater generality.

We recall the following notion introduced by Varolin [150]; see also [55, Definition 4.10.1].

Definition 4.1 (Varolin [150]). A complex manifold X has the density property if every holo-
morphic vector field on X can be approximated uniformly on compacts by Lie combinations
(sums and commutators) of complete holomorphic vector fields on X .

An algebraic manifold X has the algebraic density property if the Lie algebra of algebraic
vector fields on X is generated by complete algebraic vector fields.

Every holomorphic vector field on an affine algebraic manifold is a limit of algebraic vector
fields, and hence the algebraic density property implies the holomorphic density property.
Note that flows of complete algebraic vector fields in the above definition need not be

2 Condition HAP is not stated correctly in [55, Definition 6.6.5]: the same condition must hold for every local
holomorphic spray of sections with parameter in a ball B ⊂ Cn . Equivalently, the stated condition must apply to
ach trivial extension Z ×B → X ×B of the given submersion Z → X . This holds for every subelliptic submersion

Z → X by [55, Theorem 6.6.2].
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algebraic. Algebraic vector fields having algebraic flows are called locally nilpotent derivations,
bbreviated LNDs, and they are much more special.

On a Stein manifold X , the density property implies the Andersén–Lempert theorem
oncerning approximation of isotopies of biholomorphic maps between Stein Runge domains
n X by isotopies of holomorphic automorphisms of X ; see [55, Theorem 4.10.5]. Every Stein

anifold with the density property has dimension > 1 and is an Oka manifold (see [87,
heorem 4] or [53, Theorem 5.5.18]). For surveys, see [55, Chapter 4], [62], and [103].

We can now state Kusakabe’s result.

heorem 4.2 (Kusakabe [97, Theorem 1.2 and Corollary 1.3]). If Y is a Stein manifold with
he density property and K is a compact O(Y )-convex set in Y then the complement Y \ K is
n Oka manifold. In particular, if K is a compact polynomially convex set in Cn for n > 1,
hen Cn

\ K is an Oka manifold.

Since the interior X = K̊ of a polynomially convex set K in Cn is Stein [84, Corollary 2.5.7],
heorem 4.2 gives many Stein–Oka decompositions Cn

= Ω ∪ X , where X is a bounded Stein
omain with polynomially convex closure and Ω = Cn

\X is an Oka domain. This phenomenon
is rather symbolic since Oka manifolds are in a certain sense dual to Stein manifolds, being
the most natural targets of holomorphic maps from Stein manifolds.

It seems reasonable to introduce the following property.

Definition 4.3. A noncompact complex manifold Y is Oka at infinity if there is an exhaustion
K1 ⊂ K2 ⊂ · · · ⊂

⋃
∞

j=1 = Y by compact sets such that Y \ K j is Oka for every j ∈ N.

Thus, Theorem 4.2 says that every Stein manifold with the density property is Oka at
infinity. Besides its intrinsic interest, Theorem 4.2 is a very useful tool for constructing proper
holomorphic maps to such manifolds; see Remark 4.5.

Kusakabe’s proof of Theorem 4.2 uses the characterization of Oka manifolds by condition
C-Ell1 (see Theorem 3.3). Given a compact convex set L ⊂ CN and a holomorphic map
f : L → Y such that f (z) ∈ Y \ K for every z ∈ L , he constructed a holomorphically varying
family f (z) ∈ Ωz ⊂ Y \ K (z ∈ L) of nonautonomous basins with uniform bounds (i.e., basins
of random sequences of automorphisms of Y which are uniformly attracting at the fixed point
f (z) ∈ Y \ K ); such basins are elliptic manifolds as shown by Fornæss and Wold [40], hence
Oka. It is then possible to find a dominating holomorphic spray F : L × Cn

→ Y over
f = F(· , 0) such that F(z, ζ ) ∈ Ωz for all z ∈ L and ζ ∈ Cn . Thus, Y \ K satisfies condition
C-Ell1 and hence is Oka.

Soon thereafter, Wold and the author pointed out in [70] that one can choose a spray F
as above such that F(z, · ) : Cn

→ Y \ K is a Fatou–Bieberbach map for every z ∈ L . The
following result of independent interest therefore implies Theorem 4.2.

Theorem 4.4 (Theorems 1.1 and 3.1 in [70]). Let Y be a Stein manifold with the density
property, K be a compact O(Y )-convex set in Y , L be a compact convex set in CN for some
N ∈ N, and f : U → Cn be a holomorphic map on an open neighbourhood U ⊂ CN of L
such that f (z) ∈ Y \ K for every z ∈ L. Then there are an open neighbourhood V ⊂ U of
L and a holomorphic map F : V × Cn

→ Y with n = dim Y such that for every z ∈ V we
have that F(z, 0) = f (z) and the map F(z, · ) : Cn

→ Y \ K is injective (a Fatou–Bieberbach
n
map). If Y = C with n > 1 then the same conclusion holds if L is polynomially convex.
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Remark 4.5. In the papers [9,12,58] it was proved that every Stein manifold X admits a proper
holomorphic embedding in any Stein manifold Y with the density property, or the volume
density property with respect to a holomorphic volume form on Y , if dim Y > 2 dim X , and
t admits a proper holomorphic immersion if dim Y ≥ 2 dim X . In the case when Y has the
ensity property, the proofs can be substantially simplified by using Theorem 4.2; here is an
utline. Suppose that D is a relatively compact, smoothly bounded domain in X whose closure

is O(X )-convex and f : X → Y is a continuous map which is holomorphic on D̄. Given a
ompact O(Y )-convex set L ⊂ Y , one can use the technique in [35] to deform f to another
ap f̃ : X → Y which is holomorphic on D̄, close to f on a given compact subset of D

nd satisfies f̃ (bD) ⊂ Y \ L . Since the domain Y \ L is Oka by Theorem 4.2, we can apply
heorem 1.3 to approximate f̃ uniformly on D̄ by a holomorphic map g : X → Y homotopic

o f such that g(X \ D̊) ⊂ Y \ L . Continuing inductively and using also the general position
heorem at every step, we obtain a sequence of holomorphic embeddings (or immersions) from
n increasing sequence of domains exhausting X to Y , converging to a proper holomorphic
mbedding or immersion X → Y .

This scheme does not work if Y has the volume density property but not the density property.
quintessential example is (C∗)n which has the volume density property with respect to the

volume form dz1 ∧dz2 ∧· · ·∧dzn/z1z2 · · · zn , but it is not known to have the density property.
It is not known whether Theorem 4.2 holds for such manifolds since holomorphic vector fields
which are contracting at some point are not volume preserving. However, such a manifold
still has Oka property at infinity for maps X → Y from Stein manifolds X of dimension
dim X < dim Y .

It was proved by Andrist, Shcherbina, and Wold [11] that, in a Stein manifold X of
dimension at least three, every compact holomorphically convex set K with infinitely many
limit points has non-elliptic complement X \ K . An important point in the proof is that every
holomorphic line bundle E → X \ K extends to a holomorphic line bundle on the complement
of at most finitely many points, and hence a spray F : E → X defined on such a bundle cannot
have values contained in X \ K . Together with Theorem 4.2 this gives the following corollary
which answers a question of Gromov [82, 3.2.A”] (see also [55, p. 325]).

Corollary 4.6. Let n ≥ 3. For every compact polynomially convex set K ⊂ Cn with infinitely
many limit points the complement Cn

\ K is Oka but not subelliptic. The analogous result holds
in any Stein manifold of dimension ≥ 3 with the density property.

The first known examples of Oka manifolds which fail to be subelliptic were given by
Kusakabe in [96]. One of the main results of that paper is the following.

Theorem 4.7 (Theorem 1.2 in [96]). If S is a closed tame countable set in Cn , n > 1, whose
set of limit points is discrete, then Cn

\ S is an Oka domain.

Here, a closed countable set S ⊂ Cn is called tame if there is a holomorphic automorphism
Φ of Cn such that the closure of Φ(S) in CPn does not contain the entire hyperplane at infinity.
It was previously known that the complement of a closed tame subvariety of Cn of codimension
at least 2 is elliptic and hence Oka; see [55, Proposition 5.6.17].

In [96], Kusakabe also constructed compact countable sets in Cn with non-discrete sets
of limit points and having non-elliptic Oka complements. An example is the following. Let
N−1

= {1/j : j ∈ N} and N−1
= N−1

∪ {0} ⊂ C. The domain X = Cn
\

(
(N−1

)2
× {0}

n−2
)

for
≥ 3 is an Oka manifold which is not weakly subelliptic (see [96, Corollary 1.4]).
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The corresponding problem in complex dimension 2 remains open. The reason is that a
olomorphic line bundle E → C2

\ K need not extend to a holomorphic line bundle on a
igger domain, and hence the argument in the proof of Corollary 4.6 does not apply.

roblem 4.8. Is there a compact subset K of C2 whose complement C2
\ K is an Oka domain

hich is not elliptic or (weakly) subelliptic?

A closed unbounded set S in Cn is said to be polynomially convex if it is exhausted by an
ncreasing sequence of compact polynomially convex sets. Theorem 4.2 is a special case of the
ollowing result of Kusakabe [97, Theorem 1.6]; see also [97, Theorem 4.2].

heorem 4.9. If S is a closed polynomially convex subset of Cn (n ≥ 2) such that

S ⊂
{
(z, w) ∈ Cn−2

× C2
: |w| ≤ c(1 + |z|)

}
(4.1)

or some c > 0, then Cn
\ S is an Oka manifold.

ketch of proof. Let π : Cn
→ Cn−2 be the projection π (z, w) = z. To prove that Cn

\ S
s Oka, it suffices to show that the restricted projection π : Cn

\ S → Cn−2 satisfies POPAI;
see Section 3.6. Indeed, note that condition (4.1) holds for all linear projections Cn

→ Cn−2

sufficiently close to π . This gives finitely many linear projections Cn
\ S → Cn−2 enjoying

POPAI whose kernels span Cn , and hence the conclusion follows from Proposition 3.18.
In order to show that π : Cn

\ S → Cn−2 satisfies POPAI, it suffices to verify convex
ellipticity; see Definition 3.19 and Theorem 3.20. This means that for any compact convex
set L ⊂ CN and holomorphic map f = ( f ′, f ′′) : L → Cn

\ S (with f ′
: L → Cn−2 and

f ′′
: L → C2) there is a fibre-dominating spray F : L × Cm

→ Cn
\ S over f such that

π ◦ F = f ′. By taking the pullback of the projection π : Cn
→ Cn−2 by the base map

f ′
: L → Cn−2, all relevant properties are preserved and the problem gets reduced to the one

where f is a holomorphic map from a neighbourhood of L to Cn such that f (z) ∈ Cn
\ Sz

(z ∈ L), where Sz is the fibre of S over z. (Here, S is the new set obtained from the initial
one by the pullback.) A spray F with the desired properties can be obtained with m = n as
a family of Fatou–Bieberbach maps Cn

→ Cn
\ Sz depending holomorphically on z ∈ L by

using the version of Theorem 4.4 for variable fibres Sz ; see [70, Remark 2.2]. □

We mention a few applications of these results.
Gromov showed in [82, 0.5.B] that the complement Cn

\ A of every closed algebraic
subvariety A of codimension ≥ 2 is Oka; see also [55, Proposition 5.6.10 and Sect. 6.4]. Since
every such subvariety A satisfies condition (4.1) in some linear coordinate system on Cn , it
has a basis of closed neighbourhoods in Cn with Oka complements [97, Corollary 5.3]. The
analogous result holds for tame discrete sets in Cn; see [97, Corollaries 5.5 and 5.7].

Kusakabe also showed that the complement of every closed rectifiable curve C in Cn for
n ≥ 3 is Oka; see [97, Corollary 1.8]. For rectifiable arcs in Cn this holds for all n ≥ 2 since
they are polynomially convex (see [97, Corollary 1.8] and apply Theorem 4.2). His proof for
closed curves combines Theorem 4.9 with the localization theorem (see Theorem 3.6). Here
we give a different proof which also applies for n = 2. The next proposition yields examples
of compact non-polynomially convex sets in Cn with Oka complements for any n > 1.

n n
Proposition 4.10. If C rectifiable simple closed curve in C (n > 1) then C \ C is Oka.
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Proof. If C is polynomially convex then Cn
\ C is Oka by Theorem 4.2. Otherwise, the

polynomial hull of C equals C ∪ A where A is an irreducible closed complex curve in Cn
\ C

with A = A ∪ C (see Alexander [8] and [144, Corollary 3.1.3 and Theorem 4.5.5]). Pick a
complex hyperplane H ⊂ Cn such that C ∩ H = ∅ and A ∩ H ̸= ∅. (Since the curve C
s rectifiable, a generic complex hyperplane H avoids C .) Then, C is holomorphically convex
n the Stein domain Cn

\ H ∼= Cn−1
× C∗. Since this domain has the density property (see

arolin [150] or [55, Theorem 4.10.9]), Cn
\ (C ∪ H ) is Oka by Theorem 4.2. Applying the

ame argument to n + 1 hyperplanes H0 = H, H1, . . . , Hn as above with
⋂n

i=0 Hi = ∅ we
btain Cn

\ C =
⋃n

i=0(Cn
\ C) \ Hi , so Cn

\ C is Oka by Theorem 3.6. □

By elaborating the idea in the proof of Proposition 4.10 we now prove a considerably more
eneral result. We recall the following theorem on polynomial hulls whose complex genesis is
iscussed in the monograph [144] of E. L. Stout.

heorem 4.11 (Theorem 3.1.1 in [144]). Assume that K is a compact polynomially convex
et in Cn and C is a subset of Cn contained in a compact connected set of finite length such
hat C ∪ K is compact. Then, A = Ĉ ∪ K \ (C ∪ K ) is either empty or a closed purely
ne-dimensional complex subvariety of Cn

\ (C ∪ K ).

