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This paper deals with the problem of finding a continuous extension of the 
hypercomplex (quaternionic or octonionic) logarithm along (quaternionic or 
octonionic) paths which avoid the origin. The main difficulty depends upon this 
fact: while a branch of the complex logarithm can be defined in a small open 
neighbourhood of a strictly negative real point, no continuous branch of the 
hypercomplex logarithm can be defined in any open set which contains a strictly 
negative real point. To overcome this difficulty, we use the logarithmic manifold
introduced in [4]: in general, the existence of a lift of a path to this manifold is not 
guaranteed and, indeed, the problem of lifting a path to the logarithmic manifold is 
completely equivalent to the problem of finding a continuation of the hypercomplex 
logarithm along this path.
The second part of the paper scrutinizes the existence of a notion of winding number 
(with respect to the origin) for hypercomplex loops that avoid the origin, even 
though it is known that the definition of winding number for such loops is not 
natural in Rn when n is greater than 2. The surprise is that, in the hypercomplex 
setting, the new definition of winding number introduced in this paper can be given 
and has full meaning for a large class of hypercomplex loops (untwisted loops with 
companion that avoid the origin).
Finally an original but rather natural notion of homotopy for these hypercomplex 
loops (the c-homotopy) is presented and it is proved to be suitable to comply with 
the intrinsic geometrical meaning of the winding number for this class of loops, 
namely, two such hypercomplex loops are c-homotopic if, and only if, they have the 
same winding number.
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1. Introduction

This paper focuses on the problem of finding a continuous extension of the hypercomplex logarithm 
along a path. As pointed out in [4], while a branch of the complex logarithm can be defined in a small open 
neighbourhood of a strictly negative real point, no continuous branch of the hypercomplex logarithm can 
be defined in any open set A ⊂ K \ {0} which contains a strictly negative real point x0 (here K represents 
the algebra of quaternions or of octonions).

To overcome these difficulties, in [4] we introduced the logarithmic manifold E +
K and then showed that, 

if q ∈ K, q = x + Iy then E(x + Iy) = (expx cos y+ I expx sin y, Iy) is an immersion and a diffeomorphism 
between K and E +

K .
In this paper, we consider lifts of paths in K \ {0} to the logarithmic manifold E +

K ; even though K \ {0}
is simply connected, in general, given a path in K \ {0}, the existence of a lift of this path to E +

K is not 
guaranteed. There is an obvious equivalence between the problem of lifting a path in K \ {0} and the one 
of finding a continuation of the hypercomplex logarithm logK along this path.

We want to recall that the slice regular logarithm log∗(f) of a slice regular function f (see [2,5]) over the 
quaternions or octonions, introduced as the slice regular inverse of the slice regular exponential exp∗(f) of 
a slice regular function f (see [1]), is not defined in general via the lift of f to E +

K . In particular it turns out 
that, in general, log∗(f)(q) �= logK(f(q)).

The paper is organized as follows: in Sections 2 and 3, after recalling the basic notions on slice regular 
exponential and logarithmic functions, we provide explicit examples of paths intersecting the real axis and 
show how a branch of the hypercomplex logarithm can be defined along certain curves even when they 
encounter the real axis at negative points, providing a so called continuation of the logarithm along a 
continuous curve.

Furthermore, we introduce the notion of path and of loop with a companion (see Subsection 4.1) and 
then give a definition of winding number with respect to 0 that has a full meaning for a class of loops in 
K \ {0} � R2s \ {0} (s = 2, 3) with companion; this fact is quite novel and original since it is well known 
that a definition of winding number for a loop (with respect to a point) is not in general possible in Rn

when n is greater than 2. Moreover this notion of winding number is invariant for the class of c-homotopic 
loops with companion.

Finally, in the last Section 5, we extend the continuation of the hypercomplex logarithm to the case of 
curves with an infinite number of intersections with the real axis. These represent the set of obstructions for 
such an extension. When these obstructions are “mild” and “reasonable”, then we also present an effective 
way to calculate the winding numbers using the so-called notion of signature.

The authors would like to thank the anonymous referee for her/his precious suggestions, which helped 
them to improve the quality of the paper.

2. Preliminary results

We denote by K either the algebra of quaternions or octonions. Let S be the sphere of imaginary units, 
i.e. the set of I ∈ K such that I2 = −1. Given any z ∈ K \ R, there exist (and are uniquely determined) 
an imaginary unit I, and two real numbers x, y (with y > 0) such that z = x + Iy. With this notation, the 
conjugate of z will be z̄ := x − Iy and |z|2 = zz̄ = z̄z = x2 + y2. Each imaginary unit I generates (as a 
real algebra) a copy of a complex plane denoted by CI . We call such a complex plane a slice. The upper 
half-plane in CI , namely {x + yI : y > 0} will be denoted by C+

I . Similarly, the lower half-plane in CI

{x + yI : y < 0} will be denoted by C−
I ; each of these two half–planes will be called a leaf of CI . On any 

leaf C+
I we define the function argI : C+

I → (0, π) as z = x + Iy ∈ C+
I �→ cot−1(x/y) := argI(z).

The function argI can be continuously extended as a function argI : C+
I ∪R+ ∪R− → [0, π].
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It is also useful to define the imaginary unit function on K \ R in the following way: if z ∈ C+
I , i.e. if 

z = x + Iy, with x, y ∈ R and y > 0, then I(z) = I; if z ∈ C−
I , i.e. if z = x − Iy, with x, y ∈ R and y > 0, 

then I(z) = −I.

Remark 2.1. It is worthwhile noticing that the function I cannot be extended as a continuous function to 
any single point of the real axis R of K. At the same time, if we set S(−π, π) = {Iy : I ∈ S, y ∈ (−π, π)}, 
then the function

Arg : K \ (−∞, 0] → S(−π, π)

defined as the product

Arg(q) := I(q) argI(q)(q)

can be extended (as the zero function) to the positive real axis R+ of K.

