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Abstract
We provide novel lower bounds on the Betti numbers of Vietoris–Rips complexes of
hypercube graphs of all dimensions and at all scales. Inmore detail, let Qn be the vertex
set of 2n vertices in the n-dimensional hypercube graph, equipped with the shortest
path metric. Let VR(Qn; r) be its Vietoris–Rips complex at scale parameter r ≥ 0,
which has Qn as its vertex set, and all subsets of diameter at most r as its simplices. For
integers r < r ′ the inclusion VR(Qn; r) ↪→ VR(Qn; r ′) is nullhomotopic, meaning
no persistent homology bars have length longer than one, and we therefore focus
attention on the individual spaces VR(Qn; r). We provide lower bounds on the ranks
of homology groups of VR(Qn; r). For example, using cross-polytopal generators,
we prove that the rank of H2r −1(VR(Qn; r)) is at least 2n−(r+1)

( n
r+1

)
. We also prove

a version of homology propagation: if q ≥ 1 and if p is the smallest integer for
which rankHq(VR(Q p; r)) �= 0, then rankHq(VR(Qn; r)) ≥ ∑n

i=p 2
i−p

( i−1
p−1

) ·
rankHq(VR(Q p; r)) for all n ≥ p. When r ≤ 3, this result and variants thereof
provide tight lower bounds on the rank of Hq(VR(Qn; r)) for all n, and for each
r ≥ 4 we produce novel lower bounds on the ranks of homology groups. Furthermore,
we show that for each r ≥ 2, the homology groups of VR(Qn; r) for n ≥ 2r + 1
contain propagated homology not induced by the initial cross-polytopal generators.
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1 Introduction

Let Qn be the vertex set of the hypercube graph, equipped with the shortest path
metric. In other words, Qn can be thought of the set of all 2n binary strings of 0’s
and 1’s equipped with the Hamming distance, or alternatively, as the set {0, 1}n ⊆ R

n

equipped with the �1 metric.
In this paper, we study the topology of the Vietoris–Rips simplicial complexes of

Qn . Given a metric space X and a scale r ≥ 0, the Vietoris–Rips simplicial complex
VR(X; r) has X as its vertex set, and a finite subset σ ⊆ X as a simplex if and only if
the diameter of σ is at most r . Originally introduced for use in algebraic topology [24]
and geometric group theory [8, 17], Vietoris–Rips complexes are now a commonly
used tool in applied and computational topology in order to approximate the shape of a
dataset [9, 13]. Important results include the fact that nearbymetric spaces give nearby
Vietoris–Rips persistent homology barcodes [11, 12], that Vietoris–Rips complexes
can be used to recover the homotopy types of manifolds [18–20, 26], and that Vietoris–
Rips persistent homology barcodes can be efficiently computed [7]. Nevertheless, not
much is known about Vietoris–Rips complexes of manifolds or of simple graphs at
large-scale parameters, unless the manifold is the circle [3], unless the graph is a cycle
graph [2, 5], or unless one restricts attention to 1-dimensional homology [16, 25].

Let VR(Qn; r) be the Vietoris–Rips complex of the vertex set of the n-dimensional
hypercube at scale parameter r . The homotopy types of VR(Qn; r) are known for
r ≤ 3 (and otherwise mostly unknown); see Table 1. For r = 0, VR(Qn; 0) is the
disjoint union of 2n vertices, and hence homotopy equivalent to the (2n−1)-foldwedge
sum of zero-dimensional spheres. For r = 1, VR(Qn; 1) is a connected graph (the
hypercube graph), which by a simple Euler characteristic computation is homotopy
equivalent to a ((n − 2)2n−1 + 1)-fold wedge sum of circles. For r = 2, Adams
and Adamaszek [4] prove that VR(Qn; 2) is homotopy equivalent to a wedge sum of
3-dimensional spheres; see Theorem 2.4 for a precise statement which also counts the
number of 3-spheres. For r = 3, Shukla proved in [22, Theorem A] that for n ≥ 5, the
q-dimensional homology of VR(Qn; 3) is nontrivial if and only if q = 7 or q = 4.
The study of r = 3 was furthered by Feng [14] (based on work by Feng and Nukula
[15]), who proved that VR(Qn; 3) is always homotopy equivalent to a wedge sum of
7-spheres and 4-spheres; see Theorem 2.5 for a precise statement which also counts the
number of spheres of each dimension. When r = n −1, VR(Qn; n −1) is isomorphic
to the boundary of the cross-polytope with 2n vertices and hence is homeomorphic to a
sphere of dimension 2n−1 − 1. For r ≥ n, the space VR(Qn; n) is a complete simplex
and hence contractible. However, there is an entire infinite “triangle” of parameters,
namely r ≥ 4 and r ≤ n − 2, for which essentially nothing is known about the
homotopy types of VR(Qn; r).
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In this paper, instead of focusing on a single value of r , we provide novel lower
bounds on the ranks of homology groups of VR(Qn; r) for all values of r . Some of
these lower bounds are shown in blue in Table 1: using cross-polytopal generators, in
Theorem 4.1 we prove rankH2r −1(VR(Qn; r)) ≥ 2n−(r+1)

( n
r+1

)
(although we show

in Sect. 7 that for r ≥ 2 and n > 2r this does not constitute the entire reduced
homology in all dimensions). This is the first result showing that the topology of
VR(Qn; r) is nontrivial for all values of r ≤ n − 1. Furthermore, we often show
that VR(Qn; r) is far from being contractible, with the rank of (2r − 1)-dimensional
homology tending to infinity exponentially fast as a function of n (with n increasing
and with r fixed).

Our general strategy, which we refer to as homology propagation, is as follows.
Let q ≥ 1. Suppose that one can show that the q-dimensional homology group
Hq(VR(Q p; r)) is nonzero (for example, using a homology computation on a com-
puter, or alternatively a theoretical result such as the mentioned cross-polytopal
elements or the geometric generators of Sect. 7). Then we provide lower bounds on the
ranks of the homology groups Hq(VR(Qn; r)) for all n ≥ p. In particular, in Theo-
rem 6.4 we prove that if p ≥ 1 is the smallest integer for which Hq(VR(Q p; r)) �= 0,
then

rankHq(VR(Qn; r)) ≥
n∑

i=p

2i−p
(

i − 1

p − 1

)
· rankHq(VR(Q p; r)).

Thus, a homology computation for a low-dimensional hypercube Q p has consequences
for the homology of VR(Qn; r) for all n ≥ p. See Table 2 for some consequences of
this result and of related results.

As we explain in Sect. 6.4, when r ≤ 3 our results are known to provide tight lower
bounds on all Betti numbers of VR(Qn; r). We take this as partial evidence that our
novel results on the Betti numbers of VR(Qn; r) for r ≥ 4 are likely to be good lower
bounds, though we do not know how close they are to being tight as no upper bounds
are known. Indeed, the main “upper bound” we know of on the Betti numbers of
VR(Qn; r) is a triviality result for 2-dimensional homology: Carlsson and Filippenko
[10] prove that H2(VR(Qn; r)) = 0 for all n and r .

For integers r < r ′, we prove via a simple argument that the inclusion
VR(Qn; r) ↪→ VR(Qn; r ′) is nullhomotopic. Therefore, there are no persistent
homology bars of length longer than one, and all homological information about the
filtration VR(Qn; •) is determined by VR(Qn; r) for individual integer values of r .

Though we have stated our results for Qn = {0, 1}n equipped with the �1 metric,
we remark that these results hold for any �p metric with 1 ≤ p < ∞. Indeed for
x, y ∈ Qn , the i-th coordinates of x and y differ by either 0 or 1 for each 1 ≤ i ≤ n,
and hence VR((Qn, �

p); r) = VR((Qn, �
1); r p). So, our results can be translated

into any �p metric by a simple reparametrization of scale.
We expect that some of our work could be transferred over to provide results for

Čech complexes of hypercube graphs, as studied in [6], though we do not pursue that
direction here.

We begin with some preliminaries in Sect. 2. In Sect. 3 we review contractions,
and we prove that VR(Qn; •) has no persistent homology bars of length longer than
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one. In Sect. 4 we use cross-polytopal generators to prove rankH2r −1(VR(Qn; r)) ≥
2n−(r+1)

( n
r+1

)
.We introduce concentrations in Sect. 5, whichwe use to prove ourmore

general forms of homology propagation in Sect. 6. In Sect. 7 we prove the existence
of novel lower-dimensional homology generators, and we conclude with some open
questions in Sect. 8.

2 Preliminaries and Geometry of Hypercubes

2.1 Homology

All homology groups will be considered with coefficients in Z or in a field. The
rank of a finitely generated abelian group is the cardinality of a maximal linearly
independent subset. We let βq denote the q-th Betti number of a space, i.e., the rank
of the q-dimensional homology group.

2.2 Hypercubes

Hypercubes are among the simplest examples of product spaces.

Definition 2.1 Given n ∈ {1, 2, . . .}, the hypercube graph Qn is the metric space
{0, 1}n , equipped with the �1 metric. In particular, the elements of the space are n-
tuples (a1, a2, . . . , an) = (ai )i∈[n] with ai ∈ {0, 1}, and the �1 distance is defined
as

d
(
(a1, a2, . . . , an), (b1, b2, . . . , bn)

) =
n∑

i=1

|ai − bi |.

In other words, the distance between two n-tuples is the number of coordinates in
which they differ.

For a ∈ Qn , its antipodal point ā is given as ā = (1, 1, . . . , 1) − a. In particular, ā
is the furthest point in Qn from a and thus shares no coordinate with a. Observe that
d(a, ā) = n.

2.3 Vietoris–Rips Complexes

A Vietoris–Rips complex is a way to “thicken” a metric space, as we describe via the
definitions below.

Definition 2.2 Given a metric space X and a finite subset A ⊆ X , the diameter of A
is

diam(A) = max
a,b∈A

d(a, b).
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The local diameter of A at a point a ∈ A equals

localDiam(A, a) = max
b∈A

d(a, b).