Examples in [144] show that A may have infinitely many irreducible components. We now
rove the following result which generalizes Proposition 4.10.

heorem 4.12. Assume that K is a compact polynomially convex set in Cn , n > 1, and C is a
ubset of Cn contained in a compact connected set of finite length such that C ∪ K is compact.
f the subvariety A = Ĉ ∪ K \ (C ∪ K ) has at most finitely many irreducible components
hen Cn

\ (C ∪ K ) is an Oka domain. Furthermore, C ∪ K has a basis of compact strongly
seudoconvex neighbourhoods with Oka complements in Cn .

roof. If A is empty then C ∪ K is polynomially convex and the conclusion follows from
heorem 4.2. Assume now that A is nonempty. Pick a complex hyperplane H in Cn which
oes not intersect the compact set Ĉ ∪ K = C ∪ K ∪ A. Choose coordinates z = (z′, zn) on
n such that H = {zn = 0}. Let P = {p1, . . . , pm} ⊂ A be a finite set containing a point

n every irreducible component of A. Pick distinct point bi = (b′

i , 0) ∈ H for i = 1, . . . ,m.
ince K is polynomially convex, there is a holomorphic automorphism φ ∈ Aut(Cn) which

s close to the identity on a neighbourhood of K and satisfies φ(bi ) = pi for i = 1, . . . ,m.
This simple application of [55, Theorem 4.12.1] is special case of [55, Theorem 4.16.2] for
nitely many points.) It follows that the hypersurface φ(H ) ⊂ Cn contains the set P and
oes not intersect K , but it may intersect C . We can remove these superfluous intersections
s follows. Set K ′

= φ−1(K ) and C ′
= φ−1(C). Note that K ′

∩ H = ∅. Choose holomorphic
olynomials f1, . . . , fk on Cn−1 whose common zero set equals {b′

1, . . . , b′
m} and consider the

ap ψ : Cn−1
× Ck

→ Cn−1
× C given by

ψ(z′, t) =

(
z′,

k∑
j=1

t j f j (z′)
)

for z′
∈ Cn−1 and t = (t1, . . . , tk) ∈ Ck .

ote that ψ preserves the fibres of the projection (z′, zn) ↦→ z′, and it is a submersion except
n the fibres z′

= b′

i (i = 1, . . . ,m) where it equals the constant map t → (z′, 0). Since the
′ n ′
set C ⊂ C has finite linear measure and it does not contain any of the points (bi , 0), the
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transversality argument shows that the set of points t ∈ Ck
\ {0} such that the range of the

map ψt = ψ(· , t) : Cn−1
→ Cn omits C ′ is everywhere dense. Since K ′

∩ H = ∅, taking t
in this set and close enough to 0 ∈ Ck also ensures that ψt (Cn−1) ∩ K ′

= ∅. For such t , the
holomorphic automorphism Φ ∈ Aut(Cn) given by

Φ(z′, zn) = φ
(

z′, zn +

k∑
j=1

t j f j (z′)
)
, z ∈ Cn

clearly satisfies P ⊂ Φ(H ) and Φ(H ) ∩ (C ∪ K ) = ∅.
By changing the coordinates on Cn using Φ, this reduces the proof of the theorem to the

case when the hyperplane H = {zn = 0} does not intersect C ∪ K but it intersects every
irreducible component of A = Ĉ ∪ K \ (C ∪ K ). It follows that C ∪ K is holomorphically
convex in the Stein domain Cn

\ H = Cn−1
× C∗. Since this domain has the density property

by Varolin [150], Theorem 4.2 shows that (Cn−1
×C∗)\(C∪K ) is an Oka domain. Applying the

same argument to n+1 hyperplanes H0 = H, H1, . . . , Hn in Cn close enough to H = {zn = 0}

with
⋂n

i=0 Hi = ∅ (see Corollary A.5) we obtain

Cn
\ (C ∪ K ) =

n⋃
i=0

(Cn
\ (C ∪ K )) \ Hi ,

so Cn
\ (C ∪ K ) is Oka by Theorem 3.6. Finally, C ∪ K clearly admits compact strongly

pseudoconvex neighbourhoods which are holomorphically convex in Cn
\ H , and hence also

n Cn
\ Hi for each i = 1, . . . ,m provided the hyperplanes Hi are chosen close enough to

H = H0. This shows that the complement of every such compact domain in Cn is Oka. □

A theorem of M. Lawrence [115] (see also [144, Theorem 4.7.1]) says that if C ⊂ Cn

s a compact set of finite length and A is a bounded closed purely one-dimensional complex
ubvariety of Cn

\C , then the number of irreducible components of A does not exceed the rank
f the first Chech cohomology group Ȟ 1(C,Z) (which is the number of simple closed curves
ontained in C). Together with Theorem 4.12 this gives the following corollary.

orollary 4.13. Let C be a compact subset of Cn , n > 1, which is contained in a compact
onnected set of finite length. If the group Ȟ 1(C,Z) has finite rank then Cn

\ C is Oka.

In a recent work [72], E. F. Wold and the author proved that complements of most closed
onvex sets in Cn for n > 1 are Oka. In particular, the following holds.

heorem 4.14 (Theorem 1.8 in [72]). If E is a closed convex set in Cn for n > 1 which does
ot contain any affine real line, then Cn

\ E is an Oka domain.

This result is new for unbounded convex sets; for bounded ones it follows from Theorem 4.2.
t provides many model concave Oka domains Ω ⊂ Cn (n > 1) of the form

Ω = {z = (z′, zn) ∈ Cn
: ℑzn < φ(z′,ℜzn)}, (4.2)

here φ ≥ 0 is a convex function, which are only slightly bigger than a halfspace, the latter
eing neither Oka nor hyperbolic. This gives examples of splitting Cn for n > 1 by a real
ypersurface into a pair of a (convex) Kobayashi hyperbolic domain and a (concave) Oka
omain which are close to a halfspace.

Theorem 4.14 reduces to the following result (see [72, Theorem 1.1]) by combining complex
nalysis with convex geometry and projective geometry. We consider Cn as an affine chart in
he projective space CPn . Given a subset E ⊂ Cn we denote by E its closure in CPn .
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Theorem 4.15. If E is a closed subset of Cn for n > 1 and Λ ⊂ CPn is a complex hyperplane
uch that E ∩ Λ = ∅ and E is polynomially convex in CPn

\ Λ ∼= Cn , then Cn
\ E is Oka.

For a set E as in Theorem 4.14 it is shown in [72] that its projective closure K = E ⊂ CPn

s a compact polynomially convex set in the affine chart CPn
\ Λ ∼= Cn for some complex

yperplane Λ ⊂ CPn with K ∩ Λ = ∅, so Theorem 4.15 applies. In fact, CPn
\ K is the

nion of a connected family of complex hyperplanes in CPn , so Corollary A.4 shows that K
s polynomially convex in the complement of each of them.

Theorem 4.15 easily reduces to showing that for any compact polynomially convex set K
n Cn and affine complex hyperplane H ⊂ Cn the domain Ω = Cn

\ (H ∪ K ) is Oka; see
72, Corollary 3.2]. This is proved by verifying condition C-Ell1. Given a holomorphic map
f : L → Ω from a compact convex set L in some CN , we find a dominating holomorphic
pray F : L × Cn

→ Ω such that for every x ∈ L we have F(x, 0) = f (x) and the map
F(x, · ) : Cn

→ Ω is injective, so its image is a Fatou–Bieberbach domain (see [72, Theorem
.3]). Thus, Ω satisfies condition C-Ell1 (see Definition 3.1), and hence is Oka by Theorem 3.3.
n the proof, we use the result of Varolin [150] that the Lie algebra of holomorphic vector fields
n Cn vanishing on a complex hyperplane H ⊂ Cn enjoys the density property.

emark 4.16. If a closed subset E ⊂ Cn satisfies the hypotheses of Theorem 4.15, then E
as a basis of closed neighbourhoods E ′

⊃ E satisfying the same condition (since a compact
olynomially convex set has a basis of compact polynomially convex neighbourhoods). Hence,
n
\E ′ is Oka for any such E ′. This yields some examples in the literature that were previously

btained by different arguments. For example, if E is a closed tame discrete set in Cn (n > 1)
hen, after applying an automorphism of Cn , we may assume that E lies in a complex line
L ⊂ Cn , and hence E = E ∪ {p} ⊂ CPn where p is the point at infinity determined by
L . By taking a hyperplane Λ ⊂ CPn not interesting E , the set E is polynomially convex in
Pn

\ Λ ∼= Cn . Hence, the above argument and Theorem 4.15 show the following.

Corollary 4.17. Every tame discrete set E ⊂ Cn for n > 1 admits a basis of closed
neighbourhoods whose complements are Oka.

A different proof was given by Kusakabe [97, Corollaries 5.5 and 5.7].

The condition in Theorem 4.14 that the set E does not contain any affine real line is not
necessary. The following theorem combines [72, Proposition 4.9] (for the case (k, n) = (1, 2))
with the result of Kusakabe [97, Corollary 1.7] which covers the other cases.

Theorem 4.18. If E ∼= Rk is a totally real subspace of Cn , where 1 ≤ k ≤ n, n ≥ 2, and
(k, n) /∈ {(2, 2), (3, 3)}, then Cn

\ E is an Oka domain.

Drinovec Drnovšek and Forstnerič showed in [36] that for many model concave domains
Ω ⊂ Cn as in (4.2), the Oka property with approximation holds for proper holomorphic maps
X → Cn with dim X < n whose images lie in Ω . They introduced the following notion.

Definition 4.19. A closed convex set E in a real or a complex Euclidean space V has bounded
convex exhaustion hulls (BCEH) if for every compact convex set K in V

the set h(E, K ) = Conv(E ∪ K ) \ E is bounded.
Here, Conv denotes the convex hull. The following is [36, Theorem 1.3].
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Theorem 4.20. Let E be an unbounded closed convex set in Cn (n > 1) with bounded convex
xhaustion hulls. Given a Stein manifold X with dim X < n, a compact O(X )-convex set K in

X, and a holomorphic map f0 : K → Cn with f0(bK ) ⊂ Ω = Cn
\ E, we can approximate

f0 uniformly on K by proper holomorphic maps f : X → Cn satisfying f (X \ K̊ ) ⊂ Ω . The
map f can be chosen an embedding if 2 dim X < n and an immersion if 2 dim X ≤ n.

The analogous result for compact convex sets E ⊂ Cn was proved beforehand by Forstnerič
and Ritter [69], and in this case the BCEH condition trivially holds.

Drinovec Drnovšek and Forstnerič proved (see [36, Proposition 3.4]) that an unbounded
closed convex set E in Cn satisfying BCEH is in some affine coordinates on Cn an epigraph

E = Eφ = {z = (z′, zn) ∈ Cn
: ℑzn ≥ φ(z′,ℜzn)} (4.3)

of a convex function φ : Cn−1
×R → R+ with at least linear growth. Furthermore, they showed

that any such function φ can be approximated uniformly on compacts by functions ψ ≤ φ of
the same kind whose epigraphs Eψ have BCEH. This gives the following corollary.

Corollary 4.21 (Corollary 1.4 in [36]). The conclusion of Theorem 4.20 holds for any convex
epigraph Eφ of the form (4.3) such that φ ≥ 0 and the set {φ = 0} is nonempty and compact.

We pose the following question reminiscent of the classical Levi problem.

Problem 4.22. Let K be a compact domain with smooth boundary in Cn for n > 1.

(a) Assuming that Cn
\ K is Oka, must K be pseudoconvex?

(b) Assuming that K is (strongly) pseudoconvex, is Cn
\ K an Oka domain?

(c) Is every strongly pseudoconcave domain Ω ⊂ Cn of the form (4.2) an Oka domain?

