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a b s t r a c t

We present novel results related to isomorphic resonance graphs of 2-connected out-
erplane bipartite graphs. As the main result, we provide a structure characterization
for 2-connected outerplane bipartite graphs with isomorphic resonance graphs. Three
additional characterizations are expressed in terms of resonance digraphs, via local
structures of inner duals, as well as using distributive lattices on the set of order ideals
of posets defined on inner faces of 2-connected outerplane bipartite graphs.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Resonance graphs reflect interactions between perfect matchings (in chemistry known as Kekulé structures) of plane
ipartite graphs. These graphs were independently introduced by chemists (El-Basil [9,10], Gründler [11]) and also by
athematicians (Zhang, Guo, and Chen [16]) under the name Z-transformation graph. Initially, resonance graphs were

investigated on hexagonal systems [16]. Later, this concept was generalized to plane bipartite graphs, see [15,19–21].
In recent years, various structural properties of resonance graphs of plane bipartite graphs were obtained [5–8]. The

problem of characterizing 2-connected outerplane bipartite graphs with isomorphic resonance graphs is also interesting
and nontrivial. There are outerplane bipartite graphs G and G′ whose inner duals are isomorphic paths but with non-
isomorphic resonance graphs. For example, let G be a linear benzenoid chain (a chain in which every non-terminal hexagon
is linear) with n hexagons, and let G′ be a fibonaccene (a benzenoid chain in which every non-terminal hexagon is angular,
see [12]) with n hexagons, where n > 2. Then the inner dual T of graph G is isomorphic to the inner dual T ′ of graph G′,
ince T and T ′ are both paths on n vertices. However, their resonance graphs R(G) and R(G′) are not isomorphic: R(G) is
path and R(G′) is a Fibonacci cube, see Fig. 1.
In [2,3] the problem of finding catacondensed even ring systems (shortly called CERS) with isomorphic resonance

raphs was investigated. More precisely, the relation of evenly homeomorphic CERS was introduced and it was proved that
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Fig. 1. Resonance graphs of the linear benzenoid chain and fibonaccene with three hexagons.

if two CERS are evenly homeomorphic, then their resonance graphs are isomorphic. Conversely, it is true for catacondensed
even ring chains but not for all CERS [3]. Moreover, in [4] it was proved that if two 2-connected outerplane bipartite graphs
are evenly homeomorphic, then their resonance graphs are isomorphic. In papers [3,4], the following open problem was
stated.

Problem 1. Characterize 2-connected outerplane bipartite graphs with isomorphic resonance graphs.

In this paper we solve the above problem. Firstly, we state all the needed definitions and previous results as
reliminaries. The main result, Theorem 3.4, is presented in Section 3. The necessity part of this result is stated as
heorem 3.2. Moreover, in Corollary 3.3 we show that two 2-connected outerplane bipartite graphs have isomorphic
esonance graphs if and only if they can be properly two colored so that their resonance digraphs are isomorphic. In
ddition, by Corollary 3.6, it follows that 2-connected outerplane bipartite graphs G and G′ have isomorphic resonance
raphs if and only if there exists an isomorphism α between their inner duals T and T ′ such that for any 3-path xyz of
, the triple (x, y, z) is regular if and only if (α(x), α(y), α(z)) is regular. Finally, we provide Corollary 4.2 to connect our

results with a result from [18] which showed that the distributive lattice on the set of perfect matchings of G and the
distributive lattice on the set of order ideals of the poset defined on all inner faces of G are isomorphic for any 2-connected
outerplane bipartite graph G.

2. Preliminaries

We say that two faces of a plane graph G are adjacent if they have an edge in common. An inner face (also called a
inite face) adjacent to the outer face (also called the infinite face) is named a peripheral face. In addition, we denote the
et of edges lying on some face s of G by E(s). The subgraph induced by the edges in E(s) is the periphery of s and denoted
y ∂s. The periphery of the outer face is also called the periphery of G and denoted by ∂G. Moreover, for a peripheral face

s and the outer face s0, the subgraph induced by the edges in E(s) ∩ E(s0) is called the common periphery of s and G, and
denoted by ∂s∩∂G. The vertices of G that belong to the outer face are called peripheral vertices and the remaining vertices
re interior vertices. Furthermore, an outerplane graph is a plane graph in which all vertices are peripheral vertices.
A bipartite graph G is elementary if and only if it is connected and each edge is contained in some perfect matching

of G. Any elementary bipartite graph other than K2 is 2-connected. Hence, if G is a plane elementary bipartite graph with
more than two vertices, then the periphery of each face of G is an even cycle. A peripheral face s of a plane elementary
bipartite graph G is called reducible if the subgraph H of G obtained by removing all internal vertices (if exist) and edges
on the common periphery of s and G is elementary.

The inner dual of a plane graph G is a graph whose vertex set is the set of all inner faces of G, and two vertices being
adjacent if the corresponding faces are adjacent.

A perfect matching M of a graph G is a set of independent edges of G such that every vertex of G is incident with exactly
one edge from M . An even cycle C of G is called M-alternating if the edges of C appear alternately in M and in E(G) \ M .
Also, a face s of a 2-connected plane bipartite graph is M-resonant if ∂s is an M-alternating cycle.