3. The hypercomplex exponential and logarithm

Let us recall that the exponential map on K

exp : K → K \ {0}

defined as

exp(q) =
∑
k≥0

qk

k!

is a slice regular and slice preserving entire function on K ([1,6]). Let E +
K = T (K+) denote the logarithm 

manifold, i.e., the image T (K+) of K+ = {q ∈ K : Re q > 0} of the map T : K → K × Im(K) defined by

T (x + Iy) = (sinh x cos y + I sinh x sin y, Iy)

for I ∈ S, x, y ∈ R. The E +
K -exponential map

E : K → E +
K ⊂ K× Im(K)

defined by:

E(x + Iy) = (exp(x + Iy), Iy) = (expx cos y + I expx sin y, Iy)

is an immersion and a diffeomorphism between K and E +
K (see [4]). In the case of quaternions, it endows 

E +
H with a structure of slice quaternionic manifold (see, e.g., [3]), which is different from the structure of 

hypercomplex Riemann manifold defined in Proposition 4.3. [4])
The next definition and result appear in [4] (Proposition 5.3).

Definition 3.1. Let E +
K be the logarithm manifold. The E +

K -logarithm

L : E +
K ⊂ K× Im(K) → K

is defined as follows, in terms of the real logarithm log:
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L(q, p) = log |q| + p

Indeed, if (q, p) ∈ E +
K , then q = r exp p for r = |q| and our definition can be rewritten as:

L(r exp p, p) = log r + p

The hypercomplex manifold E +
K plays the role of an “adapted” blow-up of K at points of the form 

x + 2Ikπ, for k ∈ Z and k �= 0.

Proposition 3.2. The map

L : E +
K → K

is the inverse of the E +
K -exponential E, and a diffeomorphism from the logarithm manifold E +

K to K.

Note that if pr1 : K × Im(K) → K denotes the projection on the first factor, then by definition the 
following equality holds

pr1 ◦ E(q) = exp(q)

for all q ∈ K. Indeed, the map L is a slice regular map from E + to K, with respect to the structure of slice 
regular manifold induced by E on E +

K (see, e.g., [3]). This map allows the definition of the hypercomplex 
logarithm (see [4,5]):

Definition 3.3. Let pr1 : E +
K ⊂ K × Im(K) → K \ {0} denote the natural projection

(q, p) �→ q

and let Ω ⊂ E +
K be a path connected subset such that pr1|Ω is injective. Then, the map

logK : pr1(Ω) → K

defined by

logK q = L(pr1−1
|Ω (q))

is called a branch or a determination of the hypercomplex logarithm on pr1(Ω).

As one can expect, it holds

exp(logK q) = pr1(E(L(pr1−1
|Ω (q)))) = pr1(pr1−1

|Ω (q)) = q

for all q in pr1(Ω). It is worthwhile noticing that, if we consider the open, path-connected subset

Ω = {(q,Arg(q)) : q ∈ K \ (−∞, π]} ⊂ E +
K ,

then the projection on the first factor

pr1 : Ω → K \ (−∞, 0]
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is injective. Therefore, in this way, one defines the principal branch of the logarithm (see [7]) in pr1(Ω) =
K \ (−∞, π] (see [5,2]). The principal branch of the hypercomplex logarithm

log0 : K \ (−∞, 0] → R× [0, π)S ⊂ K

q �→ log |q| + Arg(q)

is well defined and, for all I ∈ S, coincides with the principal branch of the complex logarithm in the slice 
CI \ (−∞, 0]. As a consequence, log0 is a slice regular function in the symmetric slice domain K \ (−∞, 0].

As already observed in the Introduction, despite the analogy with the complex holomorphic case, in 
general no continuous branch of the hypercomplex logarithm can be defined in any open set A ⊂ K \{0} which 
contains a strictly negative real point x0. Nevertheless, we will now see how a branch of the hypercomplex 
logarithm can be defined along certain curves even when they encounter the real axis at negative points, 
providing a so called continuation of the logarithm along a continuous curve.

Throughout the paper, a continuous curve will be called a path, and a closed path will be called a loop.

Definition 3.4. Let γ : [a, b] → K \ {0} be a path. Then a path γ̃ : [a, b] → K is called a continuation of the 
logarithm along γ if

exp ◦γ̃ = γ,

i.e., if the following diagram commutes:

K

exp

[a, b]

γ̃

γ
K \ {0}

The point γ̃(a) ∈ K will be called the initial point of the continuation γ̃.

To study the possible continuations of the logarithm along a path, we need to specifically define the 
various branches of the hypercomplex argument of an element from K \ {0}.

Definition 3.5. If k ∈ Z, for all q ∈ K \R, q = x + Iy with y > 0, let us define for

k = 2l : I2l(q) = I(q), arg2l(q) = argI(q) + 2lπ,
where arg2l(q) ∈ (2lπ, (2l + 1)π),

k = 2l + 1 : I2l+1(q) = −I(q), arg2l+1(q) = (2π − argI(q)) + 2lπ,
where arg2l+1(q) ∈ ((2l + 1)π, (2l + 2)π).

The k-th branch of the hypercomplex argument

Argk : K \R → S(kπ, (k + 1)π)

is defined by setting

Argk(q) := Ik(q) argk(q).
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As a consequence,

Arg2l+1(q) = −I(q)(2π − argI(q) + 2lπ) (3.1)

= I(q)(argI(q) − 2(l + 1)π)

= I(q) arg−2(l+1)(q)

= Arg−(2l+2)(q)

Therefore, the only different branches of the hypercomplex argument of a quaternion q ∈ K \R, q = x + Iy
with y > 0, can be listed for k ∈ Z as

Arg2k(q) := I(q) arg2k(q).

It is worthwhile noticing that for any fixed q ∈ K \R, we have that for all k ∈ Z

exp(Arg2k(q)) = exp(Arg(q));

indeed

exp(Arg2l(q)) = exp[I(q)(argI(q) + 2lπ)] = exp[I(q) argI(q)]

= exp(Arg(q)).

Consequently, we define

logk(q) := log |q| + Argk(q),

where log is the real logarithm.

4. Continuation of hypercomplex logarithms along paths

The construction of a continuation of the logarithm along a path naturally involves the notion of a lift 
of a path.