Definition 2.3 Given r ≥ 0 and a metric space X the Vietoris–Rips complex VR(X; r)

is the simplicial complex with vertex set X , and with a finite subset σ ⊆ X being a
simplex whenever diam(σ ) ≤ r .

This is the closed Vietoris–Rips complex, since we are using the convention ≤
instead of<. But, since themetric spaces Qn are finite, all of our results have analogues
if one instead considers the open Vietoris–Rips complex that uses the < convention.

In [4] it was proven that VR(Qn; 2) is homotopy equivalent to a wedge sum of
3-dimensional spheres. A remark regarding notation is that we write either

∨k X or∨

k

X for the k-fold wedge some of the space X with itself, with the prior notation

being used in-line (see Tables 1 and 2), and with the latter notation being used in
displayed equations, especially when k is a complicated formula (see Theorems 2.4
and 2.5).

Theorem 2.4 (Theorem 1 of [4]) For n ≥ 3, we have the homotopy equivalence

VR(Qn; 2) 

∨

cn

S3, where cn =
∑

0≤ j<i<n

( j + 1)(2n−2 − 2i−1).

See [21] for some relationships between this result and generating functions.
In [14], it was proven that VR(Qn; 3) is always homotopy equivalent to a wedge

sum of 7-spheres and 4-spheres:

Theorem 2.5 (Theorem 24 of [14]) For n ≥ 5, we have the homotopy equivalence

VR(Qn; 3) 

∨

2n−4(n
4)

S7 ∨
∨

∑n−1
i=4 2i−4(i

4)

S4.

2.4 Embeddings of Hypercubes

For k a positive integer, let [k] = {1, 2, . . . , k}. Given p ∈ [n − 1] there are many
isometric copies of Q p in Qn . For any subset S ⊆ [n] of cardinality p we can
isometrically embed Q p in Qn , using set S as its variable coordinates, and leaving the
rest of the entries fixed. In more detail, we define an isometric embedding ιbS : Q p ↪→
Qn associated to a subset S = {s1, s2, . . . , sp} ⊆ [n] of coordinates and an offset
(bi )i∈[n]\S ∈ {0, 1}n−|S|, by mapping (ai )i∈[p] to (a′

i )i∈[n] with:
• a′

si
= ai for i ∈ [p], and

• a′
i = bi otherwise.

Given a fixed set S, there are 2n−p such embeddings ιbS , each associated to a different
offset b. Let πS : Qn → Q p be themap projecting onto the coordinates in S. Then πs ◦
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ιS = idQ p for anymap ιS (i.e., for any choice of an offset b). Given an offset (bi )i∈[n]\S ,
let Qb

p denote the image of ιbS corresponding to the offset b, and let πb
S : Qn → Qb

p

be defined as ιbS ◦ πS . Given B ⊆ Qn its cubic hull cHull(B) is the smallest isometric
copy of a cube (i.e., the image of Q p′ via some map ι) containing B.

For our purposes we will only consider isometric embeddings Q p ↪→ Qn (also
denoted by Q p ≤ Qn) that retain the order of coordinates, although any permutation
of coordinates of Q p results in a nonconstant isometry of Q p and thus a different
isometric embedding into Qn . With this convention of retaining the coordinate order,
there are

(n
p

)
2n−p isometric embeddings ι : Q p ↪→ Qn and

(n
p

)
projections π : Qn →

Q p.

3 Contractions and the Persistent Homology of Hypercubes

In this section we prove the following results. First, fix the scale r ≥ 0, and let p ≤ n.
An isometric embedding Q p ↪→ Qn gives an inclusion VR(Q p; r) ↪→ VR(Qn; r),
which is injective on homology in all dimensions. Alternatively, fix dimension n, and
consider integer scale parameters r < r ′. The inclusion VR(Qn; r) ↪→ VR(Qn; r ′) is
nullhomotopic, and hence the filtration VR(Qn; •) has no persistent homology bars
of length longer than one. These results follow from the properties of contractions,
which we introduce now.

3.1 Contractions

A map f : X → A from a metric space (X , d) onto a closed subspace A ⊆ X is a
contraction if f |A = idA and if d( f (x), f (y)) ≤ d(x, y) for all x, y ∈ X .

Our interest in contractions stems from the fact that if a contraction X → A exists,
then the homology of aVietoris–Rips complex of Amaps injectively into the homology
of the corresponding Vietoris–Rips complex of X :

Proposition 3.1 ([27]) If f : X → A is a contraction, then the embedding A ↪→ X
induces injections on homology Hq(VR(A; r)) → Hq(VR(X; r)) for all integers
q ≥ 0 and scales r ≥ 0.

We prove that the projections from a higher-dimensional cube to a lower-
dimensional cube in Sect. 2.4 are contractions:

Lemma 3.2 Given a fixed p ∈ [n − 1], a set S ⊆ [n] of cardinality p, and an offset b
as in Sect.2.4, the following hold:

(1) The maps πS and πb
S are contractions.

(2) For each x ∈ Qb
p and y ∈ Qn, we have d(x, y) = d(x, πb

S (y)) + d(πb
S (y), y).

(3) For each offset b′:

(a) For each x, y ∈ Qb′
p , we have d(x, y) = d(πb

p(x), πb
p(y)).

(b) For each x ∈ Qb′
p and y /∈ Qb′

p , we have d(x, y) − 1 ≥ d(πb
p(x), πb

p(y)) ≥
d(x, y) − (n − p).

123
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Proof For x, y ∈ Qn , the distance d(x, y) is the number of components in which x
and y differ. On the other hand, d(πb

S (x), πb
S (y)) is the number of components from

S in which x and y differ (and the same holds for the map πS instead of πb
S as well).

Thus d(x, y) ≤ d(πb
S (x), πb

S (y)) with:

• d(x, y) = d(πb
S (x), πb

S (y)) if x, y ∈ Qb′
p as their coordinates outside S agree,

yielding (1) and (3)(a), and
• (3)(b) follows from the fact that for each x ∈ Qb′

p , y /∈ Qb′
p , the number of

coordinates outside of S on which x and y disagree is at least 1 (due to x, y not
being in the same Q•

p) and at most n − p (which is the cardinality of [n] \ S).

Item (2) follows from the observation that:

• d(x, πb
S (y)) is the number of components from S in which x and y differ, and

• d(πb
S (y), y) is the number of components from [n] \ S in which x and y differ, as

x ∈ Qb
p.

This completes the proof. 
�
Since each of the projections π : Qn → Q p is a contraction by Lemma 3.2, Propo-

sition 3.1 then implies that each of the embeddings Q p ↪→ Qn induces an injective
map on homology Hq(VR(Q p; r)) → Hq(VR(Qn; r)) for all dimensions q.

3.2 Persistent Homology of Hypercubes

The emphasis in modern topology is often on persistent homology arising from
the Vietoris–Rips filtration. However, in the setting of Vietoris–Rips complexes of
hypercubes, persistent homology does not provide any more information beyond the
homology groups at fixed scale parameters. Indeed, the following proposition implies
that for any integers r < r ′, the inclusion VR(Qn; r) ↪→ VR(Qn; r + 1) induces a
map that is trivial on homology.

Proposition 3.3 For any positive integers n and r, the natural inclusionVR(Qn; r) ↪→
VR(Qn; r + 1) is homotopically trivial.

Proof We first claim that the inclusion VR(Qn; r) ↪→ VR(Qn; r + 1) is homotopic
to the projection π[n−1] : VR(Qn; r) → VR(Qn−1; r) in VR(Qn; r + 1). In order to
prove the claim we will show that the two maps are contiguous in VR(Qn; r +1) (i.e.,
for each simplex σ ∈ VR(Qn; r) the union σ ∪ π[n−1](σ ) is contained in a simplex
of VR(Qn; r + 1)), which implies that the two maps are homotopic.

Let σ ∈ VR(Qn; r). By definition diam(σ ) ≤ r . As π[n−1](σ ) is obtained by
dropping the final coordinate we also have diam(π[n−1](σ )) ≤ r . Taking x ∈ σ and
y ∈ π[n−1](σ ), i.e., y = π[n−1](y′) for some y′ ∈ σ , we see that

d(x, y) ≤ d(x, y′) + d(y′, y) ≤ r + 1

as d(y, y′) ≤ 1. This σ ∪ π[n−1](σ ) ∈ VR(Qn; r + 1), and the claim is proved.
We proceed inductively, proving that each projection π[k] : VR(Qn; r) →

VR(Qk; r) is homotopic to the projection π[k−1] : VR(Qn; r) → VR(Qk−1; r)
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in VR(Qn; r + 1), by the same argument as above. As a result, the embedding
VR(Qn; r) ↪→ VR(Qn; r + 1) is homotopic to the projection π{1} : VR(Qn; r) →
VR(Q1; r). Since VR(Q1; r) is clearly contractible, this completes the proof. 
�

4 Homology Bounds via Cross-Polytopes andMaximal Simplices

Fix a scale r ≥ 2, and consider an isometric embedding ι : Qr+1 ↪→ Qn for n ≥ r +1.
The aim of this section is to prove not only that the induced map VR(Qr+1; r) ↪→
VR(Qn; r) is injective on (2r − 1)-dimensional homology, but also that different
(ordered) embeddings ι produce independent homology generators. Let us explain
this in detail.

We first observe that VR(Qr+1; r) is homeomorphic to a (2r − 1)-dimensional
sphere, i.e., VR(Qr+1; r) ∼= S2r −1. The reason is that each vertex x ∈ Qr+1 is
connected by an edge in VR(Qr+1; r) to every vertex of Qr+1 except for x̄ , the
antipodal vertex. Therefore, after taking the clique complex of this set of edges, we
see that VR(Qr+1; r) is isomorphic (as simplicial complexes) to the boundary of the
cross-polytope with 2r+1 vertices. This cross-polytope is a 2r -dimensional ball in
2r -dimensional Euclidean space, and therefore its boundary is a sphere of dimension
2r − 1. In particular, rankH2r −1(VR(Qr+1; r)) = 1.