Let G be a plane elementary bipartite graph and M(G) be the set of all perfect matchings of G. Assume that s is a
reducible face of G. By [14], the common periphery of s and G is an odd length path P . By Proposition 4.1 in [5], P is
M-alternating for any perfect matching M of G, and M(G) = M(G; P−) ∪ M(G; P+), where M(G; P−) is the set of perfect
matchings M of G such that two end edges of P are not contained in M or P is a single edge and not contained in M;
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M(G; P+) is the set of perfect matchings M of G such that two end edges of P are contained in M or P is a single edge
nd contained in M . Furthermore, M(G; P−) and M(G; P+) can be partitioned as

M(G; P−) = M(G; P−, ∂s) ∪ M(G; P−, ∂s)
M(G; P+) = M(G; P+, ∂s) ∪ M(G; P+, ∂s)

where M(G; P−, ∂s) (resp., M(G; P−, ∂s)) is the set of perfect matchings M in M(G; P−) such that s is M-resonant (resp.,
not M-resonant), and M(G; P+, ∂s) (resp., M(G; P+, ∂s)) is the set of perfect matchings M in M(G; P+) such that s is
M-resonant (resp., not M-resonant).

Let G be a plane bipartite graph with a perfect matching. The resonance graph (also called Z-transformation graph) R(G)
of G is the graph whose vertices are the perfect matchings of G, and two perfect matchings M1,M2 are adjacent whenever
their symmetric difference forms the edge set of exactly one inner face s of G. In this case, we say that the edge M1M2
has the face-label s.

Let H and K be two graphs with vertex sets V (H) and V (K ), respectively. The Cartesian product of H and K is a graph
with the vertex set {(h, k) | h ∈ V (H), k ∈ V (K )} such that two vertices (h1, k1) and (h2, k2) are adjacent if either h1h2 is
an edge of H and k1 = k2 in K or k1k2 is an edge of K and h1 = h2 in H . Assume that G is a disjoint union of two plane
ipartite graphs G1 and G2. Then by definitions, the resonance graph R(G) is the Cartesian product of R(G1) and R(G2).
Assume that G is a plane bipartite graph whose vertices are properly colored black and white such that adjacent vertices

eceive different colors. Let M be a perfect matching of G. An M-alternating cycle C of G is M-proper (resp., M-improper)
f every edge of C belonging to M goes from white to black vertex (resp., from black to white vertex) along the clockwise
rientation of C . A plane bipartite graph G with a perfect matching has a unique perfect matching M0̂ (resp., M1̂) such
hat G has no proper M0̂-alternating cycles (resp., no improper M1̂-alternating cycles) [19].

The resonance digraph, denoted by
−→
R (G), is the digraph obtained from R(G) by adding a direction for each edge so

hat
−−−→
M1M2 is a directed edge from M1 to M2 if M1 ⊕M2 is a proper M1-alternating (or, an improper M2-alternating) cycle

urrounding an inner face of G. Let M(G) be the set of all perfect matchings of G. Then a partial order ≤ can be defined on
(G) such that M ′

≤ M if there is a directed path from M to M ′ in
−→
R (G). When G is a plane elementary bipartite graph,

(G) := (M(G), ≤) is a finite distributive lattice whose Hasse diagram is isomorphic to
−→
R (G) [13]. It is well known that

0̂ is the minimum element and M1̂ the maximum element of the distributive lattice M(G) [13,17].
We now present the concept of a reducible face decomposition, see [5,6,20]. Firstly, we introduce the bipartite ear

ecomposition of a plane elementary bipartite graph G with n inner faces. Starting from an edge e of G, we join its two
nd vertices by a path P1 of odd length and proceed inductively to build a sequence of bipartite graphs as follows. If
i−1 = e + P1 + · · · + Pi−1 has already been constructed, add the ith ear Pi of odd length by joining any two vertices
elonging to different bipartition sets of Gi−1 such that Pi has no internal vertices in common with the vertices of Gi−1 to
btain Gi. A bipartite ear decomposition of a plane elementary bipartite graph G is called a reducible face decomposition
shortly RFD) if G1 is a periphery of an inner face s1 of G, and the ith ear Pi lies in the exterior of Gi−1 such that Pi and
part of the periphery of Gi−1 surround an inner face si of G for all i ∈ {2, . . . , n}. For such a decomposition, we use
otation RFD(G1,G2, . . . ,Gn), where Gn = G. It was shown [20] that a plane bipartite graph with more than two vertices
s elementary if and only if it has a reducible face decomposition.

Let H be a convex subgraph of a graph G. The peripheral convex expansion of G with respect to H , denoted by pce(G;H),
s the graph obtained from G by the following procedure:

(i) Replace each vertex v of H by an edge v1v2.
(ii) Insert edges between v1 and the neighbors of v in V (G) \ V (H).
(iii) Insert the edges u1v1 and u2v2 whenever u, v of H are adjacent in G.

Two edges uv and xy of a connected graph G are said to be in relation Θ (also known as Djoković–Winkler relation),
enoted by uvΘxy, if dG(u, x) + dG(v, y) ̸= dG(u, y) + dG(v, x). It is well known that if G is a plane elementary bipartite
raph, then its resonance graph R(G) is a median graph [17] and therefore, the relation Θ is an equivalence relation on
he set of edges E(R(G)).

Let xy be an edge of a resonance graph R(G) and Fxy = {e ∈ E(R(G)) | eΘxy} be the set of all edges in relation Θ with xy
n R(G), where G is a plane elementary bipartite graph. By Proposition 3.2 in [5], all edges in Fxy have the same face-label.
n the other hand, two edges with the same face-label can be in different Θ-classes of R(G).
We now present several results from previous papers which will be needed later.

roposition 2.1 ([14]). Let G be a plane elementary bipartite graph other than K2. Then the outer cycle of G is improper
0̂-alternating as well as proper M1̂-alternating, where M0̂ is the minimum element and M1̂ the maximum element in the

inite distributive lattice M(G).