Definition 4.1. Let γ : [a, b] → K \ {0} be a path. Then a path Γ : [a, b] → E+
K is a lift of γ (to E+

K ) if 
pr1 ◦ Γ = γ, i.e., if the following diagram commutes:

E+
K

pr1

[a, b]

Γ

γ
K \ {0}

For (q, p) ∈ E+
K , a lift Γ of γ such that Γ(a) = (q, p) will be said to have initial point (q, p).

The existence of a lift of a path γ is equivalent to the existence of a continuation of the hypercomplex 
logarithm along it.

Proposition 4.2. Let γ : [a, b] ⊂ R → K \ {0} be a path. Then, there exists a lift of γ to E+
K if, and only if, 

there exists a continuation of the logarithm along γ.
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Proof. Suppose that there exists a continuation of the logarithm γ̃ along γ. Then the path Γ defined by 
Γ(t) = ((exp ◦γ̃)(t), Im(γ̃(t)) is obviously a lift of γ to E+

K .

E+
K

pr1

L
K

exp

[a, b]

Γ

γ
K \ {0}

Conversely, if a lift Γ of the path γ : [a, b] → K \ {0} to E+
K exists, then a continuation of the hypercomplex 

logarithm along γ can be defined by γ̃(t) := L(Γ(t)). �
Thanks to the result just stated, we are left to find conditions under which a path γ : [a, b] → K \ {0}

can be lifted to E+
K . Since the map pr1 : E+

K → K \ {0} is not a covering, we have to specifically study the 
existence of lifts of γ.

Let us first consider the easy cases: it is not difficult to see that if we restrict the map pr1 : E+
K → K \{0}

to the preimage of K \R, then the restriction pr1|pr1−1(K\R) becomes a covering. Indeed it becomes a trivial 
covering, since pr1−1(K \R) is homeomorphic (namely diffeomorphic) through the diffeomorphism

E : K → E +
K

to the countable collection of open simply connected domains given by

K \
{⋃

k∈Z
R× Skπ

}
=

⋃
k∈Z

R× S(kπ, (k + 1)π).

Let us now set, for any k ∈ Z,

Dk = R× S(kπ, (k + 1)π), E(Dk) = E(R× S(kπ, (k + 1)π)) ⊂ E +
K .

Notice that S(kπ, (k + 1)π) = S(−(k + 1)π, −kπ)) and hence D2k = D−(2k+1), so that, among all Dk’s, it 
suffices to consider only those with even k’s. With this in mind, we can now state the following proposition.

Proposition 4.3. Assume the path γ : [a, b] → K \ {0} is such that γ([a, b]) ∩R = ∅, and let

γ(t) = x(t) + I(t)y(t)

with y(t) > 0 for all t ∈ [a, b]. Then, for any k ∈ Z, there exists one, and only one, lift Γk of γ to 
E(D2k) ⊂ E +

K with initial point

Γk(a) = (γ(a),Arg2k(γ(a))).

Namely, for all t ∈ [a, b], we have

Γk(t) := (γ(t),Arg2k(γ(t))) ∈ E(D2k).

Finally, for all k ∈ Z, the map defined on the interval [a, b] by

(L ◦ Γk)(t) = log |γ(t)| + Arg2k(γ(t)) = (log2k ◦γ)(t) (4.2)
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is the unique continuation of the hypercomplex logarithm along γ with initial point log |γ(a)| + Arg2k(γ(a)), 
and is called the k-th branch of the hypercomplex logarithm along γ with initial point log |γ(a)| +
Arg2k(γ(a)).

Proof. For each k ∈ Z, the proof of the existence and uniqueness of Γk as in the statement is a straightfor-
ward consequence of what already established. To prove the last part of the statement, let us consider the 
graph Ωk of the lift Γk of γ to E(D2k) ⊂ E +

K with initial point Γk(a) = (γ(a), Arg2k(γ(a))), i.e.,

Ωk := {(q,Arg2k(q)) : q ∈ γ([a, b])} ⊂ E(D2k) ⊂ E+
K .

Since the projection π : E+
K → K \ {0} restricted to Ωk is injective, following Definition 3.3, we obtain 

(4.2). �
Under the hypotheses of the preceding proposition, loops lift to loops, hence:

Corollary 4.4. Assume the loop γ : [a, b] → K \ {0} is such that γ([a, b]) ∩R = ∅. Then for each k ∈ Z, the 
lift Γk found in Proposition 4.3 is a loop. As a consequence, for each k ∈ Z,

log2k(γ(a)) = log2k(γ(b))

Among the initial cases, there is the one corresponding to what is stated in Remark 2.1.

Proposition 4.5. Assume the path γ : [a, b] → K \ {0} is such that γ([a, b]) ∩ R− = ∅. Then there exists a 
lift Γ of γ to E+

K .

Proof. The proof is a consequence of what observed in Remark 2.1. Indeed, taking into account that 
S(−π, π) = S[0, π) = S(−π, 0], the mentioned remark implies that pr1 : E(R × S(−π, π)) → K \ (−∞, 0] is 
a homeomorphism. �

As pointed out in the Introduction, even though K \ {0} is simply connected, in general, given a path in 
K \{0}, the existence of a lift of this path to E+

K is not guaranteed. Indeed, consider the following examples.

Example 4.6.

(a) Let σ : [π/2, 3π/2] → K \ {0} be the path (depicted in Fig. 1) defined by

σ(t) = cos(t) + I(t) sin(t)

where I : [π/2, 3π/2] → S is defined as

I(t) = i for π/2 ≤ t < π and I(t) = −j for π ≤ t ≤ 3π/2.

The curve σ is continuous, but the function

Arg(σ(t)) = I(t) argI(σ(t))

is not continuous at π (the left and right limits are different). Therefore σ cannot be lifted to E+
K .

(b) Consider now the loop γ : [0, 1] → K \ {0} defined by

γ(t) = cos(π − 2πt) + t(1 − t)(i cos(2π/t) + j sin(2π/t)),
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Fig. 1. The arc σ.