Since VR(Qr+1; r) is the boundary of a cross-polytope, there is a convenient (2r −
1)-dimensional cycle γ generating H2r −1(VR(Qr+1; r)). Define the set of maximal
antipode-free simplices as

Ar = {Y ⊆ Qr+1 | x ∈ Y ⇔ x̄ /∈ Y }.
The cycle γ is defined as the sum of appropriately oriented elements of Ar . The
space Qr+1 consists of 2r+1 points, which can be partitioned into 2r pairs of mutually
antipodal points. If a subset of Qr+1 contains exactly one point from each such pair,
it is of cardinality 2r . Thus Ar consists of sets of cardinality 2r . Given x ∈ Qr+1,
the only element of Qr+1 which disagrees with x on all r + 1 coordinates is x̄ . As a
result each element ofAr is of diameter at most r and thus a simplex of VR(Qr+1; r).
Observe also that any element of Ar is a maximal simplex of VR(Qr+1; r): adding
any point to such a simplex would mean the presence of an antipodal pair, and so the
diameter would thus grow to r + 1.

As explained above, the embeddings ι : Qr+1 ↪→ Qn induce injections on
homology by Lemma 3.2 and Proposition 3.1. The fact that these embeddings give
independent homology generators is formalized in the following statement, which is
also the main result of this section.

Theorem 4.1 For r ≥ 2,

rankH2r −1(VR(Qn; r)) ≥ 2n−(r+1)
(

n

r + 1

)
.

Theproofwill be provided at the conclusion of the section.Recall that 2n−(r+1)
( n

r+1

)

is the number of different (ordered) embeddings ι : Qr+1 ↪→ Qn . We will use maxi-
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Fig. 1 (Left) Subcube Q3 with a maximal simplex σ ∈ VR(Q3; 2) drawn in blue, illustrating Proposi-
tion 4.4, and also Lemma 4.5 when r is even. An inclusion of σ in Q4 also gives a maximal simplex
ιbS(σ ) ∈ VR(Q4; 2). (Right) Subcube Q4 with a maximal simplex σ × {0, 1} ∈ VR(Q4; 3) drawn in blue,
illustrating Lemma 4.5 when r is odd

mal simplices and the pairing between homology and cohomology in order to prove
that these 2n−(r+1)

( n
r+1

)
different embeddings provide independent cross-polytopal

generators for homology.

Proposition 4.2 Suppose K is a simplicial complex and σ is a maximal simplex of
dimension p in K . If there is a p-cycle α in K in which σ appears with a nontrivial
coefficient λ, then any representative p-cycle of [α] also contains σ with the same
coefficient λ.

Proof Asσ ismaximal, the p-cochainmappingσ to 1 and all other p-simplices to 0 is a
p-cocycle denoted byωσ . Utilizing the cap product we see that for each representative
α′ of [α], the cap product [ωσ ] � [α′] = λ is the coefficient of σ in α′. 
�
Remark 4.3 Proposition 4.2 could also be proved directly. If α and α′ are homologous
p-cycles, then their difference is a boundary of a (p + 1)-chain. The latter cannot
contain σ since σ is maximal; hence the coefficients of σ in α and in α′ coincide.

We emphasize the cohomological proof because we will use the cochain ωσ again.

We next focus on the construction of maximal simplices of VR(Qr+1; r)which are
furthermore also maximal simplices in VR(Qn; r). The following is a simple criterion
identifying such a simplex as a maximal simplex in VR(Qn; r); see Fig. 1. (We recall
that the local diameter of σ ⊆ Qn at a point w ∈ σ is defined as localDiam(σ,w) =
maxz∈σ d(w, z).)

Proposition 4.4 Let n ≥ r + 1, let S ⊆ [n], and let b be an associated offset. Let
σ ⊆ Qb

r+1, and suppose σ ∈ Ar as a subset of Qr+1. If localDiam(σ,w) = r for all
w ∈ σ , then σ is a maximal simplex in VR(Qn; r).

Proof Assume a point x ∈ Qn \ σ is added to σ . We will show that this increases the
diameter of σ beyond r , by repeatedly using Lemma 3.2.

• If πb
S (x) /∈ σ then πb

S (x) ∈ σ and thus

d(x, πb
S (x)) = d(x, πb

S (x)) + d(πb
S (x), πb

S (x)) ≥ 0 + (r + 1) = r + 1.
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• Ifπb
S (x) ∈ σ then d(x, πb

S (x)) ≥ 1, and also the local diameter assumption implies
there exists y ∈ σ with d(πb

S (x), y) = r . Thus

d(x, y) = d(x, πb
S (x)) + d(πb

S (x), y) ≥ 1 + r .

Hence σ is maximal in VR(Qn; r). 
�
We now construct maximal simplices σ in VR(Qr+1; r) that, by Proposition 4.4,

will remain maximal in VR(Qn; r). We recall that the cubic hull cHull(σ ) is the
smallest isometric copy of a cube containing σ . That the convex hull of σ is all of
Qr+1 will later be used to give the independence of homology generators in the proof
of Theorem 4.1.

Lemma 4.5 If r ≥ 2, then there exists a maximal simplex σ ⊆ Qr+1 from Ar with
localDiam(σ, y) = r for all y ∈ σ , and with cHull(σ ) = Qr+1.

Proof We first prove the case when r ≥ 2 is even (before afterward handling the case
when r ≥ 3 is odd). Define σ as the collection of vertices in Qr+1 whose coordinates
contain an even number of values 1. As r + 1 is odd, this means x ∈ σ iff x̄ /∈ σ , so
σ ∈ Ar .

We proceed by determining the local diameter. Let y ∈ σ and define y′ by taking
ȳ and flipping one of its coordinates. Then y′ ∈ σ as it has an even number of ones,
and it disagrees with y on all coordinates except the flipped one, hence d(y, y′) = r .
So localDiam(σ, y) = r for all y ∈ σ .

It remains to show that cHull(σ ) = Qr+1. If cHull(σ ) � Qr+1, there would be a
single coordinate shared by all the points of σ . However, as r ≥ 2 we can prescribe
any single coordinate as we please and then fill in the rest of the coordinates to obtain
a vertex of σ :

• if the chosen coordinate was 1, fill another coordinate as 1 and the rest as 0;
• if the chosen coordinate was 0, fill all other coordinates as 0.

Next, we handle the case when r ≥ 3 is odd. Let τ be the maximal simplex in Qr

obtained in the proof of the even case. Define

σ = τ × {0, 1} ⊆ Qr+1.

Formally speaking, σ = ι
(0)
[r ] (Qr )∪ ι

(1)
[r ] (Qr ) = Q(0)

r ∪ Q(1)
r , with the associated index

set being S = [r ]. We first prove σ ∈ Ar . A point x ∈ σ is of the form x = y × {i}
with y ∈ τ, i ∈ {0, 1}. As x̄ = ȳ ×{1− i} and y ∈ Ar−1, we see that x ∈ σ iff x̄ /∈ σ .

We proceed by determining the local diameter. Take x = y × {i} ∈ σ . As
localDiam(τ, y) = r − 1, there exists y′ ∈ τ with d(y, y′) = r − 1. But then
y′ × {1 − i} ∈ σ and d

(
y × {i}, y′ × {1 − i}) = r .

It remains to show that cHull(σ ) = Qr+1. Similarly as in the proof of the even
case, this follows from the fact that as r ≥ 3 we can prescribe any single coordinate
as we please, and then fill in the rest of the coordinates to obtain a vertex of σ :

• the last coordinate can be chosen freely by the construction of σ ;
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Fig. 2 Two contractions on Q2: a projection π[1] and a concentration map

• any of the first r coordinates can be chosen freely by the construction and by the
even case.


�
We are now in position to prove the main result of this section, Theorem 4.1, which

states that rankH2r −1(VR(Qn; r)) ≥ 2n−(r+1)
( n

r+1

)
.

Proof of Theorem 4.1 For notational convenience, let k = 2n−(r+1)
( n

r+1

)
. There are k

isometric copies of Qr+1 in Qn obtained via embeddings ι, which we enumerate as
C1, C2, . . . , Ck . For each i :

(1) Letσi be themaximal simplex inCi obtained fromProposition 4.4 andLemma4.5.
(2) Let [αi ] be the mentioned cross-polytopal generator of H2r −1(VR(Ci ; r)), and

recall the coefficient of σi in αi is 1.
(3) Let ωi be the (2r −1)-cochain on Qn mapping σi to 1 and the rest of the (2r −1)-

dimensional simplices to 0. As σi is a maximal simplex in Qn , the cochains ωi

are cocycles.
(4) Note that σi is not contained as a term in α j for any i �= j . Indeed, if that was the

case, σi would be contained in the lower-dimensional cube Ci ∩C j , contradicting
the conclusion cHull(σ ) = Qr+1 from Lemma 4.5. As a result, [ωi ] � [αi ] = 1
and [ωi ] � [α j ] = 0 for i �= j .

It remains to prove that the homology classes [αi ] in H2r −1(VR(Qn; r)) (via the
natural inclusion) are linearly independent. If

∑k
i=1 λi [αi ] = 0 for some λi ∈ Z, then

applying [ω j ] via the cap product we obtain λ j = 0 by (4) above. Hence the rank of
H2r −1(VR(Qn; r)) is at least k = 2n−(r+1)

( n
r+1

)
. 
�

5 More Contractions: Concentrations

Up to now the only contractions that we have utilized are the projections πS . In order
to establish additional homology bounds we need to employ a new kind of contraction
called concentration. The idea of such maps in low-dimensional settings is shown in
Figs. 2 and 3. We proceed with an explanation of the general case.

Let n > k be positive integers. Choose a = (ak+1, ak+2, . . . , an) ∈ {0, 1}n−k and
let C denote the copy of Qk identified as Qa

k , i.e.,

C = {0, 1}k × {ak+1} × {ak+2} × . . . × {an}.
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Fig. 3 Two concentrations of codimension one. In both cases there are two codimension one subcubes that
are being mapped isometrically (the thick Q1 on the left and the shaded Q2 on the right). On the left we
have n = 2, k = 1, and a2 = 0, and on the right we have n = 3, k = 2, and a3 = 0

Working toward a contraction we define a concentration map f : Qn → C of
codimension n − k by the following rule:

(1) f |C = IdC , and
(2) for x = (x1, x2, . . . , xn) ∈ Qn \ C we define

f (x) = (x1, x2, . . . , xk−1, 1, ak+1, ak+2, . . . , an).