The induced subgraph of a graph G on W ⊆ V (G) will be denoted as ⟨W ⟩.

heorem 2.2 ([5]). Assume that G is a plane elementary bipartite graph and s is a reducible face of G. Let P be the common
eriphery of s and G. Let H be the subgraph of G obtained by removing all internal vertices and edges of P. Assume that R(G)
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and R(H) are resonance graphs of G and H respectively. Let F be the set of all edges in R(G) with the face-label s. Then F is a
Θ-class of R(G) and R(G) − F has exactly two components ⟨M(G; P−)⟩ and ⟨M(G; P+)⟩. Furthermore,

(i) F is a matching defining an isomorphism between ⟨M(G; P−, ∂s)⟩ and ⟨M(G; P+, ∂s)⟩;
(ii) ⟨M(G; P−, ∂s)⟩ is convex in ⟨M(G; P−)⟩, ⟨M(G; P+, ∂s)⟩ is convex in ⟨M(G; P+)⟩;
(iii) ⟨M(G; P−)⟩ and ⟨M(G; P+)⟩ are median graphs, where ⟨M(G; P−)⟩ ∼= R(H).
In particular, R(G) can be obtained from R(H) by a peripheral convex expansion if and only if M(G; P+) = M(G; P+, ∂s).

Proposition 2.3 ([6]). Let G be a 2-connected outerplane bipartite graph. Assume that s is a reducible face of G. Then s is
adjacent to exactly one inner face of G.

For any 2-connected outerplane bipartite graph G and a reducible face s of G, we know from [14] that the common
periphery of s and G is an odd length path P . By Proposition 2.3, s is adjacent to exactly one inner face s′ of G. It is clear
that the common edge of s and s′ is a single edge e. Therefore, E(s) = e ∪ E(P) and the odd length path P must have at
least three edges.

Theorem 2.4 ([6]). Let G be a 2-connected outerplane bipartite graph. Assume that s is a reducible face of G and P is the
common periphery of s and G. Let H be the subgraph of G obtained by removing all internal vertices and edges of P. Then R(G)
can be obtained from R(H) by a peripheral convex expansion, that is, R(G) = pce(R(H); T ) where the set of all edges between
R(H) and T is a Θ-class of R(G) with the face-label s. Moreover,

(i) R(G) has exactly one more Θ-class than R(H) and it has the face-label s, and
(ii) each of other Θ-classes of R(G) can be obtained from the corresponding Θ-class of R(H) with the same face-label (adding

more edges if needed).

Theorem 2.5 ([6]). Let G be a 2-connected outerplane bipartite graph and R(G) be its resonance graph. Assume that G has a
reducible face decomposition Gi(1 ≤ i ≤ n) where Gn = G associated with a sequence of inner faces si(1 ≤ i ≤ n) and a
sequence of odd length ears Pi(2 ≤ i ≤ n). Then R(G) can be obtained from the one edge graph by a sequence of peripheral
convex expansions with respect to the above reducible face decomposition of G. Furthermore, R(G1) = K2 where the edge has
the face-label s1; for 2 ≤ i ≤ n, R(Gi) = pce(R(Gi−1); Ti−1) where the set of all edges between R(Gi−1) and Ti−1 is a Θ-class in
R(Gi) with the face-label si, R(Gi) has exactly one more Θ-class than R(Gi−1) and it has the face-label si, each of other Θ-classes
of R(Gi) can be obtained from the corresponding Θ-class of R(Gi−1) with the same face-label (adding more edges if needed).

The induced graph Θ(R(G)) on the Θ-classes of R(G) is a graph whose vertex set is the set of Θ-classes, and two vertices
E and F of Θ(R(G)) are adjacent if R(G) has two incident edges e ∈ E and f ∈ F such that e and f are not contained in a
common 4-cycle of R(G). It is well-known that if s and t are two face labels of incident edges of a 4-cycle of R(G), then
s and t are vertex disjoint in G and M-resonant for a perfect matching M of G; if s and t are two face labels of incident
edges not contained in a common 4-cycle of R(G), then s and t are adjacent in G and M-resonant for a perfect matching
M of G.

Theorem 2.6 ([6]). Let G be a 2-connected outerplane bipartite graph and R(G) be its resonance graph. Then the graph Θ(R(G))
induced by the Θ-classes of R(G) is a tree and isomorphic to the inner dual of G.

3. Main results

In this section, we characterize 2-connected outerplane bipartite graphs with isomorphic resonance graphs. We start
with the following lemma, which is a more detailed version of Theorem 2.4 [6] and Lemma 1 [8] for 2-connected
outerplane bipartite graphs. We use M(G; e) to denote the set of perfect matchings of a graph G containing the edge
e of G.

Lemma 3.1. Let G be a 2-connected outerplane bipartite graph. Assume that s is a reducible face of G, P is the common
periphery of s and G and e ∈ E(s) is a unique edge that does not belong to P. Let H be the subgraph of G obtained by removing
all internal vertices and edges of P.

Further, assume that H has more than two vertices. Let M0̂ be the minimum element and M1̂ be the maximum element in
the distributive lattice M(H). Then e is contained in exactly one of M0̂ and M1̂.

(i) Suppose that M0̂ /∈ M(H; e). Let M̂0̂ be the perfect matching of G such that M0̂ ⊆ M̂0̂ and M̂1̂ be the perfect matching of
G such that M1̂ \ {e} ⊆ M̂1̂. Then M̂0̂ ∈ M(G; P−, ∂s) is the minimum element, and M̂1̂ ∈ M(G; P+, ∂s) is the maximum
element of the finite distributive lattice M(G).