Fig. 2. The path γ (negative rocket) of the Example 4.6 (b) is drawn on the left: it cannot be lifted to E+
K . Its reflection on the 

right (positive rocket) can be lifted to E+
K .

where i, j are the usual orthogonal imaginary units (see Fig. 2). Notice that the imaginary part of γ is 
continuous at all points of the interval [0, 1] (including 0). Nevertheless, for t near to 0, we have that 
the function

Arg(γ(t)) =

= (i cos(2π/t) + j sin(2π/t)) arccos
(

cos(π − 2πt)√
cos2(π − 2πt) + t2(1 − t)2

)

has no limit for t approaching 0+. Therefore γ cannot be lifted to E+
K .

(c) Notice that in both the preceding cases, the paths σ̂ := −σ and γ̂ := −γ can be lifted to E+
K , since their 

images are included in K \ (−∞, 0] (see Proposition 4.5).

It is useful to point out that the existence of a lift Γ of a path γ to E+
K is equivalent to the existence of a 

continuous function Argγ : [a, b] → Im(H), such that

Γ(t) = (γ(t),Argγ(t)) ∈ E+
K .

As noticed in Remark 2.1, the function Argγ will be decomposed, where possible, with obvious notation, as

Argγ := Iγ argγ
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where Iγ : [a, b] → S and argγ : [a, b] → R. The existence of Iγ : [a, b] → S implies that we can assign to 
each t ∈ [a, b] a complex plane CIγ which contains the point γ(t) and hence determines the argument up 
to a multiple of 2π.

Complex slices {CJ}J∈S are naturally parameterized by the elements of S/{± Id}, the real projective 
space RPdimR K−2 of dimension dimK − 2. The projection [ ] : S → S/{± Id} = RPdimR K−2 is the classical 
2 : 1 universal covering map and, as customary, for J ∈ S, the symbol [J ] denotes the equivalence class 
whose representatives are the opposite (conjugate) imaginary units J, −J ∈ S. Each element [J ] ∈ S/{± Id}
uniquely defines the complex slice C[J] = CJ = C−J . A continuous imaginary unit function Iγ : [a, b] → S

naturally defines a continuous function Iγ : [a, b] → S/{± Id} when we set Iγ(t) = [Iγ(t)].

Definition 4.7. Let [a, b] ⊂ R and let γ : [a, b] → K \ {0} be a path.
A path Iγ : [a, b] → S/{± Id} such that γ(t) ∈ CIγ(t) for every t ∈ [a, b] is called a companion of the 

path γ.
If a companion Iγ of the path γ exists, then γ is called a path with a companion and the pair (γ, Iγ) is 

called a path with companion Iγ .
If the path γ has a unique companion Iγ , then both γ and the pair (γ, Iγ) are called a tame path.

Proposition 4.8. Let γ : [a, b] → K \ {0} be a path with companion Iγ. If Iγ , −Iγ : [a, b] → S are the two 
lifts of Iγ , then there exist continuous functions x, y : [a, b] → R such that, for all t ∈ [a, b],

γ(t) = x(t) + Iγ(t)y(t) = x(t) + (−Iγ(t))(−y(t)).

These last expressions are called canonical forms of (γ, Iγ).

Proof. Since γ(t) and Iγ(t) are both continuous, then Re(γ(t)) = x(t) and −Iγ(t)Im(γ(t)) = y(t) are 
continuous as well on [a, b]. �

It is easy to see that all paths lying entirely in a complex slice have a companion. Notice as well that 
a path γ : [a, b] → K \ {0} may have more than one companion: this happens for example when the path 
γ is such that γ([a, b]) ⊂ (0, ∞); in this case, for an arbitrary path Iγ : [a, b] → S, the induced path 
Iγ : [a, b] → S/{± Id} is a companion of γ; consequently γ is not tame. For a similar reason, a path 
γ : [a, b] → K \{0} which maps a closed sub-interval of [a, b] to a real number has more than one companion, 
and hence is not tame.

Remark 4.9. There exist paths in K \ {0} which can be lifted to E+
K , but have no companion. Indeed, set

σ̂ = −σ : [π/2, 3π/2] → K \ {0}

where σ is the path defined in Example 4.6 (a). The path σ̂ is the symmetric image of the path σ with 
respect to the plane of purely imaginary quaternions (see Fig. 1) and, as pointed out in Example 4.6 (c), it 
can be lifted to E+

K . Obviously σ̂ has no companion: the continuity of a companion cannot hold at t = π.

The following definition will play a central role in the sequel.

Definition 4.10. Let γ : [a, b] → K \ {0} be a path with a companion Iγ : [a, b] → S/{± Id}, let Iγ , −Iγ :
[a, b] → S be the two (continuous) lifts of Iγ to S and let

γ(t) = x(t) + Iγ(t)y(t) = x(t) + (−Iγ)(t)(−y(t))

be the canonical forms of (γ, Iγ). The paths γIγ , γ−Iγ : [a, b] → C \ {0} defined by
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γIγ = x(t) + iy(t), γ−Iγ = x(t) − iy(t)

are called the (two conjugated) shadows associated with the pair (γ, Iγ). If the path γ is tame, then the 
paths γIγ and γ−Iγ are simply called the (two) shadows associated with the path γ.

Remark 4.11. The two shadows associated with the pair (γ, Iγ) are conjugate paths.

Paths with a companion are of interest because they can all be lifted to E+
K .

Proposition 4.12. Let γ : [a, b] → K \ {0} be a path with companion Iγ : [a, b] → S/{± Id}. Then there exist

• a path Iγ : [a, b] → S with [Iγ(t)] = Iγ(t), for all t ∈ [a, b],
• a path argγ : [a, b] → R,

such that, after setting Argγ = Iγ argγ : [a, b] → Im(H), the path

Γ(t) = (γ(t),Argγ(t))

is a lift of γ to E+
K with argγ(a) ∈ [0, π], called a Iγ-lift of γ.

If, as in Definition 3.5, for every k ∈ Z we set argγ2k := argγ +2kπ and Argγ2k := Iγ argγ2k, then the path

Γk(t) = (γ(t),Argγ2k(t))

is a Iγ-lift of γ to E+
K with argγ2k(a) ∈ [2kπ, (2k + 1)π].