Parts (a) and (b) of the above problem are also of interest for domains in CPn . Note that
f K is a smoothly bounded compact domain in a complex manifold Y such that Y \ K is
ka, then K cannot have a strongly pseudoconcave boundary point, since this would yield a
onconstant bounded plurisubharmonic function on Y \ K . This shows that the answer to (a)
s affirmative in dimension two. I expect that the answer to (b) is negative in general.

xample 4.23. Denote the coordinates on Cn by z = (z1, z′) with z′
= (z2, . . . , zn). Given a

umber 0 < δ < 1 we consider the closed Hartogs figure

H = {(z1, z′) : |z1| ≤ δ, |z′
| ≤ 1} ∪ {(z1, z′) : |z1| ≤ 1, 1 − δ ≤ |z′

| ≤ 1}.

e claim that Cn
\ H fails to be Oka. To see this, let h(z1) be a bounded subharmonic function

n |z1| > δ which vanishes on |z1| ≥ 1 and is positive for |z1| close to δ; an explicit example
s h(z1) = max{0, 1/|z1|

2
−1}. Let ρ be the function on Cn

\ H which equals ρ(z1, z′) = h(z1)
n {(z1, z′) : δ < |z1| ≤ 1, |z′

| < 1 − δ} and equals zero on the complement of the closed unit
olydisc. Then ρ is a nonconstant bounded plurisubharmonic function on Cn

\ H , so Cn
\ H

ails to be Liouville, and hence it also fails to be Oka.

roblem 4.24. Let H be the closed Hartogs triangle

H = {(z1, z2) ∈ C2
: 0 ≤ |z1| ≤ |z2| ≤ 1}.

s C2
\ H an Oka domain? Note that the argument in Example 4.23 does not apply in this

ase. On the other hand, if K is a small closed smoothly bounded neighbourhood of H then
K cannot be pseudoconvex, so C2

\ K fails to be Oka.
389
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The following example suggests that there is no reasonable geometric characterization of
ka domains in Cn with unbounded complements.

xample 4.25. For any n > 1 there is an unbounded, closed, connected, strongly
pseudoconvex domain E ⊂ Cn with arbitrarily small volume such that Cn

\ E fails to be
Oka. To see this, recall that Rosay and Rudin [135, Theorem 4.5] constructed for every n > 1
a closed discrete set A ⊂ Cn whose complement Cn

\ A is volume hyperbolic; in particular,
any holomorphic map Cn

→ Cn
\ A has rank < n at every point. Choose a proper smooth

embedding g : R ↪→ Cn whose image contains A. Then, the domain Cn
\ g(R) ⊂ Cn

\ A
is volume hyperbolic and hence is not Oka. Let v1, . . . , v2n−1 : R → Cn be smooth maps
uch that for each t ∈ R the vectors v1(t), . . . , v2n−1(t) form an orthonormal set and they are
rthogonal to ġ(t). Consider the map G : R2n

→ Cn given by

G(t, x1, . . . , x2n−1) = g(t) +

2n−1∑
i=1

xivi (t).

f ϵ : R → (0, 1) is a smooth positive function which decreases sufficiently fast as t → ±∞

hen G maps the tube Tϵ = {(t, x) ∈ R2n
: |x | ≤ ϵ(t)} diffeomorphically onto a strongly

seudoconvex tube E around g(R) having arbitrarily small volume. The complement Cn
\ E

s a strongly pseudoconcave domain which fails to be Oka.

The embedded real line in Example 4.25 is necessarily very twisted, and its projective
losure may well contain the entire hyperplane at infinity. On the other hand, Theorem 4.18
or the case k = 1 < n suggests that properly embedded real lines which behave sufficiently
icely at infinity may have Oka complements. We introduce the following notion of tameness
or embedded real lines, which extends the one of Rosay and Rudin [135] for discrete sets.

efinition 4.26. Let n ≥ 2. A properly embedded real line f : R ↪→ Cn or halfline
f : R+ ↪→ Cn is tame if there is an automorphism Φ ∈ Aut(Cn) such that the projective
losure Φ ◦ f (R) ⊂ CPn (or Φ ◦ f (R+)) is a rectifiable arc or a rectifiable closed Jordan
urve in CPn .

emark 4.27. It is easily seen that the closure of a tame embedded line intersects the
yperplane at infinity in precisely one point at every end. This definition of tameness is stronger
han the one for closed countable sets, used in Theorem 4.7, or the one for closed complex
ubvarieties of codimension ≥ 2 in Cn [55, Definition 4.11.3]. In those definitions one asks
hat, in some holomorphic coordinates on Cn , the closure of the set in CPn does not contain
he hyperplane at infinity. On the other hand, the original definition of a tame discrete set in

n , given by Rosay and Rudin [135], is equivalent to asking that the set can be mapped into
complex line by an automorphism of Cn , so its closure in CPn has a single point at infinity.

The following result generalizes Theorem 4.18 in the case k = 1 < n. It is new for n = 2,
hile for n ≥ 3 it is a consequence of Theorem 4.9, and in this case it holds under the weaker

ameness condition in that result.

heorem 4.28. The complement Cn
\ E of a tame embedded line R ∼= E ⊂ Cn for n > 1 is

ka. Furthermore, the complement of any closed subset of such a set E is Oka.
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Proof. We follow the idea of proof of [72, Proposition 4.9]. We may assume that the tameness
condition in Definition 4.26 holds with Φ = Id. Write CPn

= Cn
∪ H , where H is the

yperplane at infinity. By dimension reasons, there is a complex hyperplane Λ ⊂ CPn which
oes not intersect the rectifiable curve C = E ⊂ CPn .

If C is polynomially convex in X = CPn
\ Λ ∼= Cn , the result follows from Theorem 4.15.

This holds in particular if C is an arc. The same holds for any closed subset of C .
Assume now that C is not polynomially convex in X . By Theorem 4.11 its polynomial hull

in X equals C ∪ A, where A is a closed irreducible one-dimensional complex subvariety of
X \C with A = A∪C . Then, Cn

\ A is an Oka domain by Theorem 4.15. (Here, Cn
= CPn

\H .)
hoose a complex hyperplane Λ′

⊂ CPn which intersects A but avoids C ; such a hyperplane
xists by dimension reasons since C is a rectifiable curve. Then, the polynomial hull of C in

X ′
= CPn

\ Λ′ ∼= Cn does contain any point of A. If C is polynomially convex in X ′ then
n
\ E is Oka by Theorem 4.15 and we are done. Otherwise, its polynomial hull in X ′ equals
∪ A′, where A′ is a closed irreducible one-dimensional complex subvariety of X ′

\ C and
A′ = A′

∪ C . (See Theorem 4.11.) In this case, A ∪ A′
∪ C is a closed complex curve in CPn

y the boundary uniqueness theorem (see [31, Proposition 1, p. 258]). By the same argument
s above we infer that Cn

\ A′ is an Oka domain. Note that

Cn
\ (E ∪ (A ∩ A′)) = (Cn

\ A) ∪ (Cn
\ A′)

nd both Oka domains on the right hand side are Zariski open in Cn
\ (E ∪ (A ∩ A′)), so their

union is Oka by Theorem 3.6. If A ∩ A′
= ∅, we are done. Otherwise, there is a complex

hyperplane Σ ⊂ CPn passing through a point of A ∩ A′ and avoiding C . In this case, C is
olynomially convex in CPn

\ Σ , and hence Cn
\ E is Oka by Theorem 4.15. □

. Oka domains in projective spaces

In this section we exhibit some new examples of Oka domains in complex projective spaces.
e begin with the following result.

heorem 5.1. If Λ is a closed complex hypersurface in CPn (n > 1) such that the manifold
= CPn

\Λ has the density property (see Definition 4.1), then for any compact O(Ω )-convex
et K ⊂ Ω the complement CPn

\ K is an Oka domain. In particular, the hypersurface Λ has
basis of open Oka neighbourhoods in CPn .

roof. The hypersurface Λ is given in homogeneous coordinates by the zero set {P = 0}

f a homogeneous polynomial P of degree k = degΛ. With respect to the kth Veronese
mbedding CPn ↪→ CPN whose components are all homogeneous monomials of degree k
n n + 1 variables, Λ is the intersection of the image of CPn with a hyperplane H ⊂ CPN , so
Pn

\ Λ is a closed affine (hence Stein) submanifold of CPN
\ H = CN .

The projective linear group G = PGLn(C) acts transitively on CPn by holomorphic
utomorphisms. Hence, there are finitely many maps A0 = Id, A1, . . . , Am ∈ G in any given
eighbourhood of the identity map such that the hypersurfaces Λi = Ai (Λ) ⊂ CPn satisfy

m
i=0 Λi = ∅. For each i = 1, . . . ,m the domain Ωi = CPn

\ Λi = Ai (CPn
\ Λ) is

iholomorphic to Ω0 = CPn
\ Λ, so it has the density property. Assuming that Ai is close

nough to the identity map, there is a path Ai,t ∈ G (t ∈ [0, 1]) connecting Ai,0 = Ai to
Ai,1 = Id such that for every t ∈ [0, 1] the hypersurface Λi,t = Ai,t (Λ) = {P ◦ A−1

i,t = 0}

voids the given compact set K ⊂ CPn
\ Λ. Note that Λi,0 = Λi and Λi,1 = Λ. Since K

s O(Ω )-convex, Corollary A.5 shows that K is holomorphically convex in Ω = CPn
\ Λ
0 i i
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for every i = 1, . . . ,m. Since Ωi has the density property, Theorem 4.2 implies that Ωi \ K
s Oka for i = 0, . . . ,m. Since Ωi \ K = (CPn

\ K ) \ Λi is Zariski open in CPn
\ K and

CPn
\ K =

⋃m
i=0 Ωi \ K , Theorem 3.6 shows that CPn

\ K is Oka. □

orollary 5.2. If K is a compact polynomially convex set in Cn , n > 1, then CPn
\ K is Oka.

In light of Theorem 5.1 it is natural to ask the following question.

roblem 5.3.

(a) For which complex hypersurfaces Λ ⊂ CPn is CPn
\ Λ an Oka manifold?

(b) For which complex hypersurfaces Λ ⊂ CPn does CPn
\ Λ have the density property?

xample 5.4. If Λ1, . . . ,Λk ⊂ CPn (n > 1, 1 ≤ k ≤ n + 1) are hyperplanes in general
osition then Ω = CPn

\
⋃k

i=1 Λk is isomorphic to Cn−k+1
× (C∗)k−1. If k ≤ n then Ω has the

ensity property (see Varolin [150, p. 136]). If k = n + 1 then Ω isomorphic to (C∗)n which
s Oka but is not known to have the density property. The complement of more than n + 1
yperplanes in CPn fails to be Oka (see Hanysz [83, Theorem 3.1]).

We now show that Theorem 5.1 holds if Λ is a hyperquadric. It was shown by Kusakabe
98, Corollary 4.9 (1)] that the complement of a smooth hyperquadric in CPn is Oka.

heorem 5.5. If Λ is a quadric hypersurface in CPn (n > 1) and K is a compact
olomorphically convex set in the Stein domain CPn

\ Λ, then CPn
\ K is an Oka manifold.

In particular, if RPn
⊂ CPn is the standard embedding of the real projective space in the

omplex projective space, then CPn
\ RPn is Oka for any n > 1.

roof. A singular hyperquadric in CPn is a union of two hyperplanes. Its complement is
somorphic to Cn−1

×C∗, which has the density property [150], so the conclusion follows from
heorem 5.1. Assume now that Λ is smooth. Lacking a reference for the density property of
Pn

\Λ, we proceed as follows. (I owe this idea to Stefan Nemirovski.) There are homogeneous
oordinates on CPn in which Λ = {z2

0 + z2
1 + · · · + z2

n = 0}. The restriction of the projection
: Cn+1

\ {0} → CPn to the affine quadric X = {z2
0 + · · · + z2

n = 1} ⊂ Cn+1
\ {0} is a two-

heeted covering map π |X : X → CPn
\Λ. The quadric X has the density property according

o Kaliman and Kutzschebauch [87]. (Indeed, X is linearly equivalent to the Danielewski
ypersurface

Σ =
{
(u, v, z2, . . . , zn) ∈ Cn+1

: uv = P(z) = z2
2 + · · · + z2

n − 1
}
,

ith the polynomial P having smooth reduced zero fibre.) Since K is holomorphically convex
n CPn

\ Λ, its preimage L = (π |X )−1(K ) is O(X )-convex. By Theorem 4.2 the complement
X \ L is an Oka manifold. Since π : X \ L → CPn

\ (K ∪ Λ) is a covering map, the domain
Pn

\ (K ∪Λ) is Oka by [55, Proposition 5.6.3]. It remains to apply the argument in the proof
f Theorem 5.1, varying Λ among nearby quadrics and using Corollary A.5 and Theorem 3.6.

The preimage π−1(RPn) of the real projective space is the sphere Sn
= X ∩ Rn+1 of real

oints in X , which is holomorphically convex in X . This gives the last statement. □

emark 5.6 (Complements of Cubics). It was shown by Kusakabe [98, Corollary 4.9 (2)] that
he complement of every irreducible singular cubic in CP2 is Oka, but it is not clear whether the
onclusion of Theorem 5.5 holds in this case. There are two such cubics up to automorphisms
392
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of CP2, given respectively by y2z = x3 and y2z = x3
+ x2z. It is not known whether the

omplement of the smooth cubic x3
+ y3

+ z3
= 0 in CP2 is Oka, although it is dominable by

2; see the discussion in Hanysz [83, Sect. 4].