(ii) Suppose that M0̂ ∈ M(H; e). Let M̂0̂ be the perfect matching of G such that M0̂\{e} ⊆ M̂0̂ and M̂1̂ be the perfect matching
of G such that M1̂ ⊆ M̂1̂. Then M̂0̂ ∈ M(G; P+, ∂s) is the minimum element, and M̂1̂ ∈ M(G; P−, ∂s) is the maximum
element of the finite distributive lattice M(G).
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Fig. 2. A peripheral convex expansion of the resonance graph R(G).

Proof. By Theorem 2.4, R(G) = pce(R(H), ⟨M(H; e)⟩), where the edges between R(H) and ⟨M(H; e)⟩ is a Θ-class of R(G)
ith the face-label s. Moreover, R(H) ∼= ⟨M(G; P−)⟩ and ⟨M(H; e)⟩ ∼= ⟨M(G; P−, ∂s)⟩ ∼= ⟨M(G; P+, ∂s)⟩. See Fig. 2.
Any 2-connected outerplane bipartite graph has two perfect matchings whose edges form alternating edges on the

outer cycle of the graph. By Proposition 2.1, one is the maximum element and the other is the minimum element in the
finite distributive lattice on the set of perfect matchings of the graph.

Let M0̂ be the minimum element and M1̂ be the maximum element in the finite distributive lattice M(H). Then the
uter cycle of H is both improper M0̂-alternating and proper M1̂-alternating. Note that e is an edge of the outer cycle of
. Then e is contained in exactly one of M0̂ and M1̂.
We will show only part (i), since the proof of (ii) is analogous. Suppose that M0̂ does not contain the edge e. Recall that

he outer cycle of H is improper M0̂-alternating. By the definition of M̂0̂, the outer cycle of G is improper M̂0̂-alternating.
herefore, M̂0̂ is the minimum element of the distributive lattice M(G) since G is an outerplane bipartite graph. Note that
hree consecutive edges on the periphery of s, namely e and two end edges of P , are not contained in M̂0̂. Then s is notˆ̂
0-resonant. So, M̂0̂ ∈ M(G; P−, ∂s).
Note that M1̂ contains the edge e since M0̂ does not contain e by our assumption for part (i). Recall that the outer

cycle of H is proper M1̂-alternating. By the definition of M̂1̂, M̂1̂ ∈ M(G; P+) and the outer cycle of G is again proper
M̂1̂-alternating. It follows that s is M̂1̂-resonant. Consequently, M̂1̂ ∈ M(G; P+, ∂s) is the maximum element of the finite
distributive lattice M(G). □

To state the next theorem, we need the following notation. Let G and G′ be 2-connected outerplane bipartite graphs.
Suppose that φ is an isomorphism between resonance graphs R(G) and R(G′). By Theorem 2.6, the isomorphism φ induces
an isomorphism between inner duals of G and G′, which we denote by φ̂.

Theorem 3.2. Let G and G′ be 2-connected outerplane bipartite graphs. If there exists an isomorphism φ between resonance
graphs R(G) and R(G′), then G has a reducible face decomposition Gi(1 ≤ i ≤ n) where Gn = G associated with the face sequence
si(1 ≤ i ≤ n) and the odd length path sequence Pi(2 ≤ i ≤ n); and G′ has a reducible face decomposition G′

i(1 ≤ i ≤ n) where
G′
n = G′ associated with the face sequence s′i(1 ≤ i ≤ n) and the odd length path sequence P ′

i (2 ≤ i ≤ n) satisfying three
properties:

(i) the isomorphism φ̂ between the inner duals of G and G′ maps si to s′i for 1 ≤ i ≤ n;
(ii) G and G′ can be properly two colored so that odd length paths Pi and P ′

i either both start from a black vertex and end
with a white vertex, or both start from a white vertex and end with a black vertex in clockwise orientation along the
peripheries of Gi and G′

i for 2 ≤ i ≤ n;
(iii) φ is an isomorphism between resonance digraphs

−→
R (G) and

−→
R (G′) with respect to the colorings from property (ii).

Proof. Let φ : R(G) −→ R(G′) be an isomorphism between R(G) and R(G′). By Theorem 2.6, the graph Θ(R(G)) induced by
he Θ-classes of R(G) is a tree and isomorphic to the inner dual of G, and the graph Θ(R(G′)) induced by the Θ-classes
f R(G′) is a tree and isomorphic to the inner dual of G′. By the peripheral convex expansions with respect to a reducible
ace decomposition of a 2-connected outerplane bipartite graph given by Theorem 2.5, we can see that φ induces an
somorphism φ̂ between the inner duals of G and G′. So, G and G′ have the same number of inner faces.

Suppose that G and G′ have n inner faces. Obviously, all three properties hold if n = 1 or n = 2. Let n ≥ 3. We proceed
by induction on n and therefore assume that all three properties hold for any 2-connected outerplane bipartite graphs
with less than n inner faces.
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Let sn be a reducible face of G, Pn be the common periphery of sn and G, and E be the Θ-class in R(G) corresponding
to sn. Moreover, we denote by E ′ the Θ-class in R(G′) obtained from E by the isomorphism φ, and s′n the corresponding
reducible face of G′. Then s′n = φ̂(sn). Also, we denote by P ′

n the common periphery of s′n and G′.
By Theorem 2.4, the graph R(G) is obtained from R(Gn−1) by a peripheral convex expansion with respect to the Θ-class

E. Similarly, the graph R(G′) is obtained from R(G′

n−1) by a peripheral convex expansion with respect to the Θ-class E ′.
Since φ is an isomorphism between R(G) and R(G′) such that φ maps E to E ′, it follows that R(Gn−1) and R(G′

n−1) are
isomorphic and the restriction of φ on R(Gn−1) is an isomorphism φn−1 between R(Gn−1) and R(G′

n−1). Let φ̂n−1 be the
induced isomorphism between the inner duals of Gn−1 and G′

n−1. Then φ̂n−1 is the restriction of φ̂ on the inner dual of
Gn−1.