Proof. There exist exactly two continuous lifts Iγ , −Iγ of Iγ to the universal covering S of S/{± Id}. 
Correspondingly, there exist two shadows γIγ , γ−Iγ : [a, b] → C \ {0} associated with Iγ . Exchange Iγ and 
−Iγ if necessary, so that Iγ is such that arg(γIγ (a)) ∈ [0, π]. As a complex path, γIγ has a well defined 
argument argγIγ : [a, b] → R such that argγIγ (a) ∈ [0, π]. Set argγ := argγIγ . Then the chosen paths Iγ

and argγ have the properties required in the statement. The rest of the proof is straightforward. �
The lifts Γ and Γk (for k ∈ Z) appearing in the last Proposition are not unique, when Γ(a) and Γk(a)

are real.
At this point, Proposition 4.2 implies directly the existence of all branches of the logarithm, along all 

paths in K \ {0} having a companion.

Corollary 4.13. Let γ : [a, b] → K \ {0} be a path with companion Iγ : [a, b] → S/{± Id}. For every k ∈ Z, 
let

Γk = (γ,Argγ2k)

be a Iγ-lift of γ to E+
K with argγ2k(a) ∈ [2kπ, (2k + 1)π]. Then, the map defined on the interval [a, b] by

(L ◦ Γk)(t) = log |γ(t)| + Arg2k(γ(t)) = (log2k ◦γ)(t)

is a continuation of the hypercomplex logarithm along γ with initial point log |γ(a)| +Arg2k(γ(a)). This map 
is called a k-th branch of the hypercomplex logarithm along γ with initial point log |γ(a)| + Arg2k(γ(a)).

Proof. The proof is a straightforward consequence of Proposition 4.12 and Proposition 4.2. �
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Observe that Proposition 4.3 is a special case of Corollary 4.13, since any path γ : [a, b] → K \ {0} such 
that γ([a, b]) ∩ R = ∅ has only one companion. We will now turn our attention to the case of loops of 
K \ {0}.

Definition 4.14. Let [a, b] ⊂ R and let γ : [a, b] → K \{0} be a path with a companion Iγ : [a, b] → S/{± Id}.
If both γ and Iγ are closed, then the path γ is called a loop with companion Iγ , and the pair (γ, Iγ) is 

called a loop with companion.
The loop with companion (γ, Iγ) is called untwisted if Iγ is homotopic to a constant in S/{± Id}; if 

instead Iγ is not homotopic to a constant, then (γ, Iγ) is said to be twisted.

In the most relevant case in which γ is tame, we can specialize the definition as follows.

Definition 4.15. Let [a, b] ⊂ R and let γ : [a, b] → K \ {0} be a tame path with companion Iγ : [a, b] →
S/{± Id}.

If both γ and Iγ are closed, then γ is called a tame loop (with companion Iγ), and the pair (γ, Iγ) is 
called a tame loop.

The tame loop (γ, Iγ) is called untwisted if Iγ is homotopic to a constant in S/{± Id}; if instead Iγ is 
not homotopic to a constant, then (γ, Iγ) is said to be twisted.

Remark 4.16. For any fixed I ∈ S, let γ : [a, b] → K \ {0} be a path lying in the complex slice CI . The 
path γ has always a particularly simple companion, namely Iγ : [a, b] → S/{± Id} constantly equal to 
[I]. Moreover, the two different lifts of Iγ to S are both constantly equal to I or −I, respectively. As a 
consequence, if the given path γ is closed and tame, it is a tame loop and is untwisted.

A twisted loop necessarily intersects the real axis. Indeed the following result holds.

Proposition 4.17. Let γ : [a, b] → K \ {0} be a loop which misses the real axis. Then γ is a tame loop and is 
untwisted.

Proof. By Proposition 4.5, the loop γ can be lifted to a path Γ : [a, b] → E+
K with Γ = (γ, Argγ). Let us 

consider the map Argγ = Iγ argγ : [a, b] → Im(K). By the hypothesis, there exists k ∈ Z such that the 
map argγ = argγ2k : [a, b] → (2kπ, (2k + 1)π) is never vanishing and hence has constant sign. Now, since γ
is closed, we have that

Iγ(a) argγ2k(a) = Iγ(b) argγ2k(b).

Since argγ2k(a) and argγ2k(b) have the same sign and both belong to the interval (2kπ, (2k + 1)π), we obtain

argγ2k(a) = argγ2k(b)

and hence

Iγ(a) = Iγ(b).

Therefore the path Iγ : [a, b] → S is a loop, and hence the unique companion [Iγ ] : [a, b] → S/{± Id} is a 
loop, homotopic to a constant. As a consequence the path γ is an untwisted, tame loop. �
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4.1. Winding number for untwisted loops with companion in K \ {0}

It is well known that the definition of winding number for a loop (with respect to a point) is not natural 
in Rn when n is greater than 2. Nevertheless, in our setting, we can start by giving a definition of winding 
number that has full meaning for loops with companion that are untwisted and lie in K \ {0}.

The following result opens a way to this definition of winding number.

Proposition 4.18. A loop γ : [a, b] → K \ {0}, γ([a, b]) �⊂ R, with companion Iγ is untwisted if, and only if, 
for any chosen non real initial point of γ, both shadows associated with Iγ are loops.

Proof. Let γIγ : [a, b] → C \ {0}, γIγ (t) = x(t) + iy(t), be one of the shadows associated with Iγ .
If the loop γ is untwisted, then any lift Iγ of the companion Iγ of γ is a loop, and hence it has coinciding 

endpoints. Therefore, the path

γ(t) = x(t) + Iγ(t)y(t)

being a loop, the continuous function y : [a, b] → R is such that y(a) = y(b). Hence the associated shadow 
γIγ (t) = x(t) + iy(t) is closed.