Another family of examples of Oka domains in CPn is given by the following proposition.

roposition 5.7. If C is a compact rectifiable Jordan arc or a rectifiable simple closed Jordan
urve in CPn for n > 1, then CPn

\ C is an Oka manifold.

roof. Since C has finite length, we have C ∩Λ = ∅ for almost every projective hyperplane
⊂ CPn . Fix such Λ and let XΛ = CPn

\Λ ∼= Cn . By Proposition 4.10, XΛ \ C is Oka. Note
hat XΛ \ C is a Zariski open domain in CPn

\ C . Clearly we can cover CPn
\ C by finitely

any Zariski open sets of this form, and hence CPn
\ C is Oka by Theorem 3.6. □

A similar argument gives the following result.

heorem 5.8. If C ∪ K ⊂ Cn is as in Theorem 4.12 then CPn
\ (C ∪ K ) is Oka.

. Algebraic Oka theory

The algebraic Oka theory concerns Oka properties of regular algebraic maps from affine
lgebraic manifolds (the algebraic analogues of Stein manifolds) to algebraic manifolds. Not
urprisingly, the situation is much more rigid than in the holomorphic case, and there are many
xamples where the Oka principle holds for holomorphic maps but it fails for algebraic maps.
ndeed, we shall see that no compact algebraic manifold is algebraically Oka, and we do not
now a single example of a noncompact algebraically Oka manifold. Nevertheless, certain
eaker Oka properties are still of interest in the algebraic case.

.1. Algebraically subelliptic manifolds and algebraic approximation

We have seen that holomorphic approximation plays a crucial role in Oka theory. Likewise,
he problem of approximating holomorphic maps by algebraic maps is of central importance.
lgebraic approximants in general do not exist even for maps between very simple affine

lgebraic manifolds. For instance, there are no nontrivial algebraic morphisms C → C \ {0}.
major role in these problems play the following classes of algebraic manifolds which were

iscussed by Gromov [82]; see also [48, Definition 2.1] and [55, Definition 5.6.13 (e)].

efinition 6.1. Let Y be an algebraic manifold.

(a) Y is algebraically elliptic if it admits a dominating algebraic spray F : E → Y defined
on the total space of an algebraic vector bundle E → Y (see (3.1)).

(b) Y is algebraically subelliptic if it admits a finite family of algebraic sprays F j : E j → Y
from algebraic vector bundles E j → Y ( j = 1, . . . ,m) such that

m∑
j=1

d F j (0y)(E j,y) = TyY for every y ∈ Y .

(c) Y is locally algebraically subelliptic if every point y ∈ Y has a Zariski neighbourhood

U ⊂ Y and a finite dominating family of algebraic sprays on U with values in Y .

393
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(d) Y is weakly algebraically subelliptic if for every point a ∈ Y , the tangent space TaY
is spanned by vectors v such that there is an affine Zariski open neighbourhood U of
a in Y and a regular map f : U × C → Y with f (y, 0) = y for all y ∈ U and
d
dt

⏐⏐⏐
t=0

f (a, t) = v.

(e) Y satisfies condition aEll1 if the condition in Definition 3.1(b) holds for algebraic maps
X → Y from affine algebraic manifolds.

Examples and properties of such manifolds can be found in [55, Section 6.4] and elsewhere
in the cited book. Any one of these conditions implies that the manifold is Oka. It turns out
that all these properties are pairwise equivalent.

Theorem 6.2. For an algebraic manifold Y the following conditions are equivalent:

(a) Y is algebraically elliptic.
(b) Y is algebraically subelliptic.
(c) Y is locally algebraically subelliptic.
(d) Y is weakly algebraically subelliptic.
(e) Y satisfies condition aEll1.

The implications (a) ⇒ (b) ⇒ (c) ⇒ (d) are trivial consequences of definitions. The
implication (c) ⇒ (b) was shown by Gromov [82, 3.5.B, 3.5.C] (see also [55, Proposition
6.4.2]); this is called the localization property for subelliptic manifolds. Essentially the same
proof gives the implication (d) ⇒ (b) as pointed out by Lárusson and Truong in [114, p. 205,
proof of Theorem 1]. The most surprising implication (b) ⇒ (a), which was a long-standing

pen problem, has been shown very recently by Kaliman and Zaidenberg [90, Theorem 0.1].
he implication (a) ⇒ (e) follows from the obvious fact that by pulling back a dominating
lgebraic spray on Y by an algebraic map f : X → Y gives a dominating algebraic spray
ver f , so condition aEll1 holds. (The analogous implication holds for holomorphic maps.)
onversely, since every algebraic manifold is covered by Zariski open domains which are affine
anifolds, condition (e) implies local algebraic ellipticity of Y (condition (c)).
Despite the fact that algebraic ellipticity is equivalent to algebraic subellipticity, we shall

eep using the latter term in some of the subsequent results to indicate that the arguments do
ot use this recently established equivalence.

A major source of algebraically elliptic manifolds are flexible manifolds in the sense of
rzhantsev et al. [15], i.e., manifolds whose tangent space at every point is spanned by locally
ilpotent derivations, LNDs. Indeed, the composition of (algebraic) flows of finitely many
NDs on a flexible manifold yields a dominating algebraic spray (see [55, Proposition 5.6.22

c)]). Likewise, a complex manifold which is flexible in the holomorphic sense is weakly
ubelliptic, hence Oka (see [55, Proposition 5.6.22 (a)]). For recently found examples of flexible
anifolds, see [73,75,122,131–134] and Theorem 6.11.

xample 6.3. For every integer n ≥ 3 the quadric hypersurface in Cn given by

A =
{
(z1, z2, . . . , zn) ∈ Cn

: z2
1 + z2

2 + · · · + z2
n = 0

}
,

nd the image Σ ⊂ CPn−1 of A∗
= A\{0} under the natural projection π : Cn

\{0} → CPn−1,
lay a major role in the theory of minimal surfaces in real Euclidean space Rn , and in the

related theory of holomorphic null curves in Cn; see [7]. The manifold A∗ is flexible (see
[7, Proposition 1.15.3]), hence Oka. Since π : A∗

→ Σ is a holomorphic fibre bundle with
Oka fibre C∗, the hypersurface Σ ⊂ CPn−1 is Oka as well by [55, Theorem 5.6.5].
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For later reference we recall the following result [48, Theorem 3.1], which gives a relative
ka principle for algebraic maps from affine algebraic varieties to algebraically subelliptic
anifolds. (See also [55, Theorem 6.15.1].) All algebraic maps are assumed to be regular

morphisms). An inspection of the proof in [48] also gives the additional statement concerning
he interpolation of a given initial algebraic map f : X → Y on a subvariety of X .

heorem 6.4. Let X be an affine algebraic variety and Y be an algebraically subelliptic
anifold. Given an algebraic map f : X → Y , a compact holomorphically convex set K in

X, and a homotopy of holomorphic maps ft : U → Y (t ∈ [0, 1)) on an open neighbourhood
of K with f0 = f |U , there are algebraic maps F : X ×C → Y satisfying F(· , 0) = f such

that F(·, t) approximates ft as closely as desired uniformly on K and uniformly in t ∈ [0, 1].
If in addition the homotopy ft is fixed on a closed algebraic subvariety X ′

⊂ X then F can
be chosen such that F(x, t) = f (x) for all x ∈ X ′ and t ∈ C.

In particular, a holomorphic map X → Y that is homotopic to an algebraic map is a limit
of algebraic maps uniformly on compacts in X.

Note that a homotopy of continuous maps ft : X → Y connecting a pair of holomorphic
maps f0, f1 can be deformed with fixed end to a homotopy of holomorphic maps since Y is
an Oka manifold (see Theorem 1.2).

Corollary 6.5 (Corollary 6.15.2 in [55]). Every algebraically subelliptic manifold Y satisfies
the following algebraic convex approximation property
aCAP: Every holomorphic map K → Y from a compact convex set K ⊂ Cn can be
approximated uniformly on K by regular algebraic maps Cn

→ Y .

Conversely, if the conclusion of Theorem 6.4 holds for an algebraic manifold Y , it follows
easily that Y is weakly algebraically subelliptic (cf. Lárusson and Truong [114, Theorem 1]),
and hence algebraically elliptic by Theorem 6.2. Summarizing, we have the following.

Corollary 6.6. For an algebraic manifold Y the following conditions are equivalent:

(a) Y is algebraically elliptic.
(b) Y is algebraically subelliptic.
(c) Y satisfies condition aEll1.
(d) Y has the algebraic homotopy approximation property (i.e., Theorem 6.4 holds).

Note that Theorem 6.4 does not provide an algebraic map in every homotopy class. Indeed,
there are algebraically subelliptic manifolds Y which have no algebraic representatives in some
homotopy classes of maps X → Y from affine algebraic varieties (see [55, Examples 6.15.7
and 6.15.8]). A much more precise result is given by Theorem 6.15.

Let us consider a homogeneous algebraic manifold Y for some linear algebraic group G.
We have Y ∼= G/H where H ⊂ G is the isotropy subgroup of a point y ∈ Y . Recall that a
character of G is a homomorphism of algebraic groups χ : G → C∗

= C \ {0}.

Proposition 6.7. If G is a connected linear algebraic group and Y = G/H is an algebraic
G-homogeneous manifold, then the following conditions are equivalent.

(a) G has no nontrivial characters χ : G → C∗ with χ (H ) = 1.
(b) The G-homogeneous manifold G/H is algebraically elliptic.

(c) The manifold G/H is algebraically subelliptic.
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F. Forstnerič Indagationes Mathematicae 34 (2023) 367–417

h
a

a

n

w

Proof. (a)⇒(b): If the group G is connected and without nontrivial characters then every G-
omogeneous algebraic manifold Y = G/H is algebraically flexible [15, Proposition 5.4],
nd hence algebraically elliptic [55, Proposition 5.6.22 (c)]. Furthermore, if a subgroup H of

G does not lie in the kernel of any character χ : G → C∗ then the manifold Y = G/H is
lgebraically flexible; see [88, proof of Theorem 11.7] and [10, Theorem 4.1].

The implication (b)⇒(c) is trivial. Note that (c) ⇒ (b) holds by Theorem 6.2, but this is
ot needed in the proof.

We prove (c)⇒(a) by contradiction. Assume that G has a nontrivial character χ : G → C∗

ith χ (H ) = 1. The regular map φ : Y = G/H → C∗ defined by φ(gH ) = χ (g) for g ∈ G
is surjective. Therefore, there is a holomorphic map f : D → Y from the disc such that
the holomorphic map φ ◦ f : D → C∗ is nonconstant. Now, f cannot be approximated by
regular maps F : C → Y since φ ◦ F : C → C∗ would then be a nonconstant regular map, a
contradiction. By Theorem 6.4, Y = G/H is not algebraically subelliptic. □

Remark 6.8. As an aside, we mention an approximation theorem, related to Theorem 6.4,
which was proved by Bochnak and Kucharz [16]. Assume that X and Y are algebraic manifolds
and K is a compact set in X . A map f : K → Y is said to be holomorphic if it is given by a
holomorphic map U → Y from an open neighbourhood U ⊂ X of K , and is said to be regular
if it is given by a regular algebraic map U → Y from a Zariski open neighbourhood U of K
in X . The following is [16, Theorem 1.1].

Theorem 6.9. Assume that X is an affine algebraic manifold, K is a compact holomorphically
convex set in X, and Y is a homogeneous algebraic manifold for some linear algebraic group.
Then the following conditions are equivalent for a holomorphic map f : K → Y .

(a) The map f can be approximated uniformly on K by regular maps from K to Y .
(b) The map f is homotopic to a regular map from K to Y .

The following is an obvious corollary to Theorem 6.9; see [16, Corollaries 1.2 and 1.3].
Note that every continuous map from a geometrically convex set is null-homotopic.

Corollary 6.10. For X, K , and Y as in Theorem 6.9, every null-homotopic holomorphic map
from K to Y can be approximated uniformly on K by regular maps from K to Y . In particular,
every holomorphic map from a compact convex set in Cn to Y can be approximated by regular
maps from K to Y .

By Proposition 6.7, a homogeneous algebraic manifold Y for a linear algebraic group G
need not be algebraically subelliptic (an example is C∗), and in such case Theorem 6.4 fails.
As pointed out in [16, Example 1.5], Theorem 6.9 gives an optimal weaker conclusion under
a weaker assumption. The proof of Theorem 6.9 in [16] closely follows that of Theorem 6.4,
given in [48], taking into account the issue described above.

Algebraically (sub-)elliptic manifolds appear in many applications, some of which are
mentioned in [55]. A further list of properties of such manifolds, and relations with other
properties such as (local) algebraic flexibility in the sense of Arzhantsev et al. [15], can be
found in [114, Remark 2]. Lárusson and Truong gave the following new examples in this class;
previously it was known that such manifolds are Oka (see [55, Theorem 5.6.12]).