Since Gn−1 and G′

n−1 have n − 1 inner faces, by the induction hypothesis Gn−1 has a reducible face decomposition
Gi(1 ≤ i ≤ n− 1) associated with the face sequence si(1 ≤ i ≤ n− 1) and the odd length path sequence Pi(2 ≤ i ≤ n− 1);
and G′ has a reducible face decomposition G′

i(1 ≤ i ≤ n − 1) associated with the face sequence s′i(1 ≤ i ≤ n − 1) and the
odd length path sequence P ′

i (2 ≤ i ≤ n− 1) satisfying properties (i) s′i = φ̂n−1(si) for 1 ≤ i ≤ n− 1, (ii) Gn−1 and G′

n−1 can
be properly two colored so that odd length paths Pi and P ′

i either both start from a black vertex and end with a white
vertex, or both start from a white vertex and end with a black vertex in clockwise orientation along the peripheries of
Gi and G′

i for 2 ≤ i ≤ n − 1, and (iii) φn−1 is an isomorphism between resonance digraphs
−→
R (Gn−1) and

−→
R (G′

n−1) with
respect to the colorings from property (ii).

Obviously, since s′n = φ̂(sn) and s′i = φ̂n−1(si) = φ̂(si) for 1 ≤ i ≤ n − 1, property (i) holds for the above reducible face
decompositions of G and G′. It remains to show that the these reducible face decompositions satisfy property (ii) when
i = n, and φ is an isomorphism between resonance digraphs

−→
R (G) and

−→
R (G′) with respect to the colorings from property

(ii), that is, property (iii) holds.
By Proposition 2.3, sn is adjacent to exactly one inner face of G since sn is a reducible face of G. Suppose that the unique

inner face adjacent to sn is sj. Since φ̂ is an isomorphism between the inner duals of G and G′, the unique inner face adjacent
to s′n is s′j . By Lemma 3.1, ∂sn ∩ ∂sj is an edge uv on ∂Gn−1, and ∂s′n ∩ ∂s′j is an edge u′v′ on ∂G′

n−1. It is clear that u and
v (resp., u′ and v′) are two end vertices of Pn (resp., P ′

n). Moreover, R(G) = pce(R(Gn−1), ⟨M(Gn−1; uv)⟩) where R(Gn−1) ∼=

⟨M(G; P−
n )⟩ and ⟨M(Gn−1; uv)⟩ ∼= ⟨M(G; P−

n , ∂sn)⟩ ∼= ⟨M(G; P+
n , ∂sn)⟩, and R(G′) = pce(R(G′

n−1), ⟨M(G′

n−1; u
′v′)⟩) where

R(G′

n−1) ∼= ⟨M(G′
; P ′−

n )⟩ and ⟨M(G′

n−1; u
′v′)⟩ ∼= ⟨M(G′

; P ′−

n , ∂s′n)⟩ ∼= ⟨M(G′
; P ′+

n , ∂s′n)⟩.
Recall that φ is an isomorphism between R(G) = pce(R(Gn−1), ⟨M(Gn−1; uv)⟩) and R(G′) = pce(R(G′

n−1), ⟨M(G′

n−1; u
′v′)⟩).

We also have that φn−1 is an isomorphism between resonance digraphs
−→
R (Gn−1) and

−→
R (G′

n−1), where φn−1 is the
restriction of φ on R(Gn−1). Hence, φn−1 maps ⟨M(Gn−1; uv)⟩ to ⟨M(G′

n−1; u
′v′)⟩ such that if an edge xy of ⟨M(Gn−1; uv)⟩

is directed from x to y in
−→
R (Gn−1), then φn−1(x)φn−1(y) is an edge of ⟨M(G′

n−1; u
′v′)⟩ directed from φn−1(x) to φn−1(y) in

−→
R (G′

n−1).

Claim 1. Each edge of ⟨M(G; P+
n , ∂sn)⟩ resulted from the peripheral convex expansion of an edge x1y1 in ⟨M(Gn−1; uv)⟩ has

the same orientation as the edge of ⟨M(G′
; P ′+

n , ∂s′n)⟩ resulted from the peripheral convex expansion of φn−1(x1)φn−1(y1) in
⟨M(G′

n−1; u
′v′)⟩.

Proof of Claim 1. Let x1y1 be an edge in ⟨M(Gn−1; uv)⟩. Then φn−1(x1)φn−1(y1) is its corresponding edge under φn−1 in
⟨M(G′

n−1; u
′v′)⟩.

Assume that x1x2 and y1y2 are two edges between R(Gn−1) and ⟨M(G; P+
n , ∂sn)⟩, where both edges have face-label

sn. Then x2y2 is an edge of ⟨M(G; P+
n , ∂sn)⟩ resulted from the peripheral convex expansion of the edge x1y1. Note that

φn−1(x1)φ(x2) and φn−1(y1)φ(y2) are two edges between R(G′

n−1) and ⟨M(G′
; P ′+

n , ∂s′n)⟩, where both edges have face-label
s′n = φ̂(sn). Hence, φ(x2)φ(y2) is an edge of ⟨M(G′

; P ′+

n , ∂s′n)⟩ resulted from the peripheral convex expansion of the edge
φn−1(x1)φn−1(y1).

Without loss of generality, we show that if x2y2 is directed from x2 to y2 in
−→
R (G), then φ(x2)φ(y2) is directed from

φ(x2) to φ(y2) in
−→
R′ (G).