In particular, we concentrate the k-th coordinate of Qn\C to 1 (although we might
as well have used 0). Permuting the coordinates of Qn generates other concentration
maps. In order to discuss the properties of concentration functions it suffices to consider
the concentrations defined as f above.

Proposition 5.1 Let f be the concentration map as defined above. Then the following
hold.

(i) The map f is a contraction.
(ii) The n − k + 1 many k-dimensional cubes Qk ⊆ Qn containing the (k − 1)-

dimensional cube

{0, 1}k−1 × {0} × {ak+1} × {ak+2} × . . . × {an}

are mapped onto C isometrically by f .
(iii) The map f maps all other k-dimensional cubes Qk ⊆ Qn onto cubes of dimension

less than k.

Proof (i) We verify the claim by a case analysis.
For x, y ∈ C we have

d( f (x), f (y)) = d(x, y)

as f is the identity on C .
For x, y /∈ C the quantity d(x, y) is the number of coordinates in which x and

y differ, while d( f (x), f (y)) is the number of coordinates among the first k − 1 in
which x and y differ. Thus d( f (x), f (y)) ≤ d(x, y).

Let x ∈ C, y /∈ C . Then d(x, y) is the sum of the following two numbers:
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• the number of coordinates among the first k coordinates in which x and y differ;
• the number of coordinates among the last n − k coordinates in which x and y
differ. Note that this quantity is at least 1 as y /∈ C .

On the other side, d( f (x), f (y)) is less than or equal to the sum of the following two
numbers:

• the number of coordinates among the first k − 1 coordinates in which x and y
differ;

• the number 1 if the k-th coordinate of x does not equal 1.

Together we obtain d( f (x), f (y)) ≤ d(x, y).
This covers all possible cases. We conclude that f is a contraction.
(ii) The n − k + 1 copies of Qk in question are the ones of the form

{0, 1}k−1 × {0} × {ak+1} × {ak+2} × . . . × {ap−1} × {0, 1} × {ap+1} × . . . × {an}

for p ∈ {k, k + 1, . . . , n}. The case p = k shows that C is one of these copies. Note
that the part

{0, 1}k−1 × {0} × {ak+1} × {ak+2} × . . . × {ap−1} × {ap} × {ap+1} × . . . × {an}

is contained in C and thus f is the identity on it. On the other hand, the part

{0, 1}k−1 × {0} × {ak+1} × {ak+2} × . . . × {ap−1} × {1 − ap} × {ap+1} × . . . × {an}

gets mapped to

{0, 1}k−1 × {1} × {ak+1} × {ak+2} × . . . × {ap−1} × {ap} × {ap+1} × . . . × {an}

by retaining the first k − 1 coordinates. Together these two parts form C .
(iii) Any k-dimensional cube Qk ⊆ Qn not mentioned in (2) has one of the first

k−1 coordinates (say, the p-th coordinate) constant. Thus the same holds for its image
via f and consequently, its image is contained in the corresponding Qk−1 ⊆ Qn , i.e.,
the one having the p-th coordinate constant, and having the last n − k coordinates
prescribed as in C . 
�

6 Homology Bounds via Contractions

In Sect. 4 we showed how the appearance of cross-polytopal homology classes in
certain dimensions of the Vietoris–Rips complexes of cubes generate independent
homology elements in Vietoris–Rips complexes of higher-dimensional cubes. Apply-
ing Proposition 3.1 to the canonical projections implies that the homology of each
smaller subcube embeds. However, the independence of homology classes arising
from various subcubes was proved using maximal simplices; this argument depended
heavily on the fact that convenient (cross-polytopal) homology representatives were
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Fig. 4 (Left) The projection onto the front bottom Q1 isometrically identifies the four bold copies of Q1
and sends other copies of Q1 to a point. (Right) The concentration onto the bottom left Q1, mapping all
hollow-square vertices to the solid square vertex, isometrically identifies the three bold copies of Q1 and
sends the other copies of Q1 to a point. In this case the concentration is of codimension 2, i.e., maps
Q3 → Q1. As the codimension t increases, the number of isometrically identified subcubes is exponential
2t for projections and linear t + 1 for concentrations. The exponential increase leads to a weaker lower
bound in Theorem 6.2 than the linear increase in Theorems 6.3 and 6.4

available to us. In this section we aim to provide an analogous result for homology in
any dimension, without prior knowledge of homology generators.

Example 6.1 As a motivating example, consider the graph VR(Q3; 1). The cube Q3
contains six subcubes Q2 and each VR(Q2; 1) 
 S1 has the first Betti number equal
to 1. However, the first Betti number of Q3 is not 6 but rather 5, demonstrating
that homology classes of various subcubes might in general interfere, i.e., not be
independent. In Theorem 4.1 we proved there is no such interference in a specific case
(involving cross-polytopes). In the more general case of this section, we prove lower
bounds even when independence may not hold.

The general setting of this section: Fix r , q ∈ {1, 2, . . .}. Let p ≥ 1 be the smallest
integer for which Hq(VR(Q p; r)) �= 0. We implicitly assume that such a p exists,
i.e., that Hq(VR(Qn; r)) is nontrivial for some n.

The cube Qn contains 2n−p
(n

p

)
canonical Q p subcubes, which are described

in Sect. 2.4 by the inclusions ιbS : Q p ↪→ Qn associated to a subset S =
{s1, s2, . . . , sp} ⊆ [n] of coordinates and an offset (bi )i∈[n]\S ∈ {0, 1}n−|S|. We aim
to estimate the rank of the homomorphism

⊕

2n−p(n
p)

Hq(VR(Q p; r)) → Hq(VR(Qn; r))

induced by the map

∐

2n−p(n
p)

Q p → Qn,

consisting of the natural inclusions ιbS of the disjoint union of the Q p subcubes.
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6.1 Homology Bounds via Projections

Wewill start with the simplest argument to demonstrate how contractions, in this case
projections, may be used to lower bound the homology.

Theorem 6.2 Let q ≥ 1. If p is the smallest integer for which Hq(VR(Q p; r)) �= 0,
then for n ≥ p,

rankHq(VR(Qn; r)) ≥
(

n

p

)
· rankHq(VR(Q p; r)).

Proof Let Q•
p denote the

(n
p

)
2n−p different p-dimensional subcubes of Qn (say as •

varies from 1 to
(n

p

)
2n−p). For a subset S ⊆ [n] of cardinality p, define the projection

πS : Qn → Q p by omitting the coordinates not in S. The map πS is an isometry
on 2n−p of the subcubes Q•

p (the ones having exactly the coordinates S as the free
coordinates). For each such S choose one of these cubes and designate it as Q p,S , thus
marking

(n
p

)
copies of Q p,S ⊆ Qn . For each S let a1,S, a2,S, . . . , arankHq (VR(Q p;r)),S

denote a largest linearly independent collection in Hq(VR(Q p,S; r)). We claim that
the collection {ai,S} of cardinality (n

p

) · rankHq(VR(Q p; r)) is linearly independent
in Hq(VR(Qn; r)).

Assume

∑

i,S

λi,S · ai,S = 0

for some coefficients λi,S . Fix a subset S′ ⊆ [n] of cardinality p, and to the equality
above apply the map on Hq induced by the projection πS′ : Qn → Q p. As p is the
minimal dimension of a cube in which Hq is nontrivial on Vietoris–Rips complexes,
and as πS′ maps all of the Q•

p to a smaller-dimensional cube except for the ones with
exactly the coordinates in S′ as the free coordinates, we obtain (πS′)∗(ai,S) = 0 for
all S �= S′, where ∗ denotes the induced map on homology. As πS′ |Q p,S′ → Q p is a
bijection on the corresponding Vietoris–Rips complexes and induces an isomorphism
homology, we have reduced our equation to

∑

i

λi,S′ · ai,S′ = 0.

Consequently, λi,S′ = 0 for all i , as {ai,S′ } forms a linearly independent collection in
Hq(VR(Q p; r)) by definition. As S′ was arbitrary we conclude λi,S = 0 for all i and
S, and thus the claim holds. 
�

6.2 Codimension 1 Homology Bounds via Concentrations

The following result states that in codimension 1 (i.e., when we increase the dimen-
sion of the cube by 1 from p to p + 1), all but at most one of the subcubes induce
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independent inclusions on homology. Example 6.1 shows that all subcubes need not
induce independent inclusions of homology (and we see that Theorem 6.3 is tight in
the case of Example 6.1).

Theorem 6.3 Let q ≥ 1. If p is the smallest integer for which Hq(VR(Q p; r)) �= 0,
then

rankHq(VR(Q p+1; r)) ≥ (2p + 1) · rankHq(VR(Q p; r)).

Proof The cube Q p+1 contains 2p + 2 subcubes Q p, which we enumerate as
Q p,1, Q p,2, . . . , Q p,2p+2. For each 1 ≤ j ≤ 2p + 1, let {ai, j | 1 ≤
i ≤ rankHq(VR(Q p; r))} denote a largest linearly independent collection in
Hq(VR(Q p, j ; r)). We claim that the collection

{
ai, j | 1 ≤ i ≤ rankHq(VR(Q p; r)), 1 ≤ j ≤ 2p + 1

}

of cardinality (2p + 1) · rankHq(VR(Q p; r)) is linearly independent.
Assume ∑

i, j

λi, j · ai, j = 0 (1)

for some coefficients λi, j with 1 ≤ i ≤ rankHq(VR(Q p; r)) and 1 ≤ j ≤ 2p + 1.
Note that there are no representatives from Q p,2p+2. Choose a subcube Q p−1 ⊆
Q p,2p+2. It is the intersection of Q p,2p+2 and another p-dimensional cube of the form
Q p,∗, say Q p,1. We apply the concentration map f corresponding to these choices
using Proposition 5.1. Then, we get the following.