Theorem 6.11 (Theorem 3 in [114]). Every smooth nondegenerate toric variety is locally
flexible and hence algebraically subelliptic (as well as algebraically elliptic by Theorem 6.2).
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Kusakabe proved in [100, Theorem 1.2] the jet transversality theorem for regular algebraic
aps from affine algebraic manifolds to a certain subclass of algebraically subelliptic man-

folds. A local version of the transversality theorem for algebraic maps to all algebraically
ubelliptic manifolds was proved in 2006 (see [48, Theorem 4.3] and [55, Theorem 8.8.6]);
ere, local means that one can achieve the transversality condition on any compact subset of
he source manifold. This suffices for many applications, see [55, Sect. 9.14]. By using the
lgebraic jet transversality theorem, Kusakabe extended some of these results to the algebraic
etting. Together with the results from his recent preprint [102], Kusakabe also found new
pplications to the construction of surjective strongly dominating morphisms CN

→ Y onto
algebraically subelliptic manifold. Let us recall this story.

It was shown by Forstnerič in 2017 that every Oka manifold Y admits a holomorphic map
f : Cn

→ Y with n = dim Y such that f (Cn
\br( f )) = Y , where br( f ) is the branch locus of f

[56, Theorem 1.1], and if Y is a compact subelliptic manifold then there is a regular algebraic
map with this property [56, Theorem 1.6]. He asked whether the latter result also holds if Y
is not compact. Arzhantsev proved [14, Proposition 2] (2022) that every very flexible variety
is the image of an affine space by an algebraic morphism. Kusakabe obtained the following
more precise result for a wider class of manifolds [102, Theorem 1.2].

Theorem 6.12. For every algebraically subelliptic manifold Y there is a regular algebraic
map f : Cdim Y+1

→ Y such that f (Cdim Y+1
\ br( f )) = Y .

It remains an open question whether every algebraically subelliptic manifold Y is the image
of a surjective morphism Cdim Y

→ Y .
An application of Theorem 6.12, and of [14, Theorem 1], gives the following characteriza-

tion of open images of morphisms between affine spaces.

Corollary 6.13 (Corollary 1.4 in [102]). For a Zariski open subset Ω of Cn , the following
conditions are equivalent:

(1) Ω is the image of a morphism from an affine space.
(2) The complement Cn

\ Ω is a subvariety of codimension at least two.

This clearly fails for entire maps Cn
→ Cn whose images may omit a hypersurface.

6.2. Algebraic Oka properties

The following algebraic analogues of basic Oka properties (see [55, Sect. 5.15] for the latter)
were studied by Lárusson and Truong [114] in 2019.

Definition 6.14. Let Y be an algebraic manifold.

(a) Y enjoys the (basic) algebraic Oka property (aBOP) if every continuous map X → Y
from an affine algebraic manifold X is homotopic to an algebraic map.

(b) Y enjoys the algebraic approximation property (aAP) if every continuous map X → Y
from an affine algebraic manifold, which is holomorphic on a neighbourhood of a
compact holomorphically convex subset K of X , can be approximated uniformly on
K by algebraic maps X → Y .

(c) Y enjoys the algebraic interpolation property (aIP) if every algebraic map X ′
→ Y from

an algebraic subvariety X ′ of an affine algebraic manifold X has an algebraic extension
X → Y provided that it has a continuous extension.
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Note that properties aAP and aIP are algebraic versions of the corresponding properties
OPA and BOPI in the holomorphic category; however, in aAP and aIP we do not ask for the
xistence of homotopies connecting the initial map to the final map.

We have already mentioned examples of algebraic manifolds which are Oka but aBOP
ails (see [55, Examples 6.15.7, 6.15.8]). The following result of Lárusson and Truong [114,
heorem 2] shows in particular that no compact algebraic manifold satisfies conditions aBOP,
AP, and aIP. Hence, it is natural to look at affine algebraic manifolds in these questions.

heorem 6.15. If Y is an algebraic manifold which contains a rational curve or is compact,
hen Y does not have any of the properties aBOP, aAP, aIP.

Although the proof of the general case requires nontrivial results from algebraic geometry,
he basic idea for the case when Y is a projective manifold is not difficult to explain. First
f all, it is easily seen that each of the properties aIP and aBOP implies the existence of a
ontrivial rational curve g : CP1

→ Y . Assuming now Y that admits such a curve, we will
how that Y does not satisfy aIP; a similar argument excludes the other properties. The basic
ase to consider is Y = CP1. Let S ⊂ C2 be an algebraic curve whose projective closure
s not rational. Then, S admits an algebraic line bundle L → S all of whose nonzero tensor
owers are algebraically nontrivial, and every such bundle is the pullback of the universal
undle U → CP1 by an algebraic map f : S → CP1. Since S is an open Riemann surface, f
s null-homotopic and hence it extends to a continuous map C2

→ CP1. If CP1 satisfies aIP
hen f also extends to a regular map C2

→ CP1, and hence the line bundle f ∗U → C2 is
lgebraically trivial by the Quillen–Suslin theorem. This contradicts the fact that the restriction

L = f ∗U |S → S is algebraically nontrivial, so CP1 does not satisfy aIP. In the general case
hen Y is a projective manifold and g : CP1

→ Y is a nontrivial rational curve, taking an
mple line bundle E → Y , the pullback g∗E → CP1 is algebraically nontrivial, which shows
s before that the map g ◦ f : S → Y does not extend to an algebraic map C2

→ Y ; hence
Y does not satisfy aIP. For a general compact algebraic manifold Y , one uses finitely many
lowups in order to obtain a projective manifold.

emark 6.16. Lárusson and Truong proposed in [114] to call an algebraic manifold satisfying
he equivalent conditions in Corollary 6.6 an algebraically Oka manifold, aOka. My reservation
o this choice of term is that algebraically subelliptic manifolds do not abide by the philosophy
hat Oka properties refer to the existence of solutions of analytic or algebraic problems in the
bsence of topological obstructions. Indeed, Theorem 6.15 shows that most such manifolds do
ot have absolute Oka properties such as aBOP. Furthermore, in light of Theorem 6.2 we now
now that algebraically subelliptic manifolds coincide with algebraically elliptic manifolds, a
tandard notion since Gromov’s paper [82].

This being said, we do not know a single example of an affine algebraic manifold with
ontrivial topology for which aBOP is known to hold. We propose the following test case.

roblem 6.17. Does C2
\ {0} enjoy aBOP?

The first nontrivial homotopy group is π3(C2
\ {0}) = Z, a generator being the unit

phere S3
⊂ C2 ∼= R4. The linear projection A : C4

→ C2 given by A(z1, z2, z3, z4) =

z1+iz2, z3+iz4) maps the affine quadric X = {z2
1+z2

2+z2
3+z2

4 = 1} to C2
\{0}, and its restriction

o the 3-sphere X ∩R4 of real points in X is the identity map under the standard identification
4 ∼ 2 4
= C . Note that X∩R is a deformation retract of X , hence a generator of π3(X ) = Z. Thus,
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the algebraic map A : X → C2
\ {0} induces an isomorphism π3(X )

∼=
−→ π3(C2

\ {0}) = Z,
o the generator of π3(C2

\ {0}) is realized by an algebraic map. What about other nontrivial
maps Sn

→ C2
\ {0} from spheres of dimensions n ≥ 3?

The analogous argument applies to Cn
\ {0} for any n ≥ 2: the generator of the lowest

ontrivial homotopy group π2n−1(Cn
\{0}) = Z is represented by an algebraic map X → Cn

\{0}

rom the complex (2n − 1)-sphere X = {
∑2n

i=1 z2
i = 1} ⊂ C2n .

6.3. Oka properties of blowups

On the theme of Oka properties of blowups of algebraic manifolds, we mention the following
recent result of Kusakabe [95, Corollary 4.3].

Theorem 6.18. Let Y be an algebraic manifold and A ⊂ Y be a closed algebraic submanifold
of codimension at least two. If Y enjoys aCAP (in particular, if Y is algebraically subelliptic),
then the blowup BlAY also enjoys aCAP, and hence is an Oka manifold.

Note that in Theorem 6.18 it is not claimed that BlAY is algebraically subelliptic even if Y is
such. Kusakabe proved this result by reducing it to [113, Theorem 1] by Lárusson and Truong,

hich pertains to algebraic manifolds covered by Zariski open sets equivalent to complements
f codimension ≥ 2 algebraic subvarieties in affine spaces (see also [55, Theorem 6.4.8]). Note
hat Theorem 6.18 subsumes the result of Kaliman et al. [89].

The following result of Kusakabe [98, Corollary 1.5] is a consequence of [55, Corollaries
.6.18 and 6.4.13] and of the localization theorem (see Theorem 3.6).

heorem 6.19. Let Y be a complex manifold of dimension n ≥ 2 which is Zariski locally
somorphic to (C∗)n . Then, for any finite subset A ⊂ Y , the complement Y \ A and the blowup
lAY are Oka. This holds in particular for any smooth toric variety Y .

Recent results concerning the Oka property of blowups of certain complex linear algebraic
roups along tame discrete subsets, and complements of such sets, are due to Winkelmann
151] (2022). We mention the following one.

heorem 6.20 (Theorem 20 in [151]). Let G be a complex linear algebraic group, and let D
e a tame discrete subset of G. Then G \ D is an Oka manifold. Furthermore, there exists an
nfinite discrete subset D′ of G such that G \ D′ is not an Oka manifold.

roposition 6.21 (Proposition 16 in [151]). If D is a closed tame discrete subset in a
haracter-free complex linear algebraic group G, then the blowup BlDG is an Oka manifold.

emark 6.22. The content of [151, Theorem 18] by Winkelmann (stated without a citation)
s that every subelliptic complex manifold is Oka. This is the main result of the paper [43]
rom 2002, and it appears as [55, Corollary 5.6.14]. Also, [151, Proposition 8.3] is seen by
oting that such a manifold X is weakly elliptic and hence Oka by [55, Corollary 5.6.14].

The above results provide a significant contribution to the following problem.

roblem 6.23 (See [55, Problem 6.4.9]). Is the blowup of an algebraic Oka manifold along an
lgebraic submanifold Oka?
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F. Forstnerič Indagationes Mathematicae 34 (2023) 367–417

K

The corresponding problem in the holomorphic category was answered negatively by

usakabe in [98, Example A.3]: there are discrete sets A ⊂ Cn for any n > 1 such that
the blowup BlACn is volume Brody hyperbolic, and hence it is not Oka. Note that such a set
A cannot be tame in view of [55, Proposition 6.4.12].

6.4. Topological properties of algebraically subelliptic manifolds

In 1989, Gromov posed the following problem [82, 0.7.B”]. (In Gromov’s paper, what is
now called an Oka manifold is called an Ell∞ manifold, but the meaning is the same.)

Problem 6.24. Does there exist an Oka manifold which is homotopy equivalent to a given
finite CW complex?

Although there are no obvious obstructions, there has been no progress on this question,
except for what can be inferred from the known examples. Very recently, Kusakabe proved the
following result for algebraically subelliptic manifolds; see [101, Theorem 1.3].

Theorem 6.25. The fundamental group of any algebraically subelliptic manifold is finite.
Conversely, for any finite group G there exists an algebraically subelliptic manifold Y whose
fundamental group π1(Y ) is isomorphic to G.

Since an unramified finite covering of an algebraically subelliptic manifold is also such a
manifold (cf. [55, Proposition 6.4.10]), Theorem 6.25 implies the following corollary.

Corollary 6.26 (Corollary 1.5 in [101]). The universal cover of an algebraically subelliptic
manifold is also an algebraically subelliptic manifold.

Another consequence of Theorem 6.25 and of the algebraic approximation theorem for
holomorphic maps to algebraically subelliptic manifolds (see Theorem 6.4) is the following.

Corollary 6.27 (Corollary 1.6 in [101]). Let Y be an algebraically subelliptic manifold.
Then for any holomorphic map f : C∗

→ Y and any sufficiently large natural number n
the holomorphic map C∗

→ Y , z ↦→ f (zn) can be approximated by algebraic morphisms
C∗

→ Y .

As pointed out by Kusakabe, these results fail in general for an arbitrary algebraic Oka
manifold Y . For example, Theorem 6.25 and Corollary 6.27 fail for any elliptic curve; such a
curve is holomorphically elliptic but is not algebraically (sub-)elliptic.

7. Oka pairs of sheaves and a homotopy theorem for Oka theory

Luca Studer made several contributions to Oka theory in his PhD dissertation. One of them
in [146] provides a gluing lemma for sections of coherent analytic sheaves. Gluing lemmas are
of key importance in Oka theory. Those in the work by Gromov [82] and in my joint works
with Prezelj [67,68], and their generalizations in [55] (see in particular [55, Proposition 5.8.1]),
pertain to the sheaf of holomorphic sections of a holomorphic submersion and its subsheaf
of sections vanishing to a given order on a subvariety. Studer proved a gluing lemma for
sections of an arbitrary coherent analytic sheaf. This gives shortcuts in the proofs of Forster
and Ramspott’s Oka principle for admissible pairs of sheaves [42] and of the interpolation
400
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property for sections of elliptic submersions in [67]. The main technical part of Studer’s proof
is a certain lifting theorem [146, Theorem 1] which reduces the splitting problem to sections
of a free sheaf.