Recall both edges x1x2 and y1y2 of R(G) have face-label sn. Then x1 = x2 ⊕ ∂sn and y1 = y2 ⊕ ∂sn. By the peripheral
convex expansion structure of R(G) from R(Gn−1), vertices x1, y1, y2, x2 form a 4-cycle C in R(G). It is well known [5] that
two antipodal edges of a 4-cycle in R(G) have the same face-label and two face-labels of adjacent edges of a 4-cycle in
R(G) are vertex disjoint faces of G. Assume that two antipodal edges x1y1 and x2y2 of C in R(G) have the face-label sk for
some 1 ≤ k ≤ n − 1. Then x1 ⊕ y1 = x2 ⊕ y2 = ∂sk where sk is vertex disjoint from sn. By our assumption that x2y2 is
directed from x2 to y2 in

−→
R (G), it follows that x1y1 is directed from x1 to y1 in

−→
R (Gn−1) ⊂

−→
R (G).

Since φn−1 is an isomorphism between resonance digraphs
−→
R (Gn−1) and

−→
R′ (Gn−1), we have that φn−1(x1)φn−1(y1) is

directed from φn−1(x1) to φn−1(y1) in
−→
R′ (Gn−1). Similarly to the above argument, vertices φn−1(x1), φn−1(y1), φ(y2), φ(x2)

form a 4-cycle in R(G′), where two antipodal edges φn−1(x1)φn−1(y1) and φ(x2)φ(y2) of C ′ in R(G′) have the face-label
s′k = φ̂n−1(sk), where s′k and s′n are vertex disjoint faces of G′. Recall both edges φn−1(x1)φ(x2) and φn−1(y1)φ(y2) have
face-label s′n = φ̂(sn). Then φ(x2) = φn−1(x1) ⊕ ∂s′n and φ(y2) = φn−1(y1) ⊕ ∂s′n. It follows that φ(x2)φ(y2) is directed from

−→
′
φ(x2) to φ(y2) in R (G). Therefore, Claim 1 holds. □

345



S. Brezovnik, Z. Che, N. Tratnik et al. Discrete Applied Mathematics 343 (2024) 340–349

M

Claim 2. The edges between M(G; P−

n , ∂sn) and M(G; P+
n , ∂sn) in

−→
R (G) have the same orientation as the edges between

(G′
; P ′

n
−
, ∂s′n) and M(G′

; P ′
n
+
, ∂s′n) in

−→
R (G′).

Proof of Claim 2. By definitions of M(G; P−
n , ∂sn), M(G; P+

n , ∂sn), and directed edges in
−→
R (G), we can see that all

edges between M(G; P−
n , ∂sn) and M(G; P+

n , ∂sn) are directed from one set to the other. Similarly, all edges between
M(G′

; P ′
n
−
, ∂s′n) and M(G′

; P ′
n
+
, ∂s′n) are directed from one set to the other.

Let M0̂ be the minimum element and M1̂ the maximum element in the distributive lattice M(Gn−1). By Lemma 3.1,
exactly one of these two perfect matchings contains the edge uv. Without loss of generality, let M0̂ ∈ M(Gn−1; uv) where
⟨M(Gn−1; uv)⟩ ∼= ⟨M(G; P−

n , ∂sn)⟩ ∼= ⟨M(G; P+
n , ∂sn)⟩. Let M̂0̂ be the perfect matching of G such that M0̂ \ {uv} ⊆ M̂0̂. Then

M̂0̂ ∈ M(G; P+, ∂s) is the minimum element of the distributive lattice M(G).
Let M ′

0̂
= φn−1(M0̂). Then M ′

0̂
is the minimum element of the distributive lattice M(G′

n−1), and M ′

0̂
∈ M(G′

n−1; u
′v′)

where ⟨M(G′

n−1; u
′v′)⟩ ∼= ⟨M(G′

; P ′−

n , ∂s′n)⟩ ∼= ⟨M(G′
; P ′+

n , ∂s′n)⟩. As before, define M̂ ′

0̂
as the perfect matching of G′ such

that M ′

0̂
\ {u′v′

} ⊆ M̂ ′

0̂
. By Lemma 3.1, M̂ ′

0̂
∈ M(G′

; P ′+, ∂s) is the minimum element of the distributive lattice M(G′). This
implies that Claim 2 holds. □

Consequently, φ is also an isomorphism between resonance digraphs
−→
R (G) and

−→
R (G′), which means that property

(iii) holds.
Suppose that Pn = ∂sn − uv starts with u and ends with v along the clockwise orientation of the periphery of G, and

P ′
n = ∂s′n −u′v′ starts with u′ and ends with v′ along the clockwise orientation of the periphery of G′. Since the resonance

digraphs
−→
R (G) and

−→
R (G′) are isomorphic, it follows that u and u′ have the same color and v and v′ have the same color.

So, the above reducible face decompositions of G and G′ also satisfy property (ii) when i = n. Therefore, property (ii)
holds. □

The following corollary follows directly from Theorem 3.2.

Corollary 3.3. Let G and G′ be 2-connected outerplane bipartite graphs. Then their resonance graphs R(G) and R(G′) are
isomorphic if and only if G and G′ can be properly two colored so that

−→
R (G) and

−→
R (G′) are isomorphic.

We are now ready to state the following main result of the paper.