On the other hand, suppose the associated shadow γIγ : [a, b] → C \ {0}, γIγ (t) = x(t) + iy(t), is a loop 
and assume that y(a) = y(b) �= 0. Since the path

γ(t) = x(t) + Iγ(t)y(t)

is a loop by assumption, we obtain Iγ(a) = Iγ(b) and so the lift Iγ of Iγ is a loop. In conclusion, γ is 
untwisted. �

We are now ready to use the well established definition of winding number for complex loops in C \ {0}
to define the winding number in the case of untwisted loops with companion in K \ {0}.

Definition 4.19. Let the loop γ : [a, b] → K \ {0} with companion Iγ be untwisted. The winding number
(with respect to zero) of the loop (γ, Iγ), denoted wind(γ, Iγ), is defined as the absolute value of the winding 
number (with respect to zero), wind(γIγ ), of a shadow γIγ associated with Iγ :

wind(γ, Iγ) = |wind(γIγ )|.

In the case in which the loop (γ, Iγ) is tame, there is one and only one companion of γ, and hence we can 
simply denote the winding number of γ by wind(γ).

Of course, we need to show that the given definition of winding number of an untwisted loop with 
companion (γ, Iγ) does not depend on the choice of the shadow associated with Iγ. Indeed, the two shadows 
associated with Iγ are conjugate loops: as a consequence, their winding numbers are opposite. Therefore, 
Definition 4.19 is consistent.

One of the important features of the classical winding number (with respect to zero) of loops of C \ {0}
is its invariance with respect to homotopy between such loops. The winding number of an untwisted loop 
with companion (in K \{0}) just defined cannot be invariant with respect to standard homotopy in K \{0}: 
all such loops are homotopic to a constant loop since K \ {0} is simply connected, and a constant loop has 
vanishing winding number.

A special notion of homotopy comes into the scenery in our setting. The next definition is useful to define 
such a notion.
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Definition 4.20. Let [a, b] × [c, d] ⊂ R2 and let F : [a, b] × [c, d] → K \ {0} be a continuous map.
A continuous map IF : [a, b] × [c, d] → S/{± Id} such that F (t, s) ∈ CIF (t,s) for every (t, s) ∈ [a, b] × [c, d]

is called a companion of the map F .
If a companion IF of the map F exists, then F is called a continuous map with companion IF , and 

(F, IF ) is called a continuous map with companion.
If the map F has a unique companion IF , then it is called a tame map.

Proposition 4.21. Let F : [a, b] × [c, d] → K \ {0} be a continuous map with companion IF . If IF , −IF :
[a, b] × [c, d] → S are the two lifts of IF , then there exist continuous functions x, y : [a, b] × [c, d] → R such 
that, for all (t, s) ∈ [a, b] × [c, d],

F (t) = x(t, s) + IF (t, s)y(t, s) = x(t, s) + (−IF (t, s))(−y(t, s)).

These last expressions are called canonical forms of (F, IF ).

Proof. See the proof of Proposition 4.8. �
As announced, the idea is now to define a special type of homotopy between paths, each having a 

companion and sharing the same endpoints. As customary, also in this paper homotopy between paths will 
always be meant with fixed endpoints.

Definition 4.22. Let γ1, γ2 : [a, b] → K \ {0} be two paths with the same endpoints γ1(a) = γ2(a) = p and 
γ1(b) = γ2(b) = q. Let Iγ1 and Iγ2 be companions of γ1 and γ2 respectively. If there exists a continuous 
map F : [a, b] × [0, 1] → K \ {0} with companion IF such that:

(1) IF (t, 0) = Iγ1(t) and IF (t, 1) = Iγ2(t), for all t ∈ [a, b];
(2) F (t, 0) = γ1(t) and F (t, 1) = γ2(t), for all t ∈ [a, b];
(3) F (0, s) = p and F (1, s) = q, for all s ∈ [0, 1];

then we will say that (γ1, Iγ1), (γ2, Iγ2) are companion homotopic (or c-homotopic) and that (F, IF ) is a 
c-homotopy between (γ1, Iγ1) and (γ2, Iγ2).

Let γ1, γ2 : [a, b] → K \ {0} be two paths with the same endpoints. If there exist a companion Iγ1 of γ1
and a companion Iγ2 of γ2 such that (γ1, Iγ1), (γ2, Iγ2) are c-homotopic, then we say that γ1 and γ2 are 
weakly c-homotopic.

The following simple result will be helpful in the sequel.

Proposition 4.23. Let the continuous map F : [a, b] × [c, d] → K \ {0} with companion IF be a c-homotopy 
between (γ1, Iγ1) and (γ2, Iγ2). Then:

(i) the map IF is a homotopy between Iγ1 and Iγ2 ;
(ii) the homotopy IF can be lifted to a homotopy IF between a lift Iγ1 of Iγ1 and a lift Iγ2 of Iγ2 in such 

a way that the canonical form of F

F (t, s) = x(t, s) + IF (t, s)y(t, s) (4.3)

is a homotopy between the canonical forms

γ1(t) = x1(t) + Iγ1(t)y1(t)
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and

γ2(t) = x2(t) + Iγ2(t)y2(t)

of γ1 and γ2, respectively;
(iii) the shadows

x1(t) + iy1(t), x2 + iy2(t)

of (γ1, Iγ1) and (γ2, Iγ2), respectively, are homotopic in C \ {0}.

Proof. The proofs of (i) and (ii) are a straightforward consequence of Definition 4.22 and of what is stated 
in Propositions 4.8 and 4.21. Let us prove (iii). To this aim, consider the canonical form of F that appears 
in (4.3) and the following continuous maps, for (t, s) ∈ [a, b] × [0, 1]:

L1(t, s) = Re(F (t, s)),
L2(t, s) = −IF (t, s)Im(F (t, s))

We will prove that L = (L1, L2) : [a, b] × [0, 1] → R2 \{(0, 0)} is a homotopy between the two given shadows 
of γ1 and γ2. Indeed, using directly formula (4.3) for the canonical form of F , it is easy to check that on 
[a, b] × [0, 1],

L(t, 0) = (L1(t, 0),L2(t, 0)) = (x1(t), y1(t)),
L(t, 1) = (L1(t, 1),L2(t, 1)) = (x2(t), y2(t)),
L(a, s) = (L1(a, s),L2(a, s)) = (x1(a), y1(a)) = (x2(a), y2(a)),
L(b, s) = (L1(b, s),L2(b, s)) = (x1(b), y1(b) = (x2(b), y2(b)).