The second main result of Studer is a homotopy theorem based on Oka theory, presented
n [145]. He pointed out that all proofs of Oka principles can be divided into an analytic first
art and a purely topological second part which can be formulated very generally, thereby
roviding a reduction of the proof to the key analytic difficulties. This general topological
tatement is [145, Theorem 1]. Its assumptions list the properties one has to show in the first
art of the proof of an Oka principle, and its conclusion is an Oka principle. This extends
romov’s homomorphism theorem from [81] so that it applies in complex analytic settings

nd carries out ideas sketched in [82] and developed in [68] and [55, Chapter 6].
Studer also gave a more general result, [145, Theorem 2]. Let X be a paracompact Hausdorff

pace that has an exhaustion by finite dimensional compact subsets, and let Φ ↪→ Ψ be a local
eak homotopy equivalence of sheaves of topological spaces on X . He showed that under

uitable conditions on Φ and Ψ the inclusion Φ(X ) ↪→ Ψ (X ) of spaces of sections is a weak
omotopy equivalence. The relevant conditions reflect what is happening when approximating
nd gluing sprays of sections in [68,82]. Studer’s proof is essentially an abstraction of the proof
f the Oka principle for subelliptic submersions in [55,68]. He then showed how the known
xamples of the Oka principle fit into this general theorem.

. Carleman and Arakelian theorems for manifold-valued maps

The basic Oka property with approximation (BOPA) is one of the classical Oka properties
f a complex manifold Y which characterizes the class of Oka manifolds (see Section 2).
t refers to the possibility of approximating any holomorphic map f ∈ O(K , Y ), where K
s a compact O(X )-convex set in a Stein manifold (or Stein space) X , uniformly on K by
ntire maps F ∈ O(X, Y ) provided that f extends continuously from K to X . Recently, B.
henoweth [29] proved Carleman-type approximation theorems in the same context. Recall

hat Carleman approximation (after T. Carleman [27]) refers to approximation of holomorphic
unctions and maps in fine Whitney topologies on closed unbounded sets.

Let X be a complex manifold. Given a compact set C in X we define

h(C) := ĈO(X ) \ C .

efinition 8.1. Let X be a Stein manifold and E be a closed subset of X .

(a) E is O(X )-convex if it is exhausted by compact O(X )-convex sets.
(b) E has bounded exhaustion hulls if for every compact set K in X there is a compact set

K ′
⊂ X such that for every compact L ⊂ E we have that h(K ∪ L) ⊂ K ′.

Theorem 8.2 (Chenoweth [29]). Let X be a Stein manifold and Y be an Oka manifold. If K
is a compact O(X )-convex set in X and E is a closed totally real submanifold of X of class
C r (r ∈ N) with bounded exhaustion hulls such that K ∪ E is O(X )-convex, then for every
k ∈ {0, 1, . . . , r} the set K ∪ E admits C k-Carleman approximation of maps f ∈ C k(X, Y )
which are holomorphic on neighbourhoods of K by holomorphic maps X → Y .

This is proved by inductively applying the Mergelyan theorem for admissible sets in Stein
manifolds (see [55, Theorem 3.8.1] or [39, Theorem 34]) together with the basic Oka property

(BOPA) for maps from Stein manifolds to Oka manifolds; see [55, Theorem 5.4.4]. These

401
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two methods are intertwined at every step of the induction procedure. The special case of
Theorem 8.2 for functions (i.e., for Y = C) is due to Manne, Wold, and Øvrelid [120], and
he necessity of the bounded exhaustion hulls condition was shown by Magnusson and Wold
119].

Given a closed unbounded set E in a Stein manifold X , one can ask when is it possible to
niformly approximate every continuous function on E which is holomorphic on the interior
f E by functions holomorphic on X . This type of approximation is named after Norair U.
rakelian [13] who proved that for a closed subset E of a planar domain X ⊂ C, uniform

pproximation on E is possible if and only if E is holomorphically convex in X and its
omplement X̂ \ E in the one-point compactification X̂ = X ∪ {∞} is locally connected at

. For a closed set E in an open Riemann surface X the latter property is equivalent to E
aving bounded exhaustion hulls. A set E with these two properties is called an Arakelian set.
See also [39, Theorem 10] and the related discussion.) The following result from [57] is an
xtension of Arakelian’s theorem to manifold-valued maps.

heorem 8.3. If E is an Arakelian set in a domain X ⊂ C and Y is a compact complex
omogeneous manifold, then every continuous map X → Y which is holomorphic in E̊ can be
pproximated uniformly on E by holomorphic maps X → Y .

Since the target manifold Y is compact, the notion of uniform approximation does not
epend on the specific choice of the metric on Y . The analogous result holds if X is an open
iemann surface which admits bounded holomorphic solution operators for the ∂-equation;

ee [57, Theorem 5.3]. On plane domains one can use the classical Cauchy–Green operator.
owever, Arakelian’s theorem for functions fails on some open Riemann surface as shown by

xamples in [74] and [18, p. 120]. Note also that Carleman approximation in the fine topology
s impossible in general if the interior of E is not relatively compact.

The scheme of proof of Theorem 8.3 in [57] follows the proof of Arakelian’s theorem given
y Rosay and Rudin [136]. The main new analytic ingredient developed in [57] is a technique
or gluing sprays with uniform bounds on certain noncompact Cartan pairs. The proof does
ot apply to general Oka target manifolds, not even to noncompact homogeneous manifolds.

Not much seems known concerning the Arakelian approximation on closed sets whose
nterior is not relatively compact in higher dimensional Stein manifolds. Recently, A. Lewan-
owski [116] proved a result of this kind for functions on a ray of balls in Cn .

. The Docquier–Grauert tubular neighbourhood theorem revisited

Given a complex submanifold M in a complex manifold X , let νM,X = T X |M/T M
denote the holomorphic normal bundle of M in X . A theorem of Docquier and Grauert [34]
says that if M is Stein then the inclusion of M onto the zero section of νM,X extends to a

iholomorphic map from a neighbourhood of M in X onto a neighbourhood of the zero section
in νM,X . (See also [55, Theorem 3.3.3]. The assumption in [34] that the manifold X be Stein is
unnecessary in view of Siu’s theorem [142] on the existence of open Stein neighbourhoods of
Stein subvarieties.) This clearly implies that the images of holomorphic embeddings M ↪→ X ,
M ↪→ X ′ with isomorphic normal bundles have biholomorphic neighbourhoods.

We now present a generalization from [60] (2022) of the Docquier–Grauert theorem to
configurations of the following type.
Definition 9.1. A subset S of a complex manifold X is admissible if S = K ∪ M where
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(a) K is a compact set with a Stein neighbourhood U ⊂ X such that K is O(U )-convex,
(b) M is a locally closed embedded Stein submanifold of X , and
(c) K ∩ M is a compact O(M)-convex subset of M .

It was shown in [47, Theorem 1.2] (see also [55, Theorem 3.2.1]) that an admissible set
S = K ∪ M has a basis of open Stein neighbourhoods V ⊂ X such that M is closed in V and
K is O(V )-convex. The case K = ∅ is Siu’s theorem [142].

Definition 9.2. Assume that X and X ′ are complex manifolds of the same dimension and
S = K ∪ M ⊂ X , S′

= K ′
∪ M ′

⊂ X ′ are admissible sets. A homeomorphism F : S → S′ with
F(M) = M ′ and F(K ) = K ′ is a biholomorphism if F |M : M → M ′ is a biholomorphism
nd F extends to a biholomorphism from a neighbourhood of K onto a neighbourhood of K ′.

The conditions on F clearly imply that if one of the sets K ∪ M and K ′
∪ M ′ is admissible

hen so is the other one. The following result [60, Theorem 1.4] says that, under suitable
onditions, a biholomorphism K ∪ M

F
−→ K ′

∪ M ′ of admissible sets can be approximated
niformly on K and interpolated on the submanifold M by ambient biholomorphisms. The
ocquier–Grauert theorem [34] corresponds to the special case with K = ∅ and K ′

= ∅.

heorem 9.3. Let S = K ∪ M ⊂ X and S′
= K ′

∪ M ′
⊂ X ′ be admissible sets and

F : S → S′ be a biholomorphism (see Definition 9.2). Assume that there is a topological
somorphism Θ : νM,X → νM ′,X ′ of the normal bundles over F : M → M ′ which is given
ver a neighbourhood of K ∩ M by the differential of F. Given ϵ > 0 there are an open Stein
eighbourhood Ω ⊂ X of S and a biholomorphic map Φ : Ω

∼=
−→ Φ(Ω ) ⊂ X ′ such that

Φ|M = F |M and sup
x∈K

distX ′ (Φ(x), F(x)) < ϵ.

The hypothesis in the theorem is illustrated by the following diagram:

νM,X

↓↓

Θ →→ νM ′,X ′

↓↓
M F →→ M ′

Note that an isomorphism Θ : νM,X → νM ′,X ′ in Theorem 9.3 exists if dim X ≥
[ 3 dim M+1

2

]
nd the restricted tangent bundles T X |M and T X ′

|M ′ are isomorphic over the biholomorphic
ap F : M → M ′ (see [60, Corollary 2.3]).
Theorem 9.3 is proved by an inductive procedure commonly used in Oka theory. An ambient

iholomorphism Φ is obtained by stepwise extending the given map F , changing it only slightly
on a neighbourhood of K at each step but keeping it fixed on M , to injective holomorphic
maps Fi on neighbourhoods of K ∪ Mi , where M1 ⊂ M2 ⊂ · · · ⊂

⋃
∞

i=1 Mi = M is an
xhaustion of M by compact strongly pseudoconvex domains. The initial set K1 is chosen

such that K ∩ M ⊂ K1 ⊂ U , where U is a neighbourhood of K in X on which Φ is defined.
Every step of the induction uses the gluing lemma with interpolation on a Cartan pair, combined
with another procedure to take care of the occasional changes of topology of the sets Mi . In
the approximation and gluing procedures we pay close attention to the normal jet of the map
to ensure that no branch points occur on M . To this end, we use the information provided by
the isomorphism Θ over F between the normal bundles of M and M ′.
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An important technical ingredient in the proof of Theorem 9.3 is a new version of the
plitting lemma for biholomorphic maps close to the identity on a Cartan pair (cf. [44,
heorem 4.1] and [55, Theorem 9.7.1]) with added interpolation on a complex submanifold;
ee [60, Theorem 3.7]. This result may be of independent interest. The original splitting
emma [44, Theorem 4.1] was generalized to the parametric case, with continuous dependence
n both the domain and the map, by L. Simon [141] and A. Lewandowski [117].

Theorem 9.3 along with [69, Theorem 15], which gives proper holomorphic embeddings
M ↪→ Cn with geometric control of the image where M is a Stein manifold and n ≥

dim M +1, gives the following result on the existence of Euclidean neighbourhoods of certain
dmissible sets in complex manifolds (see [60, Theorem 1.1]).

heorem 9.4. Assume that S = K ∪ M is an admissible set in a complex manifold X such
hat n = dim X ≥ 2 dim M + 1 and T X |M is a trivial bundle. Let Ω0 ⊂ X be an open
eighbourhood of K and Φ0 : Ω0

∼=
−→ Φ0(Ω0) ⊂ Cn be a biholomorphic map such that Φ0(K )

s polynomially convex in Cn . Given ϵ > 0 there exist a Stein neighbourhood Ω ⊂ X of S and
biholomorphic map Φ : Ω

∼=
−→ Φ(Ω ) ⊂ Cn such that Φ(M) is a closed complex submanifold

f Cn and supx∈K |Φ(x) − Φ0(x)| < ϵ.
If dim X = 2 dim M then Φ can in addition be chosen an immersion which is proper on M

nd satisfies Φ(Ω \ K ) ⊂ Cn
\ Φ(K ).

If X is Stein, S is closed in X and K is O(X )-convex, there is a holomorphic map
: X → Cn which satisfies the above conditions on a neighbourhood Ω of S and is univalent

ver Φ(K ): Φ(X \ K ) ⊂ Cn
\ Φ(K ).

For the last statement see [60, Theorem 5.3]. An analogous result holds if we replace Cn

y an arbitrary Stein manifold with the density property (see [60, Theorem 5.2]).

0. Degeneration of Cn in Stein fibrations

It is known that, in a holomorphic family of complex manifolds, the set of Oka manifolds
is not closed in general. In particular, compact complex surfaces that are Oka can degenerate
to a non-Oka surface; see [64, Corollary 5] or [55, Corollary 7.3.3].