Theorem 3.4. Let G and G′ be 2-connected outerplane bipartite graphs. Then their resonance graphs R(G) and R(G′) are
isomorphic if and only if G has a reducible face decomposition Gi(1 ≤ i ≤ n) associated with the face sequence si(1 ≤ i ≤ n)
and the odd length path sequence Pi(2 ≤ i ≤ n); and G′ has a reducible face decomposition G′

i(1 ≤ i ≤ n) associated with the
face sequence s′i(1 ≤ i ≤ n) and the odd length path sequence P ′

i (2 ≤ i ≤ n) satisfying two properties:

(i) the map sending si to s′i induces an isomorphism between the inner dual of G and inner dual of G′ for 1 ≤ i ≤ n; and
(ii) G and G′ can be properly two colored so that odd length paths Pi and P ′

i either both start from a black vertex and end
with a white vertex, or both start from a white vertex and end with a black vertex in clockwise orientation along the
peripheries of Gi and G′

i for 2 ≤ i ≤ n.

Proof. Necessity. This implication follows by Theorem 3.2.
Sufficiency. Let G and G′ be 2-connected outerplane bipartite graphs each with n inner faces. Use induction on n. The

result holds when n = 1 or 2. Assume that n ≥ 3 and the result holds for any two 2-connected outerplane bipartite graphs
each with less than n inner faces. By Theorem 2.5, R(G) can be obtained from an edge by a peripheral convex expansions
with respect to a reducible face decomposition Gi(1 ≤ i ≤ n) associated with the face sequence si(1 ≤ i ≤ n) and the
odd length path sequence Pi(2 ≤ i ≤ n); and R(G′) can be obtained from an edge by a peripheral convex expansions with
respect to a reducible face decomposition G′

i(1 ≤ i ≤ n) associated with the face sequence s′i(1 ≤ i ≤ n) and the odd
length path sequence P ′

i (2 ≤ i ≤ n).
Assume that properties (i) and (ii) hold for the above reducible face decompositions of G and G′. By induction

hypothesis, R(Gn−1) and R′(Gn−1) are isomorphic.
Similarly to the argument in Theorem 3.2, we can see that sn is adjacent to exactly one inner face sj of G such

that ∂sn ∩ ∂sj is an edge uv on ∂Gn−1; and s′n is adjacent to exactly one inner face s′j of G′ such that ∂s′n ∩ ∂s′j is an
edge u′v′ on ∂G′

n−1. It is clear that u and v (resp., u′ and v′) are two end vertices of Pn (resp., P ′
n). Moreover, R(G) =

pce(R(Gn−1), ⟨M(Gn−1; uv)⟩), and R(G′) = pce(R(G′

n−1), ⟨M(G′

n−1; u
′v′)⟩). To show that R(G) and R(G′) are isomorphic, it

remains to prove that ⟨M(Gn−1; uv)⟩ and ⟨M(G′

n−1; u
′v′)⟩ are isomorphic.

Let Hn−1 be the subgraph of Gn−1 obtained by removing two end vertices of the edge uv, and repeatedly removing end
vertices of resulted pendant edges during the process, and H ′

n−1 be the subgraph of G′

n−1 obtained by removing two end
vertices of the edge u′v′, and repeatedly removing end vertices of resulted pendant edges during the process. Note that all
vertices of Gn−1 (resp., G′

n−1) are on the outer cycle of Gn−1 (resp., G′

n−1) since Gn−1 (resp., G′

n−1) is an outerplane graph. Then
all resulted pendant edges during the process of obtaining Hn−1 (resp., H ′

n−1) from Gn−1 (resp., G′

n−1) are the edges on the
outer cycle of G (resp., G′ ). It follows either both H and H ′ are empty, or H and H ′ are connected subgraphs
n−1 n−1 n−1 n−1 n−1 n−1
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Fig. 3. Two outerplane bipartite graphs with isomorphic resonance graphs.

of Gn−1 and G′

n−1, respectively. Moreover, if both Hn−1 and H ′

n−1 are empty, then M(Gn−1; uv) contains a unique perfect
matching of Gn−1 and M(G′

n−1; u
′v′) contains a unique perfect matching of G′

n−1. So, ⟨M(Gn−1; uv)⟩ and ⟨M(G′

n−1; u
′v′)⟩

are isomorphic as single vertices.
We now assume that Hn−1 and H ′

n−1 are connected subgraphs of Gn−1 and G′

n−1, respectively. It is clear that all resulted
pendant edges during the process of obtaining Hn−1 from G are the edges of each perfect matching in M(Gn−1; uv), and
so each perfect matching of Hn−1 can be extended uniquely to a perfect matching in M(Gn−1; uv). Hence, there is a 1-1
correspondence between the set of perfect matchings of Hn−1 and the set of perfect matchings in M(Gn−1; uv). Two
perfect matchings of Hn−1 are adjacent in R(Hn−1) if and only if the corresponding two perfect matchings in M(Gn−1; uv)
are adjacent in ⟨M(Gn−1; uv)⟩. Therefore, R(Hn−1) is isomorphic to ⟨M(Gn−1; uv)⟩. Similarly, R(H ′

n−1) is isomorphic to
⟨M(G′

n−1; u
′v′)⟩.