(i) f is bijective on exactly two p-cubes: Q p,2p+2 and Q p,1.
(ii) f maps all other p-cubes to cubes of dimension less than p. By the choice of

p (as the first dimension of a cube in which nontrivial p-dimensional homology
appears in its Vietoris–Rips complex), we get f∗(ai, j ) = 0 for all i > 1.

(iii) As a result, after applying the induced map f∗ on homology, Equation (1) sim-
plifies to

∑

j

λ j · a1, j = 0.

Consequently, λ1, j = 0 for all i , as {a1, j } forms a linearly independent collection
in Hq(VR(Q p,1; r)) by definition.

We keep repeating the procedure of the previous paragraph.

• Choose a subcube Q p, j , whose corresponding coefficients λi, j have been deter-
mined to be zero, and choose a neighboring subcube Q p, j ′ (i.e., a subcube with a
common (p − 1)-dimensional cube), whose corresponding coefficients λi, j ′ have
not yet been determined to be zero.

• Apply the concentration map corresponding to these two p-dimensional cubes to
deduce that the coefficients λi, j ′ also equal zero.
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Any cube Q p, j ′ can be reached from Q p,2p+2 by an appropriate sequence of cubes
(i.e., Q p,2p+2, a (p − 1)-dimensional subcube thereof, an enclosing p-dimensional
cube, a (p−1)-dimensional subcube thereof, . . . , Q p, j ′ ). Therefore,we can eventually
deduce that λi, j = 0 for all i and j . Hence the rank bound holds due to the setup of
Equation (1). 
�

6.3 General Homology Bounds via Concentrations

In this subsection we will generalize the argument of Theorem 6.3 to deduce a lower
bound on homology on all subsequent larger (not just codimension one) cubes.

The core idea is the following. In the previous subsection wewere able to “connect”
p-dimensional cubes by concentrations. Each chosen concentration was bijective on
exactly two adjacent cubes of the form Q p sharing a common (p − 1)-dimensional
cube; see item (i) in the proof of Theorem 6.3. If the coefficients of Equation (1)
corresponding to one of the two copies of Q p were known to be trivial, then the
homological version of said concentration transformed Equation (1) so that only the
coefficients corresponding to the other of the two cubes Q p were retained; see item (ii).
These coefficients were then deduced to be trivial by their definition as the resulting
equation contained only terms arising from a single Q p, see item (iii).

In this subsection we generalize this argument to all higher-dimensional cubes.
Instead of concentrations isolating 2 adjacent copies of Q p (as happens in codimension
1), the concentrations will in general isolate n − p +1 (i.e., codimension plus one; see
Proposition 5.1(ii)) copies of Q p. The main technical question is thus to determine
how many of the subcubes are independent in the above sense.

Theorem 6.4 Let q ≥ 1. If p is the smallest integer for which Hq(VR(Q p; r)) �= 0,
then for n ≥ p,

rankHq(VR(Qn; r)) ≥
n∑

i=p

2i−p
(

i − 1

p − 1

)
· rankHq(VR(Q p; r)).

In particular cases, Theorem 6.4 reduces to the following. For n = p we get the
tautology that rankHq(VR(Q p; r)) is at least as large as itself. For n = p + 1 we
recover Theorem 6.3:

rankHq(VR(Qn; r)) ≥ rankHq(VR(Q p; r)) + 2

(
p

p − 1

)
· rankHq(VR(Q p; r))

= (2p + 1) · rankHq(VR(Q p; r)).

Proof of Theorem 6.4 The cube Qn consists of two disjoint copies of Qn−1; see Fig. 5:

• the rear one with the last coordinate 0, denoted by Q0
n−1, and

• the front one with the last coordinate 1, denoted by Q1
n−1.

We partition the Q p subcubes of Qn into three classes:
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Fig. 5 A sketch of the proof of Theorem 6.4. In each step the thick dashed lines represent copies of Q p in
Mn yielding new independent homology classes within the Vietoris–Rips complex of Qn , in addition to the
established independent homology classes (thick solid lines) arising from certain copies of Q p , denoted by
Fn , within the front face Q1

n−1. The multiplicative factor in the theorem is the total number of the thick
edges, both dashed and solid ones

• The ones contained in the rear Q0
n−1 where vertices have last coordinate 0, denoted

by Rn .
• Theones contained in the front Q1

n−1 where vertices have last coordinate 1, denoted
by Fn .

• The ones contained in the middle passage between them, denoted by Mn . Each
such Q p in Mn is of the form D × {0, 1}, where D ⊆ Qn−1 is a copy of Q p−1.

We will prove that the following Q p subcubes of Qn induce independent embed-
dings on homology Hq of Vietoris–Rips complexes: the elements of Mn (dashed cubes
in Fig. 5) and the elements of Fn that have inductively been shown to include inde-
pendent embeddings on homology Hq of Vietoris–Rips complexes on Q1

n−1 (bold
cubes in Fig. 5). The initial cases of the inductive process have been discussed in the
paragraph before the proof. For n = p + 1 this is Theorem 6.3.

The cardinality of Mn is 2(n−1)−(p−1)
(n−1

p−1

) = 2n−p
(n−1

p−1

)
, which is the number

of Q p−1 subcubes in Q0
n−1. Each such subcube has the last coordinate constantly

0. Taking a union with a copy of the same Q p−1 subcube with the last coordinates
changed to 1, we obtain a Q p subcube in Mn . It is apparent that all elements of Mn

arise this way. Let us enumerate the elements of Mn as QM
p, j with 1 ≤ j ≤ 2n−p

(n−1
p−1

)
.

For each such j let {ai, j | 1 ≤ i ≤ rankHq(VR(Q p; r))} denote a largest linearly
independent collection in Hq(VR(QM

p, j ; r)).
The cardinality of the copies of Q p in Fn that have inductively been shown to include

independent embeddings onhomology Hq ofVietoris–Rips complexes on Q1
n−1 equals∑n−1

i=p 2
i−p

( i−1
p−1

)
, by inductive assumption. Let us enumerate them by QF

p, j with

1 ≤ j ≤ ∑n−1
i=p 2

i−p
( i−1

p−1

)
. For each such j let {bi, j | 1 ≤ i ≤ rankHq(VR(Q p; r))}

denote a largest linearly independent collection in Hq(VR(QF
p, j ; r)).

Assuming the equality

∑

i, j

λi, j · ai, j +
∑

i, j

μi, j · bi, j = 0 (2)
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in Hq(VR(Qn; r)) for some coefficients λi, j , μi, j , we claim that all coefficients
equal zero. This will prove the theorem as the number of involved terms equals∑n

i=p 2
i−p

( i−1
p−1

) · rankHq(VR(Q p; r)).
We will first prove that the coefficients λi, j are all zero. Fix some 1 ≤ j ≤

2n−p
(n−1

p−1

)
, and let D be the copy of Q p−1 in Q0

n−1 so that C := D × {0, 1} is

equal to QM
p, j . Let f be any concentration Qn → C := D × {0, 1}. (For example, in

Fig. 4 one can visualize D as the solid round vertex, and C as the edge between the
two solid vertices.) By Proposition 5.1:

• f maps any Q p subcube of Qn that contains D bijectively onto C = QM
p, j . All

such subcubes except for C are contained in Rn .
• f maps all of the other Q p subcubes of Qn to lower-dimensional subcubes.

These two observations imply that applying the induced map f∗ on homology to
Equation (2), we obtain

∑
i λi, j · ai, j = 0. By the choice of {ai, j }i as an independent

collection of homology classes for Hq(VR(QM
p, j ; r)), we obtain λi, j = 0 for all i .

Since this can be done for any 1 ≤ j ≤ 2n−p
(n−1

p−1

)
, we have λi, j = 0 for all i and j .

We have thus reduced Equation (2) to
∑

i, j μi, j ·bi, j = 0. Let πS : Qn → Qn−1 be
the projection that forgets the last coordinate of each vector (explicitly, S = [n −1] ⊆
[n]). Note that the restrictions of πS to Q0

n and to Q1
n are bijections. Hence, after

applying the induced map (πS)∗ on homology, the inductive definition of the bi, j

implies that μi, j = 0 for all i and j .

�

6.4 Comparison with Known Results

In this subsection we demonstrate that our lower bounds agree with actual ranks of
homology in many known cases. In particular, for r = 1, 2, 3, if we assume that we
know the homotopy types or Betti numbers for the first few cases (n ≤ r + 1 or
n ≤ r + 2), then we show that our lower bounds on the Betti numbers of VR(Qn; r)

are tight (i.e., optimal) for all n and for all dimensions of homology. For r = 4 we
explain the best lower bounds we know on the Betti numbers of VR(Qn; 4), which
are based on homology computations by Ziqin Feng. Since the homotopy types of
VR(Qn; 4) are unknown for n ≥ 6, we do not know if these bounds are tight. For a
summary see Table 2.

6.4.1 The Case r = 1

Assuming the obvious homeomorphism VR(Q2; 1) ∼= S1, the lower bound of Theo-
rem 6.4 with p = 2 gives

rankH1(VR(Qn; 1)) ≥
n∑

i=2

2i−2
(

i − 1

1

)
=

n∑

i=2

(i − 1)2i−2 = n2n−1 − 2n + 1,

where the last step is explained in Appendix A.1. This inequality is actually an equal-
ity, as one can see via an Euler characteristic computation. Indeed, VR(Qn; 1) has 2n
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Table 2 For each of r = 1, 2, 3, 4, the pair of columns represent the comparison between (left) known
homotopy types and homology groups of VR(Qn; r) with (right) the bounds arising from our results

The bold red spheres are the initial cross-polytopal spheres that induce the red lower bounds on Betti
numbers due to Theorem 4.1. For r = 1, 2, 3, the bold blue and violet spheres induce the blue and violet
lower bounds on Betti numbers due to Theorems 6.4 and 6.5. Observe that the total lower bounds match the
known Betti numbers for r = 1, 2, 3. The homology computations for VR(Q6; 4) by Ziqin Feng induce
the lower bounds on Betti numbers of VR(Qn; 4) for n ≥ 6 by Theorems 6.4 and 6.5. Theorem 7.2(iii)
states that in each column r ≥ 2, we have at least one homology class (such as the features in blue) that is
not induced from a red cross-polytopal sphere

vertices and n2n−1 edges, and so the Euler characteristic is 2n −n2n−1. As VR(Qn; 1)
is connected, the rank of H1(VR(Qn; 1)) equals n2n−1 − 2n + 1. See [10, Proposi-
tion 4.12] for a related computation.