The proof is now complete. �
Example 4.24. To better illustrate the major difference between complex and quaternionic cases, consider 
the curve, defined by

γ(t) = 3eit, t ∈ [0, π], γ(t) = −4 + t

π
, t ∈ [π, 3π],

γ(t) = e−it, t ∈ [3π, 4π], γ(t) = −3 + t

π
, t ∈ [4π, 6π].

If we associate γ with the (constant) companion Iγ(t) ≡ i, then the curve γ, regarded as a complex curve, 
has winding number 0 around the origin. Furthermore γ and its shadow with respect to the companion 
Iγ(t) ≡ i coincide.

At the same time, we can associate the same curve γ with other companions, for instance

Iγ(t) = i, t ∈ [0, π], Iγ(t) = J (t), t ∈ [π, 3π],
Iγ(t) = −i, t ∈ [3π, 4π], Iγ(t) = −J (t), t ∈ [4π, 6π];

and Iγ(t) = [Iγ(t)], where J : [π, 3π] → S is an arbitrary continuous curve with J (π) = i and J (3π) = −i. 
Correspondingly, the shadow of (γ, Iγ) is

γIγ (t) = 3eit, t ∈ [0, π], γIγ (t) = −4 + t

π
, t ∈ [π, 3π],

γIγ (t) = eit, t ∈ [3π, 4π], γIγ (t) = −3 + t
, t ∈ [4π, 6π]
π
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and so the winding number of (γ, Iγ) around the origin is 1. The pairs (γ, i) and (γ, Iγ) are not c-homotopic.

The notion of c-homotopy is particularly useful in this setting, because of the following result.

Proposition 4.25. Let (γ1, Iγ1), (γ2, Iγ2) : [a, b] → K \ {0} be two paths with companions and with the same 
endpoints γ1(a) = γ2(a) = p and γ1(b) = γ2(b) = q. Then the following statements are equivalent:

(1) (γ1, Iγ1), (γ2, Iγ2) are c-homotopic;
(2) Iγ1 and Iγ2 are homotopic in S/ {±Id}, and, in addition, for each of the shadows of (γ1, Iγ1) there is 

a shadow of (γ2, Iγ2) so that these two shadows are homotopic in C \ {0}.

Proof. Suppose first that (2) holds. Then there exist:

• a homotopy G : [a, b] × [0, 1] → S/ {±Id} between Iγ1 and Iγ2 ;
• a lift of G, i.e. a homotopy G : [a, b] × [0, 1] → S between a lift Iγ1 of Iγ1 and a lift Iγ2 of Iγ2 ;
• a homotopy L = (L1, L2) : [a, b] × [0, 1] → R2 \ {(0, 0)} between a shadow of γ1 and a shadow of γ2 (its 

“conjugate” being a homotopy between the corresponding conjugate shadows).

In this situation, the map F : [a, b] × [0, 1] → K \ {0} defined by

F (t, s) = L1(t, s) + G(t, s)L2(t, s)

is a homotopy between γ1 and γ2. Indeed, F is obviously continuous, and such that, for all t ∈ [a, b] and all 
s ∈ [0, 1],

F (t, 0) = L1(t, 0) + G(t, 0)L2(t, 0) = x1(t) + Iγ1(t)y1(t) = γ1(t);
F (t, 1) = L1(t, 1) + G(t, 1)L2(t, 1) = x2(t) + Iγ2(t)y2(t) = γ2(t);
F (a, s) = L1(a, s) + G(a, s)L2(a, s) = x1(a) + Iγ1(a)y1(a) = γ1(a) = γ2(a);
F (b, s) = L1(b, s) + G(b, s)L2(b, s) = x1(b) + Iγ1(b)y1(b) = γ1(b) = γ2(b).

Moreover, the continuous map G : [a, b] × [0, 1] → S defines, by construction, a companion of F given by

IF (t, s) = [G(t, s)] = G(t, s)

for all (t, s) ∈ [a, b] × [0, 1]. As a consequence, (F, IF ) is a c-homotopy between (γ1, Iγ1), (γ2, Iγ2).
Let us now suppose that (1) holds, i.e. that (γ1, Iγ1) and (γ2, Iγ2) are c-homotopic. In this case Iγ1 and 

Iγ2 are homotopic by definition, and the rest of the assertion follows from Proposition 4.23. �
Proposition 4.26. Let γ : [a, b] → K \ {0} be a loop with companion Iγ. Then (γ, Iγ) is untwisted if, and 
only if, it is c-homotopic to one of its (closed and conjugate) shadows in CIγ(a).

Proof. If (γ, Iγ) is untwisted, then any lift Iγ of the companion Iγ with initial point Iγ(a) is homotopic in 
S to the constant loop Iγ(a), and therefore the loop γ is c-homotopic to its (closed) shadow in CIγ(a) (see 
Proposition 4.18). On the other hand, if the loop with companion (γ, Iγ) is c-homotopic to its shadow, then 
the lift of its companion Iγ with initial point Iγ(a) has to be homotopic in S to the constant loop Iγ(a). 
As a consequence the loop (γ, Iγ) is untwisted by definition. �

The notion of c-homotopy is suitable to comply with the meaning of the winding number of loops in the 
setting of K \ {0}. In this panorama, all untwisted tame loops play a special role: any such a loop has an 
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“intrinsically defined” winding number that depends only on its geometric properties. Indeed, we can state 
the following result.

Theorem 4.27. Let γ, δ : [a, b] → K \ {0} be two untwisted, tame loops. Then γ and δ are c-homotopic if, 
and only if, wind(γ) = wind(δ).