Next, we show that R(Hn−1) and R(H ′

n−1) are isomorphic. Note that Gn−1 and G′

n−1 have reducible face decompositions
satisfying properties (i) and (ii). By the constructions of Hn−1 and H ′

n−1, we can distinguish two cases based on whether
Hn−1 and H ′

n−1 are 2-connected or not.
Case 1. Hn−1 and H ′

n−1 are 2-connected. Then by their constructions, Hn−1 and H ′

n−1 have reducible face decompositions
satisfying properties (i) and (ii). Then R(Hn−1) and R(H ′

n−1) are isomorphic by induction hypothesis.
Case 2. Each of Hn−1 and H ′

n−1 has more than one 2-connected component. Note that any 2-connected component of
Hn−1 and H ′

n−1 is a 2-connected outerplane bipartite graph. This implies that any bridge of Hn−1 (resp., H ′

n−1) cannot belong
to any perfect matching of Hn−1 (resp., H ′

n−1). Hence, any perfect matching of Hn−1 (resp., H ′

n−1) is the perfect matching
of the union of its 2-connected components. It follows that R(Hn−1) (resp., R(H ′

n−1)) is the Cartesian product of resonance
graphs of its 2-connected components. By the constructions of Hn−1 and H ′

n−1, there is a 1-1 correspondence between
he set of 2-connected components of Hn−1 and the set of 2-connected components of H ′

n−1 such that each 2-connected
omponent of Hn−1 and its corresponding 2-connected component of H ′

n−1 have reducible face decompositions satisfying
roperties (i) and (ii). Then R(Hn−1) and R(H ′

n−1) are isomorphic by induction hypothesis.
We have shown that R(Hn−1) is isomorphic to ⟨M(Gn−1; uv)⟩, and R(H ′

n−1) is isomorphic to ⟨M(G′

n−1; u
′v′)⟩. Therefore,

M(Gn−1; uv)⟩ and ⟨M(G′

n−1; u
′v′)⟩ are isomorphic. It follows that R(G) and R(G′) are isomorphic. □

xample. Let G and G′ be 2-connected outerplane bipartite graphs shown in Fig. 3. It is easy to check that these two
raphs satisfy the conditions of Theorem 3.4. So, they have isomorphic resonance graphs R(G) and R(G′).

Finally, we can formulate the main result using local structures of given graphs. Let e and f be two edges of a graph
. Let dL(G)(e, f ) denote the distance between corresponding vertices in the line graph L(G) of G. The following concepts
ntroduced in [4] will be also needed for that purpose.

efinition 3.5 ([4]). Let G be a 2-connected outerplane bipartite graph and s, s′, s′′ be three inner faces of G. Then the triple
(s, s′, s′′) is called an adjacent triple of inner faces if s and s′ have the common edge e and s′, s′′ have the common edge f .
The adjacent triple of inner faces (s, s′, s′′) is regular if the distance dL(G)(e, f ) is an even number, and irregular otherwise.

It is easy to see that 2-connected outerplane bipartite graphs G and G′ have reducible face decompositions satisfying
properties (i) and (ii) if and only if there exists an isomorphism between the inner dual of G and G′ that preserves the
(ir)regularity of adjacent triples of inner faces. Therefore, the next result follows directly from Theorem 3.4.

Corollary 3.6. Let G and G′ be two 2-connected outerplane bipartite graphs with inner duals T and T ′, respectively. Then G
and G′ have isomorphic resonance graphs if and only if there exists an isomorphism α : V (T ) → V (T ′) such that for any 3-path
xyz of T : the adjacent triple (x, y, z) of inner faces of G is regular if and only if the adjacent triple (α(x), α(y), α(z)) of inner

′
faces of G is regular.
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4. Remarks

One referee pointed out that our main results are closely related to Theorem 5.4 in [18]. The following terminologies
sed in [18] are needed to explain their relations.
Let P be a finite poset with a partial order ≤. An order ideal I of P is a subset of P such that for every x ∈ I, y ≤ x

mplies y ∈ I. The set J(P) of order ideals of P, ordered by the set-inclusion, forms a poset J(P). It is well known that J(P)
s a distributive lattice, see [1].

Assume that G is a 2-connected outerplane bipartite graph whose vertices are properly colored black and white such
hat adjacent vertices receive different colors and G# is the inner dual graph of G. Let e∗ be the edge of G# corresponding
o the edge e of G, and f ∗ be the vertex of G# corresponding to the inner face f of G. An orientation

−→
G # of the inner dual

raph G# can be given such that an edge e∗ is oriented as an arc from f ∗

2 to f ∗

1 whenever the following condition holds
rue: if one goes along e∗ from f ∗

2 to f ∗

1 , the white end-vertex of e is located on the right side. A partial order ⩽ can be
efined on the set F(G) of all inner faces of G such that for f1, f2 ∈ F(G), f1 ≤ f2 if

−→
G # contains a directed path from f ∗

2

o f ∗

1 . It follows that F(G) := (F(G), ≤) is a poset since
−→
G # does not contain directed cycles. Let J(F(G)) be the distributive

attice on the set of order ideals of the poset F(G). Then Theorem 5.4 in [18] can be stated as follows.

heorem 4.1 ([18]). Let G be a 2-connected outerplane bipartite graph. Assume that M(G) is the distributive lattice on the
et of perfect matchings of G and J(F(G)) is the distributive lattice on the set of order ideals of the poset F(G). Then M(G) is
somorphic to J(F(G)).

Our main results and Theorem 5.4 in [18] can be related by the following corollary.

orollary 4.2. Let G and G′ be 2-connected outerplane bipartite graphs. Then R(G) and R(G′) are isomorphic if and only if G
nd G′ can be properly two colored so that J(F(G)) and J(F(G′)) are isomorphic.

roof. By Corollary 3.3, R(G) and R(G′) are isomorphic if and only if G and G′ can be properly two colored so that
−→
R (G)

nd
−→
R (G′) are isomorphic. Note that

−→
R (G) and

−→
R (G′) are isomorphic if and only if M(G) and M(G′) are isomorphic since

he Hasse diagram of M(G) is isomorphic to
−→
R (G), and the Hasse diagram of M(G′) is isomorphic to

−→
R (G′). The conclusion

ollows by Theorem 4.1. □

We conclude the paper with the following open problem.

roblem 2. Characterize plane (elementary) bipartite graphs with isomorphic resonance graphs.
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