6.4.2 The Case r = 2

We know that the embedding of each individual subcube induces an injection on
homology. Our results provide the lower bounds on the rank of the map on homology
induced by the inclusion of all subcubes Q p (where p is the dimension of the first
appearance of q-dimensional homology Hq ). The upper bound for homology obtained
in this way is 2n−p

(n
p

)
rankHq(VR(Q p; r)), where the multiplicative constant is the

number of all Q p subcubes on Qn . These possible generators are all independent in
the case of cross-polytopal generators (Theorem 4.1). In case this bound is exceeded
we can thus deduce that certain new homology classes appear that are not generated
by the embeddings of Q p subcubes.
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In the case r = 2, H3(VR(Q3; 2)) has rank one and is generated by a cross-
polytopal element. Even though Q4 has only 2

(4
1

) = 8 subcubes Q3, we have
rankH3(VR(Q4; 2)) = 9 > 8. This indicates the appearance of a homology class α

not generated by embedded homologies of Q3 subcubes; see Sect. 7 for a description
of this “geometric” generator. This new homology class contributes to the homology
of higher-dimensional cubes in the same way as the homology described by Theo-
rem 6.4. We formalize this in the next subsection; see Theorem 6.5. Together, this
cross-polytopal generator and this geometric generator α explain all of the homology
when r = 2:

(a) The cross-polytopal elements provide 2n−3
(n
3

)
independent generators for

H3(VR(Qn; 2)) (Theorem 4.1).
(b) The noncross-polytopal element α provides

∑n
i=4 2

i−4
(i−1

3

) = ∑n−1
i=3 2i−3

(i
3

)

more independent generators for H3(VR(Qn; 2)) (Theorem 6.5).

Thus, the combined lower bound says that the rank of H3(VR(Qn; 2)) is at least

2n−3
(

n

3

)
+

n−1∑

i=3

2i−3
(

i

3

)

=
n∑

i=3

2i−3
(

i

3

)

= 2n−2
(

n

3

)
−

n−2∑

i=1

2i−1
(

i + 1

2

)
as explained in Appendix A.2

=
n−2∑

i=1

(
2n−2 − 2i−1

) (
i + 1

2

)
since

(
n

3

)
=

n−2∑

i=1

(
i + 1

2

)

=
n−1∑

i=1

(
2n−2 − 2i−1

) (
i + 1

2

)
since 2n−2 − 2(n−1)−1 = 0

=
∑

0≤ j<i<n

( j + 1)(2n−2 − 2i−1) since

(
i + 1

2

)
=

i−1∑

j=0

( j + 1)

=: cn .

Since VR(Qn; 2) 
 ∨
cn

S3 (Theorem 2.4), this combined lower bound explains all
of the homology when r = 2.

6.4.3 The Case r = 3

Using only the cross-polytopal generator for VR(Q4; 3) ∼= S7 and also the homotopy
equivalence VR(Q5; 3) 
 ∨10 S7 ∨

S4, we obtain the following lower bounds on
homology when r = 3:

(a) The cross-polytopal elements provide 2n−4
(n
4

)
independent generators for

H7(VR(Qn; 3)) (Theorem 4.1).
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(b) The noncross-polytopal four-dimensional homology element appearing at n = 5
provides

∑n
i=5 2

i−5
(i−1

4

) = ∑n−1
i=4 2i−4

(i
4

)
independent generators for

H4(VR(Qn; 3)) (Theorem 6.4).

The total lower bound equals the actual rank of all homology of VR(Qn; 3), due to
Theorem 2.5 which says

VR(Qn; 3) 

∨

2n−4(n
4)

S7 ∨
∨

∑n−1
i=4 2i−4(i

4)

S4.

6.4.4 The Case r = 4

Ziqin Feng at Auburn University has computed the homology of VR(Q6; 4). To do
so, he used the Easley Cluster at Auburn University (a system for high-performance
and parallel computing), about 180 GB of memory, and the Ripser software package
[7]. His computations show that

Hq(VR(Q6; 4); Z/2) ∼=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if 1 ≤ q ≤ 6

(Z/2)239 if q = 7

0 if 8 ≤ q ≤ 14

(Z/2)14 if q = 15.

This computation is shown in the first r = 4 column in Table 2, and the consequences
implied by this computation and by our results are shown in the second r = 4 column
in that table.

6.4.5 The Case of General r

In Sect. 7 we prove that in each column of Tables 1 or 2 with r ≥ 2, a new homology
generator appears in VR(Qn; r) with n ≥ r + 1, i.e., below the diagonal entry n =
r + 1 where the cross-polytopal generator appears. Examples of these new homology
generators are in the items (b) above for r = 2 and 3.

6.5 Propagation of Noninitial Homology

For positive integers m < n let

�m,n :
∐

2n−m(n
m)

Qm → Qn

denote the natural inclusion of all the 2n−m
(n

m

)
-many Qm subcubes of Qn in accor-

dance with the subcube structure introduced in Sect. 2.4. Given a positive integer q,
let the homomorphism

(�m,n)∗ :
⊕

2n−m(n
m)

Hq(VR(Qm; r)) → Hq(VR(Qn; r))
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be the induced map on homology.
Our previous results have provided lower bounds on the rank of maps (�p,n)∗,

where p is the smallest parameter for which Hq(VR(Q p; r)) is nontrivial. Our next
result explains how an analogous result also holds for other maps (�m,n)∗.

Theorem 6.5 Let q ≥ 1. Let

Rm = rank
(

Hq(VR(Qm; r))
/
im(�m−1,m)∗

)
.

Then for n ≥ m ≥ p,

rank
(

Hq(VR(Qn; r))
/
im(�m−1,n)∗

)
≥

n∑

i=m

2i−m
(

i − 1

m − 1

)
· Rm .

Note that (�p−1,p)∗ = 0 by the definition of p, and so we recover Theorem 6.4 by
setting m = p in Theorem 6.5.

Proof The proof proceeds by induction on m. We will actually prove

rank(ρm,n) ≥
n∑

i=m

2i−m
(

i − 1

m − 1

)
· Rm, where ρm,n = im(�m,n)∗

/
im(�m−1,n)∗

The base case of the induction at m = p is Theorem 6.4, since in this case
im(�p−1,p)∗ = 0 as Hq(VR(Q p−1; r)) = 0. It remains to show the inductive step.
Our proof is essentially the same as the proof of Theorem 6.4 applied to ρm,n instead
of to Hq(VR(Qn; r)).

The cube Qn consists of two disjoint copies of Qn−1; see Fig. 5:

• the rear one with the last coordinate 0, denoted by Q0
n−1, and

• the front one with the last coordinate 1, denoted by Q1
n−1.

We partition the Qm subcubes of Qn into three classes:

• The ones contained in the rear Q0
n−1 where vertices have last coordinate 0, denoted

by Rn .
• Theones contained in the front Q1

n−1 where vertices have last coordinate 1, denoted
by Fn .

• The ones contained in the middle passage between them, denoted by Mn . Each
such Qm in Mn is of the form D × {0, 1}, where D ⊆ Qn−1 is a copy of Qm−1.

We will prove that the following Qm subcubes of Qn induce independent
homology in ρm,n : the elements of Mn (dashed cubes in Fig. 5) and the elements
of Fn that have inductively been shown to include independent embeddings in
Hq(VR(Q1

n−1; r))/im(�m−1,n−1)∗ (bold cubes in Fig. 5). The base case of the induc-
tive process is Theorem 6.4.

The cardinality of Mn is 2(n−1)−(m−1)
(n−1

m−1

) = 2n−m
(n−1

m−1

)
, which is the number

of Qm−1 subcubes in Q0
n−1. Each such subcube has the last coordinate constantly
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0. Taking a union with a copy of the same Qm−1 subcube with the last coordinates
changed to 1,we obtain a Qm subcube in Mn . It is apparent that all elements of Mn arise
this way. Let us enumerate the elements of Mn as QM

m, j with 1 ≤ j ≤ 2n−m
(n−1

m−1

)
. For

each such j let {ai, j | 1 ≤ i ≤ Rm} denote a largest linearly independent collection
in Hq(VR(QM

m, j ; r))/im(�m−1,m)∗.
The cardinality of the copies of Qm in Fn that have inductively been shown

to include independent embeddings in Hq(VR(Q1
n−1; r))/im(�m−1,n−1)∗ equals

∑n−1
i=m 2i−m

( i−1
m−1

)
, by inductive assumption. Let us enumerate them by QF

m, j with

1 ≤ j ≤ ∑n−1
i=m 2i−m

( i−1
m−1

)
. For each such j let {bi, j | 1 ≤ i ≤ Rm} denote a largest

linearly independent collection in Hq(VR(QF
m, j ; r))/im(�m−1,m)∗.

Assuming the equality

∑

i, j

λi, j · ai, j +
∑

i, j

μi, j · bi, j = 0 (3)

in ρm,n for some coefficients λi, j , μi, j , we claim that all coefficients equal zero. This
will prove the theorem as the number of involved terms equals

∑n
i=m 2i−m

( i−1
m−1

) ·Rm .
We will first prove that the coefficients λi, j are all zero. Fix some 1 ≤ j ≤

2n−m
(n−1

m−1

)
, and let D be the copy of Qm−1 in Q0

n−1 so that C := D × {0, 1} is
equal to QM

m, j . Let f be any concentration Qn → C := D × {0, 1}. (For example,
in Fig. 4 one can visualize D as the solid round vertex and C as the edge between the
two solid vertices.) By Proposition 5.1:

• f maps any Qm subcube of Qn that contains D bijectively onto C = QM
m, j . All

such subcubes except for C are contained in Rn .
• f maps all of the other Qm subcubes of Qn to lower-dimensional subcubes, and
hence the map

Hq(VR(Qm; r))
/
im(�m−1,m)∗ → Hq(VR(C; r))

/
im(�m−1,m)∗

induced by f |C is trivial.