Since Euclidean spaces are the most basic examples of Oka manifolds, it is of interest to
understand whether they can degenerate to a non-Oka manifold in a Stein fibration. A related
question is whether a Stein fibration with fibres Cn is necessarily locally trivial. For n = 1,
he answer is negative for the first question and positive for the second one. Indeed, it was
roved by Toshio Nishino [125] in 1969 that if X is a Stein manifold of dimension m + 1 and
: X → Dm is a holomorphic submersion onto a polydisc such that every fibre X z = π−1(z)

z ∈ Dm) is biholomorphic to C, then X is fibrewise biholomorphic to Dm
× C. This was

xtended by H. Yamaguchi [156] (1976) to the case when the fibre is a connected Riemann
urface different from D and D∗

= D\{0}. (Note that if the fibres of a holomorphic submersion
re compact and biholomorphic to each other, then the submersion is a fibre bundle according
o Fischer and Grauert [38].) It follows from their results that if X is Stein and π : X → Dm is
holomorphic submersion such that every fibre X z = π−1(z) for z ∈ Dm

\{0} is biholomorphic
o C, then the central fibre X0 is also biholomorphic to C.

Recently, Takeo Ohsawa generalized Nishino’s theorem to the case when X is a complete
ähler manifold and the fibres of the submersion X → Dm equal C [127, Theorem 0.1], or

n
when the fibres are CP \{point} and X is n-convex [127, Theorem 0.2]. (Note that a 1-convex
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manifold is a Stein manifold.) Ohsawa asked the following question [127, Q3]; I wish to thank
Yuta Kusakabe for having brought this to my attention.

Let X be a complete Kähler manifold and π : X → D be a holomorphic submersion onto the
isc such that the fibre X t = π−1(t) is biholomorphic to Cn (n > 1) for every t ∈ D∗

= D\{0}.
oes it follow that X0 = π−1(0) is also biholomorphic to Cn?
We give a counterexample to Ohsawa’s question with X a Stein manifold. (Every Stein

anifold embeds properly holomorphically into a Euclidean space, so it is complete Kähler.)
e state the result for n = 2, but the same proof gives examples for any n ≥ 2.

heorem 10.1. For every k ∈ N there is a Stein threefold X and a holomorphic submersion
: X → C which is a trivial holomorphic fibre bundle with fibre C2 over C∗, while the limit

bre X0 = π−1(0) is biholomorphic to the disjoint union of k copies of D × C.

roof. It was shown by J. Globevnik [76, Theorem 1.1] that there is a Fatou–Bieberbach
omain Ω ⊂ C2 (a proper subdomain of C2 which is biholomorphic to C2) whose closure Ω

intersects the complex line C × {0} in a closed disc U , which may be chosen an arbitrarily
small perturbation of the unit disc. (It was later shown by Wold in [152] that Ω may be chosen
uch that the unit disc is a connected component of Ω ∩ (C × {0}), but the intersection may
ontain other connected components.) Let Φ : C × C2

→ C × C2 be the map given by
(t, z) = (t, φt (z)), where φt (z1, z2) = (z1, t z2) for t ∈ C. Set

X = Φ−1(C × Ω ) = {(t, z1, z2) ∈ C3
: (z1, t z2) ∈ Ω}. (10.1)

Note that X is Stein since it is the preimage of the Stein domain C × Ω ⊂ C3 by the
holomorphic map Φ. Observe that φt (z1, z2) = (z1, t z2) is an automorphism of C2 if t ̸= 0,
and φ0(z1, z2) = (z1, 0). Let π : X → C denote the projection π (t, z) = t and set

X t = π−1(t) =
{
(z1, z2) ∈ C2

: φt (z1, z2) = (z1, t z2) ∈ Ω
}
, t ∈ C. (10.2)

For t ̸= 0 the domain X t = φ−1
t (Ω ) is biholomorphic to C2 and π : X \ X0 → C∗ is a

trivial holomorphic fibre bundle with fibre C2. Indeed, Φ : X \ X0 → C∗
×Ω ∼= C∗

×C2 is a
biholomorphism. On the other hand, the fibre X0 = U × C is biholomorphic to D × C.

A minor modification of this example yields a limit fibre X0 which is a disjoint union of
any given finite number of copies of D × C. One applies the same construction to a Fatou–
Bieberbach domain Ω ⊂ C2 whose closure intersects the line C × {0} in

⋃k
i=1 Di , where

D1, . . . , Dk are pairwise disjoint closed discs with C 1 boundaries. The existence of such Ω
follows from [76, Corollary 1.1] of Globevnik. □

Remark 10.2. In Theorem 10.1 we can replace the base C by an arbitrary open Riemann
surface M and find a surjective holomorphic submersion X → M from a Stein threefold X
with generic fibre C2 which degenerates over each point in a given closed discrete subset P of
M . Indeed, it suffices to choose φt (z1, z2) = (z1, h(t)z2) in (10.2), where h is a holomorphic
unction on M whose zero locus equals P . Precomposing φt by a family of automorphisms

t : C2
→ C2 depending holomorphically on t ∈ M one can also obtain limiting fibres over

he points in P with different number of connected components.

In the proof of Theorem 10.1 we used dilatations in a coordinate direction of a suitably
hosen Fatou–Bieberbach domain Ω ⊂ C2 which intersects the complex line z2 = 0 but does
ot contain it. One may ask whether a similar phenomenon can be achieved by using dilatations

z ↦→ t z for t ∈ C∗ and z ∈ C2. The following result shows that this is not the case.
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Proposition 10.3. If Ω ⊂ Cn is a Fatou–Bieberbach domain containing the origin, then the
domain X = {(t, z) ∈ D × Cn

: t z ∈ Ω} is Stein and the projection π : X → D given by
π (t, z) = t is a trivial fibre bundle with fibre Cn .

Proof. Pick a biholomorphism g : Cn
→ Ω with g(0) = 0. Let g(z) = Az + O(|z|2) near

z = 0. Replacing g by g ◦ A−1 we may assume that g(z) = z + O(|z|2). For t ∈ C∗ let
t ∈ Aut(Ω ) be obtained by conjugating the map z ↦→ t z by g:

θt (z) = g(tg−1(z)), z ∈ Ω . (10.3)

ote that θst = θs ◦ θt , and θt is globally attracting to the origin if |t | < 1. The map t−1θt is a
iholomorphism of Ω onto the fibre X t = t−1Ω of X over t ∈ C∗. We claim that

lim
t→0

t−1θt = g−1
: Ω → Cn

olds uniformly on compacts in Ω , so we get a holomorphic trivialization D × Ω
∼=

−→ X .
ndeed, near z = 0 we have that g(z) = z + O(|z|2) and hence

t−1θt (z) = t−1g(tg−1(z)) = g−1(z) + O(|t |· |g−1(z)|
2
).

his shows that t−1θt converges to g−1 uniformly on a ball 0 ∈ B ⊂ Ω as t → 0. Globally
n Ω the same holds since for any compact set K ⊂ Ω we can choose s ∈ C∗ close to 0 such
hat θs(K ) ⊂ B. Fix such s. For any z ∈ K we then have that

t−1θt (z) = s−1(t/s)−1θt/s(θs(z))
t→0
−→ s−1g−1(θs(z)) = g−1(z),

here the last equality holds by (10.3). □

roblem 10.4. Let π : X → D be a Stein submersion which is a holomorphic fibre bundle
ith fibre Cn (n > 1) over D∗. What are the possible limit fibres X0 = π−1(0)?

It seems that Nishino’s problem for fibres Cn , n > 1, is still open:

roblem 10.5. Assume that X is a Stein manifold and π : X → D is a holomorphic
ubmersion such that every fibre X t = π−1(t) is isomorphic to Cn for some n > 1.

(a) Is π : X → D necessarily locally trivial?
(b) Assuming that π : X → D is locally trivial over D∗, is it also locally trivial at 0 ∈ D?

As a specific example related to the proof of Theorem 10.1, we ask the following question.

roblem 10.6. Let Ω be a Fatou–Bieberbach domain in C2 containing the line C×{0}. Define
X ⊂ C3 by (10.1). Clearly, X is Stein, all fibres of the projection π : X → C, π (t, z) = t , are
iholomorphic to C2, and π−1(C∗) → C∗ is a trivial bundle. Is π locally trivial over 0?

1. Oka manifolds, Campana specialness, and metric properties

In this section we describe some open problems regarding the relationship between Oka
anifolds, specialness in the sense of Campana, and curvature properties of Kähler metrics.

ampana special manifolds and Oka manifolds. Special manifolds play an important role in
ampana’s structure theory of compact Kähler manifolds, developed in [22,23]. The definition
f specialness, which is a type of holomorphic flexibility property, is quite technical; we refer
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to the cited papers or to [26, Definition 2.1]. A connected compact Kähler manifold is special if
nd only if it does not admit any dominant rational map onto an orbifold of general type [22,24].
f Y is special then no unramified cover of Y admits a dominant meromorphic map onto a
ositive dimensional manifold of general type. Compact Kähler manifolds which are rationally
onnected or have Kodaira dimension zero are special [22]. By Kobayashi and Ochiai [92], the
xistence of a dominant holomorphic map Cn

→ Y to a connected compact complex manifold
Y implies that Y is not of general type. By an extension of their argument, Campana proved
hat such a manifold is special [22, Corollary 8.11]. In particular, every compact Oka manifold
s special in view of [56, Theorem 1.1].

Let us recall the following notion which was already considered by Gromov [82].

efinition 11.1. A complex manifold Y satisfies the basic Oka principle (BOP) if every
ontinuous map X → Y from a Stein manifold X is homotopic to a holomorphic map.

Note that a complex manifold satisfying BOP need not be an Oka manifold. In particular,
very topologically contractible manifold satisfies BOP since every map is homotopic to a
onstant map, but many such manifolds (e.g., bounded convex domains in Cn) are not Oka. This
rivial obstruction does not arise in the class of compact projective manifolds. The following
esult is due to Campana and Winkelmann [26] (2015).

heorem 11.2. If Y is a compact projective manifold satisfying BOP, then Y is special and
very holomorphic map Y → Z to a Brody hyperbolic Kähler manifold Z is constant.

Campana and Winkelmann conjectured that their result holds for every compact Kähler
anifold Y . It is not known whether the converse to Theorem 11.2 holds:

roblem 11.3. Does every special compact projective manifold enjoy BOP? Is it Oka?

As pointed out by Campana and Winkelmann in [26], the answer is negative for some
uasiprojective special manifolds. In light of Campana’s results in [22,23], an affirmative
nswer to Problem 11.3 would imply that every projective manifold which is dominable,
ationally connected, or has Kodaira dimension zero is an Oka manifold. Campana also
onjectured that a complex manifold Y is special if and only if it is C-connected if and only
f its Kobayashi pseudometric vanishes identically. These questions seem to remain open.

etric positivity and Oka manifolds. The definitions of Kobayashi hyperbolicity and of the
ka property only depend on the complex structure of the underlying complex manifold, and

hey do not involve any auxiliary structures such as hermitian or Kähler metrics. Nevertheless,
t has been known since 1938, when Ahlfors [1] proved his generalization the Schwarz–Pick
emma, that hyperbolicity has a tight relationship with metric negativity. The observation that

compact hermitian manifold with negative holomorphic sectional curvature is Kobayashi
yperbolic is due to Grauert and Reckziegel [78]; see also Wu [153, p. 217], Kobayashi [91, p.
1], and Greene and Wu [80, p. 85]. More generally, it was proved by Greene and Wu [80] in
979 that a not necessarily complete hermitian manifold whose holomorphic sectional curvature
s bounded above by −c/(1 + r2), where c > 0 and r = dist(p, · ) is the distance from a fixed
oint p in the manifold, is Kobayashi hyperbolic. Moreover, if a hermitian metric with this
roperty is complete then the manifold is complete Kobayashi hyperbolic, and this result is
lose to sharp (see [80, p. 85] or [140]). It follows that no such manifold is Oka.

Weaker rigidity properties than Kobayashi hyperbolicity, such as volume hyperbolicity, are

lso obstructions to a manifold being Oka. In particular, a manifold which satisfies some
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form of the Schwarz lemma for holomorphic maps from higher dimensional balls is not Oka.
Results in this direction were obtained by many authors; see in particular Chern [30], Lu [118],
Royden [137], and S.-T. Yau [158,159], among others. A more complete discussion of the
history of the Schwarz lemma and its relationship to negativity of hermitian metrics can be
found in the recent survey by Broder [19]. See also the article by Osserman [130] relating the
Ahlfors–Schwarz–Pick lemma to comparison principles in differential geometry.

In a related direction, Kobayashi and Ochiai [92] proved in 1975 that a compact complex
anifold of general Kodaira type is not dominable by Euclidean spaces, hence it is not Oka.
ore recently, Wu and Yau [154,155] (2016) and Diverio and Trapani [33] (2019) proved that
compact connected complex manifold Y , which admits a Kähler metric whose holomorphic

ectional curvature is everywhere nonpositive and is strictly negative at some point, has positive
anonical bundle KY . (See also Tosatti and Yang [148] and Nomura [126].) Hence, such a
anifold Y is projective of general type, and therefore it does not admit any dominating

olomorphic map Cn
→ Y by Kobayashi and Ochiai [92].