These two observations imply that applying the induced map f∗ on homology to
Equation (3), we obtain

∑
i λi, j · ai, j = 0. By the choice of {ai, j }i as an independent

collection of homology classes, we obtain λi, j = 0 for all i . Since this can be done
for any 1 ≤ j ≤ 2n−p

(n−1
p−1

)
, we have λi, j = 0 for all i and j .

We have thus reduced Equation (3) to
∑

i, j μi, j ·bi, j = 0. Let πS : Qn → Qn−1 be
the projection that forgets the last coordinate of each vector (explicitly, S = [n −1] ⊆
[n]). Note that the restrictions of πS to Q0

n and to Q1
n are bijections. Hence, after

applying the induced map (πS)∗ on homology, the inductive definition of the bi, j as
being independent in Hq(VR(Q1

n−1; r))/im(�m−1,n−1)∗ implies thatμi, j = 0 for all
i and j . 
�
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7 Geometric Generators

Definition 7.1 For r ≥ 0, let fn : VR(Qn; r) → [0, 1]n be themap defined by sending
eachvertexof Qn to the correspondingpoint in {0, 1}n ⊆ [0, 1]n , and thenby extending
linearly to simplices. In particular, if v1, v2, . . . , vk is a subset of Qn ⊂ [0, 1]n of

diameter at most r , then fn

(∑k
i=1 λivi

)
= ∑k

i=1 λivi , where the first sum represents

the barycentric coordinates in VR(Qn; r), while the second sum represents the convex
combination in [0, 1]n .

Let n(r) ∈ {0, 1, . . .} be the smallest integer n such that fn : VR(Qn; r) → [0, 1]n

is not surjective. The fact that this is well-defined follows from Lemma 7.6, which
proves that n(r) ≤ 2r + 1.

The main theorem in this section is the following.

Theorem 7.2 For all r ≥ 2,

(i) There exists some m ≤ n(r) such that πm−1(VR(Qm; r)) �= 0;
(ii) There exists some k ≤ m such that Hk−1(VR(Qm; r)) �= 0;

(iii) Not all of the above nontrivial homotopy group (resp. homology group) is gen-
erated by the initial cross-polytopal spheres, i.e., the image of the induced map
(�r+1,m)∗ of Vietoris–Rips complexes VR(Qr+1; r) ↪→ VR(Qm; r) at scale r
is not all of πm−1(VR(Qm; r)) (resp. Hk−1(VR(Qm; r))).

Statement (ii) above is true for homology taken with any choice of coefficients.
An important consequence of this theorem is the following. Together, statements

(i)–(iii) imply that for each r ≥ 2, there is a new topological feature in VR(Qm; r)

that is not induced from an inclusion VR(Qr+1; r) ↪→ VR(Qm; r). In Table 2, these
appear as the new blue S3 feature in VR(Q4; 2) 
 ∨9S3, and as the new blue S4

feature in VR(Q5; 3) 
 ∨10S7 ∨ S4.
In the following example, when r = 2, we see that we can take k = m = n(r).

However, we do not know if this is the case in general.

Example 7.3 Fix r = 2. Note that n(2) = 4 is the smallest integer n such that
fn : VR(Qn; 2) → [0, 1]n is not surjective.Wewill use this to showπ3(VR(Q4; 2)) �=
0. The following five tetrahedra form a triangulation of [0, 1]3 (see Sect. 5.3 and in
particular Fig. 4 of [23]).

τ1 = {(0, 1, 1), (1, 1, 0), (1, 0, 1), (0, 0, 0)}
τ2 = {(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1)}
τ3 = {(0, 1, 1), (1, 1, 0), (0, 0, 0), (0, 1, 0)}
τ4 = {(1, 1, 1), (0, 1, 1), (1, 1, 0), (1, 0, 1)}
τ5 = {(0, 0, 0), (0, 1, 1), (0, 0, 1), (1, 0, 1)}

Furthermore, each tetrahedron τi has diameter at most 2. Since [0, 1]3 = ⋃5
i=1 |τi |,

and since each τi is a simplex in VR(Q3; 2), we define a surjective map h : [0, 1]3 →
VR(Q3; 2) by letting h(x) = ∑

v∈σ(x) λvv, where σ(x) is the unique simplex in the
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triangulation [0, 1]3 = ⋃5
i=1 |τi | that contains x in its interior.1 We note that the map

h is continuous. Note that ∂([0, 1]4) is composed of 8 faces, where each face is a
3-dimensional cube [0, 1]3. By piecing together 8 copies of the map h in a continuous
way, we obtain a map g : ∂([0, 1]4) → VR(Q4; 2). The map f4 : VR(Q4; 2) →
[0, 1]4 is not surjective, although its image does contain ∂([0, 1]4), which follows
since f3 : VR(Q3; 2) → [0, 1]3 is surjective. Therefore, there exists a point v ∈
int([0, 1]4) \ im( f4). We thus obtain a composition

∂([0, 1]4) g−→ VR(Q4; 2) f4−→ [0, 1]4 \ {v} πv−→ ∂([0, 1]4),

where πv : [0, 1]4 \ {v} → ∂([0, 1]4) is the radial projection away from the point
v ∈ int([0, 1]4). Note that the composition πv ◦ f4 ◦ g is equal to the identity map
on ∂([0, 1]4), and that we have a homeomorphism ∂([0, 1]4) ∼= S3. Since this map
πv ◦ f4 ◦ g factors through VR(Q4; 2), it follows that π3(VR(Q4; 2)) �= 0. The proof
of Theorem 7.2 follows this strategy.

Example 7.4 Fix r = 3. By [14] we have VR(Q5; 3) 
 ∨10 S7 ∨ S4. Theorem 7.2 is
satisfied with m = k = 5.

Non-Example 7.5 Fix r = 4. By Ziqin Feng’s homology computations in Sect. 6.4.4
we have H7(VR(Q6; 4); Z/2) ∼= (Z/2)239, H15(VR(Q6; 4); Z/2) ∼= (Z/2)14, and
Hq(VR(Q6; 4); Z/2) = 0 for 1 ≤ q ≤ 6 and 8 ≤ q ≤ 14. Since the dimensions
7 and 15 of nontrivial homology are not smaller than 6, neither of these nontrivial
homology groups fits the description in Theorem 7.2(ii). This shows that m > 6 when
r = 4. In other words, Theorem 7.2 guarantees that a new topological feature not yet
present in the r = 4 row of Table 2 will appear in some VR(Qm; 4) with m > 6.

We now build up toward the proof of Theorem 7.2. We will use the following
notation:

• Cn = [0, 1]n denotes the n-dimensional cube.
• ConvQi is the convex hull of Qi ⊂ [0, 1]i .

• 0-skeleton: C (0)
n = Qn is the set of vertices of Cn .

• k-skeleton for k > 0: C (k)
n = ∪{k-dimensional subcubes of Cn} = ∪{ConvQk |

Qk ≤ Qn}.
• ∂Cn = C (n−1)

n
∼= Sn−1.

We will use the following lemma in the proof of Theorem 7.2.

Lemma 7.6 For each r ≥ 2 the following hold:

1. n(r) ≤ 2r + 1.
2. The image of fn(r) contains ∂Cn(r)−1.
3. For each r ≥ 2 and for each n, VR(Qn; r) is connected and simply connected.

Proof (1) Choose a simplex σ ∈ VR(Qn(r)−1; r)whose image via fn(r)−1 contains the
center z = ( 12 ,

1
2 , . . . ,

1
2 ) of the cube.Without loss of generality (due to the symmetry)

1 By convention, the interior of a vertex is that vertex.
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wemay assume σ contains the origin (0, 0, . . . , 0). As ||z||�1 = n(r)−1
2 , σ must contain

a vertex of �1-norm at least n(r)−1
2 . On the other hand, the �1-norm of each vertex of

σ is at most r , due to the inclusion of the origin in σ . Thus n(r)−1
2 ≤ r , which implies

(1).
(2) holds since fn(r)−1 is not surjective.
(3) Choose r ≥ 2. The complexVR(Qn; r) is obviously connected. Letα be a based

simplicial loop in VR(Qn; r) and let [v,w] be an edge, which is a part of α. Setting
v = v0 and w = vr , we can replace [v,w] by a homotopic (rel {v,w}) concatenation
of edges [v0, v1]∗ [v1, v2]∗ . . .∗[vr−1, vr ], whose pairwise distances are at most 1. In
particular, since v and w differ in at most r coordinates, we can choose vi inductively
so that vi differs from vi+1 in at most one coordinate. Thus diam{v0, v1, . . . , vr } ≤ r
which means that the defined vertices vi form a simplex contained in VR(Qn; r). As
any simplex is contractible, [v,w] is homotopic (rel {v,w}) to the concatenation of
edges [v0, v1] ∗ [v1, v2] ∗ . . . ∗ [vr−1, vr ].

Replacing each edge of α in this manner we obtain a based homotopic simplicial
loop β, such that the endpoints of all the edges are at distance at most 1. The loop
β is thus contained VR(Qn; 2), which is simply connected by [4], and contained in
VR(Qn; r). As a result, β and α are contractible loops. As α was arbitrary, this means
VR(Qn; r) is simply connected. 
�

Proof of Theorem 7.2 (i): Fix r ≥ 2. In order to show (i), it is equivalent to assume
πn−1(VR(Qn; r)) is trivial for all n ∈ {1, 2, . . . , n(r) − 1}, and then prove that
πN−1(VR(QN ; r)) �= 0 for N := n(r). This is what we will do.

First, we define ϕ : ∂CN → VR(QN ; r) by induction on the skeleta of CN . For the
base case, the 0-skeleton, define ϕ|

C(0)
N

as the identity on QN , mapping a point of QN

to the corresponding vertex in VR(QN ; r). Now, assume that

ϕ : C ( j)
N → VR(QN ; r)

has been defined for some j ∈ {0, 1, . . . , N − 2} in a subcube-preserving manner,
i.e.,

∀i ≤ j, ∀Qi ≤ QN : ϕ(ConvQi ) ⊆ VR(Qi ; r). (4)

Before defining ϕ on all of C ( j+1)
N , we first explain how to define ϕ on a single

( j + 1)-dimensional cube. Fix Q j+1 < QN , and let C j+1 = ConvQ j+1. Define
ϕ|C j+1 : C j+1 → VR(Q j+1; r) as follows:

• By (4) above we have

ϕ(∂C j+1) ⊆
⋃

Q j ≤Q j+1

VR(Q j ; r) ≤ VR(Q j+1; r).

• By the assumption at the beginning of the proof, ϕ|∂C j+1 : ∂C j+1 → VR(Q j+1; r)

is contractible and can thus be extended over C j+1. In particular, the subcube-
preserving condition ϕ(C j+1) ⊆ VR(Q j+1; r) holds.

123



Lower Bounds on the Homology of Vietoris–Rips Complexes… Page 29 of 32    72 

Defining ϕ on ConvQ j for each Q j ≤ Q j+1 we obtain a continuous subcube-

preserving map ϕ defined on ∂C ( j+1)
N . This concludes the inductive step, and thus

we obtain a subcube-preserving map

ϕ : ∂CN → VR(QN ; r).

Next, we show that ϕ is not contractible. Choose z ∈ CN \∂CN such that z is not
contained in the image of fN . Let ν : CN \{z} → ∂CN be the radial projection map,
which is a retraction. Define ψ = ν ◦ fN ◦ ϕ : ∂CN → ∂CN as the composition of
maps

∂CN
ϕ→ VR(QN ; r)

fN→ CN \ {z} ν→ ∂CN ,

and note it is a map between topological (N − 1)-spheres. Observe that ψ is subcube-
preserving, i.e., ∀Q j < QN : ψ(ConvQ j ) ⊆ ConvQ j . The map ψ : ∂CN → ∂CN is
homotopic to the identity, as is demonstrated by the linear homotopy

H : ∂CN × I → ∂CN , H(x, t) = (1 − t)ϕ(x) + t x,

which is well-defined by the subcube-preserving property. As ψ is homotopically
nontrivial, so is ϕ. Since VR(QN ; r) is path connected, this implies πN (VR(QN ; r))

is nontrivial regardless of which basepoint is used, giving (i).
(ii): By the Hurewicz theorem and Lemma 7.6(3), the first nontrivial homotopy

group of VR(Qm; r) is isomorphic to the corresponding homology group with integer
coefficients in the same dimension. By (i), the mentioned dimension is at most m − 1.

(iii): Let m ∈ {1, 2, . . . , n(r)} be the parameter from the proof of (i) that satisfies
πm−1VR(Qm; r) �= 0. For r > 2 we claim that m − 1 < 2r − 1. Indeed, m − 1 ≤
n(r) − 1 ≤ 2r < 2r − 1 by Lemma 7.6(2). So for r > 2, the dimension (m − 1 or
lower) of the homotopy and homology groups in (i) and (ii) is lower than the dimension
2r − 1 of the �r+1,m induced invariants, giving (iii). Finally, in the case r = 2, we
have m = 2 and VR(Q4; 2) 
 ∨9S3 by [4]. Since Q4 contains only 8 copies of Q3,
the image of the �3,4 induced map on π3 is of rank at most 8; thus the claim (iii)
follows also for r = 2. 
�

8 Conclusion and Open Questions

We conclude with a description of some open questions. We remind the reader of
questions from [4], which ask if VR(Qn; r) is always a wedge of spheres, what the
homology groups and homotopy types of VR(Qn; r) are for 3 ≤ r ≤ n − 2, and if
VR(Qn; r) collapses to its (2r − 1)-skeleton (which would imply that the homology
groups Hq(VR(Qn; r)) are zero for q ≥ 2r ). Below we pose some further questions.

The first four questions are related to the geometric generators in Sect. 7. Under-
standing the answers to any of them would provide further information about
parameters of Theorem 7.2.
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Question 8.1 Recall that n(r) ∈ {0, 1, . . .} is the smallest integer n such that
fn : VR(Qn; r) → [0, 1]n is not surjective. What are the values of n(r) as a function
of r?

Question 8.2 If fn : VR(Qn; r) → [0, 1]n is not surjective, then is it necessarily the
case that the center ( 12 ,

1
2 , . . . ,

1
2 ) is not in the image of fn?

Question 8.3 If fn : VR(Qn; r) → [0, 1]n is surjective, then does there exist a trian-
gulation of [0, 1]n by simplices of diameter at most r?

Question 8.4 The following question is based on a StackExchange post [1]. A sub-
set B ⊆ {0, 1}n is balanced if 1

|B|
∑

b∈B b = ( 12 , . . . ,
1
2 ) ∈ R

n . For example, the
tetrahedron τ1 in Example 7.3 is a set of four vertices that forms a balanced subset. If
( 12 ,

1
2 , . . . ,

1
2 ) is in the image of fn : VR(Qn; r) → [0, 1]n , then does there necessarily

exist a balanced subset of {0, 1}n of diameter at most r? One of the reasons we ask
this question is that the answers to the StackExchange post [1] place constraints on
the smallest diameter for a balanced subset of the n-dimensional cube.

The remaining questions are more general.

Question 8.5 In Sect. 4 we described cross-polytopal homology generators. In Sect. 7
we described geometric homology generators. In Non-Example 7.5 we described
homology generators, due to computations by Ziqin Feng, that are neither cross-
polytopal in the sense of Sect. 4 (arising from an isometric embedding Qr+1 ↪→ Qn)
nor geometric in the sense of Sect. 7. What other types of homology generators are
there for Hq(VR(Qn; r))?

Question 8.6 Our main results show how the homology (and persistent homology) of
VR(Q p; r) for 1 ≤ p ≤ m place lower bounds on the Betti numbers of VR(Qn; r)

for all n ≥ m. For every r ≥ 1, is there some integer m(r) such that our induced lower
bounds are tight for all n ≥ m(r) and for all homology dimensions?

Question 8.7 The group of symmetries of the n-dimensional cube is the hyperoctahe-
dral group. How does this group act on the homology Hq(VR(Qn; r))?

Question 8.8 What homology propagation results can be proven for Čech complexes
of hypercube graphs, as studied in [6]?
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Appendix A: Proofs of Numerical Identities

This appendix contains two short proofs of numerical identities, both of which are
used in Sect. 6.4 in the cases r = 1 and r = 2.

A.1 First proof

Let Sn = ∑n
i=2(i − 1)2i−2; we claim Sn = n2n−1 − 2n + 1. Indeed, note that

Sn = 2Sn − Sn = 0 + 2 + 2 · 22 + 3 · 23 + . . . + (n − 2) · 2n−2 + (n − 1) · 2n−1

− 1 − 2 · 2 − 3 · 22 − 4 · 23 − . . . − (n − 1) · 2n−2

= −1 − 2 − 22 − 23 − . . . − 2n−2 + (n − 1) · 2n−1,

which gives Sn = −(2n−1 − 1) + (n − 1)2n−1 = n2n−1 − 2n + 1.

A.2 s Proof

We prove that
∑n

i=3 2
i−3

(i
3

) = 2n−2
(n
3

)−∑n−2
i=1 2i−1

(i+1
2

)
by induction on n. For the

base case n = 3, note that both sides equal 1. For the inductive step, note that if we
assume the formula is true for n − 1, then as desired we get

n∑

i=3

2i−3
(

i

3

)
= 2n−3

(
n

3

)
+

(

2n−3
(

n − 1

3

)
−

n−3∑

i=1

2i−1
(

i + 1

2

))

= 2n−3
(

n

3

)
+ 2n−3

(
n − 1

3

)
+ 2n−3

(
n − 1

2

)
−

n−2∑

i=1

2i−1
(

i + 1

2

)

= 2n−3
(

n

3

)
+ 2n−3

(
n

3

)
−

n−2∑

i=1

2i−1
(

i + 1

2

)

= 2n−2
(

n

3

)
−

n−2∑

i=1

2i−1
(

i + 1

2

)
.
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6. Adams,H., Shukla,S., Singh,A.: Čech complexes of hypercube graphs. arXiv preprint

arXiv:2212.05871 (2022)
7. Bauer, U.: Ripser: efficient computation ofVietoris–Rips persistence barcodes. J. Appl. Comput. Topol.

1, 391–423 (2021)
8. Bridson, M.R, Haefliger,A.: Metric spaces of non-positive curvature, volume 319. Springer (2011)
9. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)

10. Carlsson, G., Filippenko, B.: Persistent homology of the sum metric. J. Pure Appl. Algebra 224(5),
106244 (2020)

11. Chazal, F., Cohen-Steiner, D., Guibas, L.J., Mémoli, F., Oudot, S.Y.: Gromov–Hausdorff stable signa-
tures for shapes using persistence. In Computer Graphics Forum, volume 28, pp. 1393–1403 (2009)

12. Chazal, F., de Silva, V., Oudot, S.: Persistence stability for geometric complexes. Geom. Dedicata.
174, 193–214 (2014)

13. Edelsbrunner, H., Harer, J.L.: Computational Topology: An Introduction. American Mathematical
Society, Providence (2010)

14. Feng, Z.: Homotopy types of Vietoris–Rips complexes of hypercube graphs. arXiv preprint
arXiv:2305.07084 (2023)

15. Feng, Z., Nukala, N.C.P.: On Vietoris–Rips complexes of finite metric spaces with scale 2. arXiv
preprint arXiv:2302.14664 (2023)

16. Gasparovic, E., Gommel, M., Purvine, E., Sazdanovic, R., Wang, B., Wang, Y., Ziegelmeier, L.: A
complete characterizationof the one-dimensional intrinsic Čechpersistencediagrams formetric graphs.
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