In light of these results, which broadly speaking suggest that negativity properties of
ermitian metrics imply rigidity properties of holomorphic maps into the given manifold, one
ay wonder whether there is a relationship between the Oka property of a complex manifold

nd positivity of complete hermitian or Kähler metrics on it. Evidence for this comes from
he Frankel Conjecture, solved affirmatively by Mori [124] (1979) and Siu and Yau [143]
1980), saying that a compact Kähler manifold with positive holomorphic bisectional curvature

is biholomorphic to a complex projective space, and hence is Oka. (Mori’s theorem holds under
the weaker assumption that the manifold has ample tangent bundle.) This was generalized by
Mok in 1988 whose main result [123, Main Theorem] implies the following.

Theorem 11.4. Every compact Kähler manifold with nonnegative holomorphic bisectional
curvature is an Oka manifold.

Mok’s result says that for a compact Kähler manifold (Y, g) of nonnegative holomorphic
bisectional curvature, its metric universal cover (Ỹ , g̃) is isometrically biholomorphic to

Ỹ = Ck
× CPn1 × · · · × CPnl × M1 × · · · × Mp

where Ck is endowed with the flat metric, each projective space in the above decomposition is
endowed with a Kähler metric with nonnegative holomorphic bisectional curvature, and each
M j is a compact hermitian symmetric space with its canonical complex structure and Kähler

etric. Recall that a product of Oka manifolds is Oka [55, Theorem 5.6.5]. Since Cn and CPn

re Oka manifolds, Theorem 11.4 follows from the following observation.

roposition 11.5. Every compact hermitian symmetric space is a complex homogeneous
anifold, and hence an Oka manifold.

roof. Let M be a compact hermitian symmetric space. The identity component of the isometry
roup of M acts transitively by holomorphic automorphisms of M (see Zheng [161, Sect. 8.5]).
y a theorem of Bochner and Montgomery [17], the holomorphic automorphism group G of
compact complex manifold M is a complex Lie group, and if the action is transitive then M

s a complex homogeneous manifold biholomorphic to G/H where H is the isotropy group of
point in G. By Grauert [77], every complex homogeneous manifold is an Oka manifold (see

lso [55, Proposition 5.6.1]). □
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On the other hand, a noncompact hermitian symmetric space is biholomorphic to a bounded
omain in a complex Euclidean space, so it is not Oka. The simplest example is the disc. We
efer to [161, Sect. 8.5] for more information.

In contrast to Theorem 11.4 which pertains to nonnegativity of holomorphic bisectional
urvature, the relationship between positivity of holomorphic sectional curvature and the Oka
roperty remains poorly understood. We pose the following problems.

roblem 11.6.

(a) Is every compact (or complete) Kähler manifold with (semi-) positive holomorphic
sectional curvature an Oka manifold?

(b) Assuming that the tangent bundle of a compact Kähler manifold Y is numerically
effective (nef), is Y an Oka manifold?

If the holomorphic sectional curvature of a compact Kähler manifold is positive then, by
au’s conjecture solved by X. Yang [157] in 2018, the manifold is rationally connected. In
oth cases of Problem 11.6 for compact Kähler manifolds, the results of Matsumura [121,
heorem 1.1] and Demailly et al. [32] imply that the manifold admits a finite étale cover
hich is the total space of a holomorphic fibre bundle over an Oka manifold with compact

ationally connected fibre enjoying the corresponding semipositivity. In view of Theorem 3.15
his reduces the compact case of Problem 11.6 to rationally connected manifolds.

An affirmative answer to the Campana–Peternell conjecture [25, Conjecture 11.1] would
olve Problem 11.6(b) affirmatively. By [25, Theorems 3.1 and 10.1] and Theorem 3.15 this
olds true for projective manifolds of dimension at most three. A summary of possible cases
an be found on [25, p. 170]. This result is worthwhile recording.

heorem 11.7. If Y is a compact projective manifold of dimension at most three whose tangent
undle is nef, then Y is an Oka manifold.

alabi–Yau manifolds and Oka manifolds. It would be of interest to know the position of
ka manifolds in the class of Calabi–Yau manifolds, one of the most intensively studied classes
f complex manifolds.

A Calabi–Yau manifold is sometimes defined as a compact Kähler manifold Y with
olomorphically trivial canonical bundle KY . This implies that the first integral Chern class
1(Y ) vanishes and the Kodaira dimension of Y equals zero. The converse is not true, the
implest examples being hyperelliptic surfaces (finite quotients of complex 2-tori).

A weaker definition defining a bigger class of manifolds, which is more standard one
mong complex differential geometers, is that a Calabi–Yau manifold is a compact Kähler
anifold whose first real Chern class vanishes. As an example, Enriques surfaces fit into this
ore general definition of the Calabi–Yau class but not into the former one. A fundamental

esult in the field is Yau’s solution [160] (1978) of the Calabi conjecture, which says that
compact Kähler manifold with vanishing first real Chern class has a Kähler metric in the

ame class with vanishing Ricci curvature. (The class of a Kähler metric is the cohomology
lass of its fundamental (1, 1)-form.) Calabi [21] showed back in 1957 that such a metric, if it
xists, is unique. Yau’s result justifies the second definition of Calabi–Yau manifolds. Besides
heir intrinsic interest in complex geometry, Calabi–Yau threefolds are important in superstring
heory as shapes that satisfy the requirements for the six extra spatial dimensions. For all these
easons, it would be of interest to understand the following:
409
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Problem 11.8. Which Calabi–Yau manifolds of dimension n ≥ 2 are Oka? What if any are
he implications of the Oka property of a Calabi–Yau threefold to superstring theory?

The only Calabi–Yau manifolds of dimension one are tori, which are Oka. The Ricci-flat
etric on a torus is actually flat. Among compact Kähler surfaces, K3 surfaces furnish the only

simply connected Calabi–Yau manifolds. They arise as quartic hypersurfaces in CP3 defined
y homogeneous polynomials in four variables. An example is theh quartic{

[z0 : z1 : z2 : z3] ∈ CP3
: z4

0 + z4
1 + z4

2 + z4
3 = 0

}
.

Other examples of Calabi–Yau surfaces arise as elliptic fibrations, as quotients of abelian
surfaces, or as complete intersections. Enriques surfaces and hyperelliptic surfaces have first
Chern class that vanishes as a real cohomology class (so Yau’s theorem on the existence of a
Ricci-flat metric applies) but it does not vanish as an integral cohomology class. For the class
of compact complex surfaces with vanishing Kodaira dimension it is known that hyperelliptic
surfaces, Kodaira surfaces, and tori are Oka, but it is unknown whether any or all K3 surfaces
or Enriques surfaces are Oka (see [55, Section 7.3]).

More generally, for every n ∈ N the zero set in the homogeneous coordinates on CPn+1

of a nonsingular homogeneous polynomial of degree n + 2 in n + 2 variables is a compact
Calabi–Yau n-fold. The case n = 1 gives elliptic curves while n = 2 gives K3 surfaces.

We only discussed Calabi–Yau manifolds within the class of compact Kähler manifolds.
Recently there has been considerable interest in non-Kähler Calabi–Yau manifolds; see

osatti [147]. The first part of Problem 11.8 is also of interest in this bigger class.
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ppendix. Oka’s criterion for holomorphic convexity and applications

In this appendix we collect some consequences of the following criterion for holomorphic
onvexity of a compact set in a Stein manifold, due to Oka [128], which are used in the paper.
See also [144, Theorem 2.1.3] for X = Cn and [144, Lemma 5.3.4 ] for the general case.)

heorem A.1. Let X be a Stein manifold, K be a compact subset of X, and f : [0, 1]×X → C
e a continuous function such that ft = f (t, · ) : X → C is holomorphic for every t ∈ [0, 1],

f has no zeros on [0, 1] × K , and f1 has no zeros on the holomorphic hull K̂O(X ) of K . Then
none of the hypersurfaces Vt = {x ∈ X : ft (x) = 0} (t ∈ [0, 1]) intersect K̂O(X ).

roof. If g is a holomorphic function on a neighbourhood of K̂O(X ) then, in view of the
ka–Weil theorem, we have that max{|g(x)| : x ∈ K } = max{|g(x)| : x ∈ K̂O(X )}. If the

tatement of the theorem is false, there is a biggest number t0 ∈ [0, 1) such that Vt0 intersects
K̂O(X ). As t ∈ (t0, 1] decreases to t0, the norm of the function 1/ ft ∈ O(K̂O(X )) on K̂O(X )
increases to +∞ while it remains bounded on K , a contradiction. □
The following is an obvious corollary to Theorem A.1.
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Corollary A.2. If X is a Stein manifold, K is a compact set in X, and Vt = { ft = 0} with
ft ∈ O(X ) for t ∈ [0, 1) is a continuous path of principal complex hypersurfaces which avoid
K and diverge to infinity in X as t ↗ 1, then Vt ∩ K̂O(X ) = ∅ for all t ∈ [0, 1).

We now apply Theorem A.1 to hypersurfaces in projective spaces. Let [z0 : z1 : · · · : zn] be
omogeneous coordinates on CPn . Denote by Vk(CPn) the space of complex hypersurfaces
f degree k in CPn , possibly with positive integral multiplicities (i.e., effective chains of
ypersurfaces). By Chow’s theorem (see [31, p. 74]) every V ∈ Vk(CPn) is of the form

V = V (P) = {[z0 : · · · : zn] : P(z0, . . . , zn) = 0}

here P is a nonzero homogeneous polynomial of degree k in n+1 variables. The complement
Pn

\ V is an affine manifold, hence a Stein manifold. (See the argument in the proof of
Theorem 5.1.) Denote by H (k, n) ∼= CN+1 with N + 1 =

(n+k
k

)
the complex vector space of

all homogeneous complex polynomials in n + 1 variables. The projection

CN+1
\ {0} ∼= H (k, n) \ {0} → Vk(CPn) ∼= CPN , P ↦→ V (P)

is a fibre bundle with fibre C∗, and hence any path in Vk(CPn) lifts to a path in H (k, n) \ {0}.
In other words, a path of degree k hypersurfaces in CPn is defined by a path of homogeneous
polynomials of degree k on Cn+1.

Corollary A.3. Let Vt ∈ Vk(CPn) (t ∈ [0, 1]) be a path of hypersurfaces of degree k and set
X = CPn

\ V1. If K is a compact set in CPn such that K ∩ Vt = ∅ for all t ∈ [0, 1], then
K̂O(X ) ∩ Vt = ∅ for all t ∈ [0, 1].

Proof. By what was said above, we have Vt = { ft = 0} for a path { ft }t∈[0,1] ⊂ H (k, n) \ {0}.
The functions Ft = ft/ f1 : X → C for t ∈ [0, 1) are well-defined, holomorphic, continuous in
t , and nonvanishing on K . As t → 1, the affine hypersurfaces {Ft = 0} = Vt \ V1 ⊂ X diverge
to infinity in X , so the conclusion follows from Corollary A.2. □

orollary A.4. If B is a nonempty connected open set in Vk(CPn) and Ω = Ω (B) ⊂ CPn is
he union of all V ∈ B (considered as hypersurfaces in CPn), then for any V ∈ B the compact
et L = CPn

\ Ω is holomorphically convex in the Stein domain CPn
\ V .

roof. Fix V ∈ B. As B is connected, given z ∈ Ω \ V there is a path {Vt }t∈[0,1] ⊂ B with
z ∈ V0 and V1 = V . By Corollary A.3, z does not belong to the hull of L in CPn

\ V . □

orollary A.5. Let Vt ∈ Vk(CPn) (t ∈ [0, 1]) be a path of hypersurfaces of degree k in CPn .
f K ⊂ CPn is a compact set such that K ∩ Vt = ∅ for all t ∈ [0, 1] and K is holomorphically
onvex in CPn

\ V1, then K is holomorphically convex in CPn
\ Vt for every t ∈ [0, 1].

roof. Set X t = CPn
\ Vt for t ∈ [0, 1]. By thickening the path {Vt }t∈[0,1] into an open

onnected domain B ⊂ Vk(CPn), we obtain a domain Ω = Ω (B) ⊂ CPn as in Corollary A.4
uch that K ∩ Ω = ∅. That corollary implies that the compact set L = CPn

\ Ω is O(X t )-
onvex for every t ∈ [0, 1]. Note that K ⊂ L . Since K is assumed to be O(X1)-convex, it is

lso O(L)-convex, and hence O(X t )-convex for every t ∈ [0, 1]. □
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[52] F. Forstnerič, The Oka principle for sections of stratified fiber bundles, Pure Appl. Math. Q. 6 (3, Special

Issue: In honor of Joseph J. Kohn. Part 1) (2010) 843–874.
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[54] F. Forstnerič, Oka manifolds: from Oka to Stein and back, Ann. Fac. Sci. Toulouse Math. (6) 22 (4) (2013)

747–809, With an appendix by Finnur Lárusson.
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[62] F. Forstnerič, F. Kutzschebauch, The first thirty years of Andersén–Lempert theory, Anal. Math. 48 (2) (2022)
489–544.
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[67] F. Forstnerič, J. Prezelj, Extending holomorphic sections from complex subvarieties, Math. Z. 236 (1) (2001)

43–68.
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