Proof. By Proposition 4.25, γ and δ are c-homotopic if, and only if, the unique companions Iγ and Iδ

are homotopic and a shadow of (γ, Iγ) is homotopic to a shadow of (δ, Iδ), in C \ {0}. According to 
Definition 4.19, the winding number of (γ, Iγ) (or (δ, Iδ)) is defined as the absolute value of the winding 
number of one of the two (closed) shadows of (γ, Iγ) (or (δ, Iδ)). Therefore the proof is a straightforward 
consequence of the properties of the fundamental group Π1(C \ {0}) ≡ Z, where the class of each loop is 
determined by its winding number (with respect to zero). �

The given definition of winding number, which has particularly transparent geometrical meanings, cannot 
be adopted as it is in the twisted case, due to the two following results.

Proposition 4.28. Let γ : [a, b] → K \{0} be a loop with a companion Iγ. Then (γ, Iγ) is twisted if, and only 
if, for any chosen non real initial point of γ, any shadow associated with (γ, Iγ) has conjugate endpoints.

Proof. Let γIγ : [a, b] → C \ {0}, γIγ (t) = x(t) + iy(t), be one of the shadows associated with Iγ .
If the loop (γ, Iγ) is twisted, then the lift Iγ is not closed, and hence it has opposite endpoints. Therefore, 

the path

γ(t) = x(t) + Iγ(t)y(t)

being closed, the continuous function y : [a, b] → R is such that y(a) = −y(b). Hence the associated shadow 
γIγ (t) = x(t) + iy(t) has conjugate endpoints.

On the other hand, suppose the associated shadow γIγ : [a, b] → C \ {0}, γIγ (t) = x(t) + iy(t), has 
conjugate nonreal endpoints. Then y(a) = −y(b) �= 0 and, the path

γ(t) = x(t) + Iγ(t)y(t)

being closed by assumption, we obtain Iγ(a) = −Iγ(b) and so the lift Iγ of Iγ is not closed. In conclusion, 
(γ, Iγ) is twisted. �
Corollary 4.29. Let γ : [a, b] → K \ {0} be a loop with companion Iγ. Then the two shadows associated with 
Iγ are closed if, and only if, the endpoints of γ are real.

Proof. The proof follows immediately from Proposition 4.28. �
We might be encouraged to think that, in the case of a loop with companion which is twisted, we should 

first parameterise the loop in such a way that it has real endpoints (see Proposition 4.17), and then use 
Definition 4.19. Indeed, this approach gives a weird result, if tested, for instance, in the case of the twisted, 
tame loop λ presented in the next example.

Example 4.30. Consider the loop λ in the hyperplane of H generated by the orthogonal units {1, i, j}. The 
path consists of several arcs: the arc of parabola t + 1 + t2(i + j), t ∈ [−1, 1], the segments from (2, 1, 0)
to (2, 1, 1), from (2, 1, 0) to (0, 1, 0) and from (0, 0, 1) to (0, 1, 1), the halfcircle cos t + i sin t, t ∈ [π/2, 3π/2]
and the quarter of circle i cos t + j sin t, t ∈ [π/2, π]. Let the orientation be such that it coincides with the 
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Fig. 3. From left to right: (a) the path γ and two of its shadows (b), (c).

positive orientation of the halfcircle part in the plane containing 1, i. The path intersects the real axis at 
points z = 1 and z = −1.

In the previous example, the proposed winding number of the twisted, tame loop λ would be 1 if the 
loop is parameterised with real endpoints equal to 1 ∈ R (see Fig. 3 (b)). On the other hand, the same loop 
λ parameterised with endpoints equal to −1 ∈ R would have winding number 0 (see Fig. 3 (c)). What we 
just illustrated clarifies that a notion of winding number for twisted, tame loops in K \ {0} (if it exists) has 
to be given by following a different approach.

In the spirit of the above example and Proposition 4.28 the definition of the winding number for a closed 
tame twisted loop γ : [a, b] → K \ {0} cannot be given by considering the change of the argument since this 
depends on the choice of the initial point.

Assume that γ is a twisted loop in K \ {0} which intersects both the positive and the negative real 
axis; let γIγ : [a, b] → C \ {0}, γIγ (t) = x(t) + iy(t), be one of the shadows associated with γ. Let 
argγ(t), t ∈ [a, b], be the corresponding argument and choose the initial argument so that argγ(a) ∈ [0, π]. 
The set Δ = {argγ(a) for all possible initial points} is an interval contained in [0, π]. Because the loop γ is 
twisted, the argument at b is argγ(b) = 2nπ − argγ(a) and hence

argγ(b) − argγ(a) = 2nπ − 2 argγ(a)

and is not an integer multiple of 2π unless argγ(a) = 0, π. Even if we set the initial point to be real, so 
that the change of argument is 2nπ, the number n can have more than one value as shown in the following 
example.

Example 4.31. Let γ1 be the positively oriented unit circle with initial point −1 and companion i and define 
γ2(t) := cos(t) + i sin(t) + j(cos(t) + 1), t ∈ [−π, π]. Choose the lift of the companion I2 of γ2 so that 
I2(−π) = i and I2(π) = −i. Let γ = γm

1 · γ2 denote the loop composed first of m copies of γ1 followed by a 
copy of γ2. If the initial point is assumed to be the point −1 on the first copy of γ1, then the change of the 
argument is 2πm. If the initial point is the point −1 on the second copy of γ1, then the m − 1 copies of γ1

before γ2 give the winding number m − 1, but then the curve γ2 reverses the orientation so the last copy of 
γ1 has negative orientation with respect to the unit −i, hence the winding number is m − 2. Starting at −1
on the third copy of γ1, would therefore result in the winding number m − 4 and so forth.
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A few words seem now appropriate, to present a suggestive geometrical explanation of the reason why 
the notion of winding number as given in the case of untwisted loops does not work for the case of twisted 
loops. Indeed, consider an untwisted loop γ : [a, b] → K \ {0}

γ(t) = x(t) + Iγ(t)y(t)

If we regard all points {x(t)}t∈[a,b] as distinct points except the endpoints, such a γ has values in the surface 
Sγ = {x(t) + Iγ(t)s : t ∈ [a, b], s ∈ R}; since γ is untwisted, then Iγ : [a, b] → S is a loop, and hence it 
is homotopic to the constant loop Iγ(0) = Iγ(1). As a consequence, the surface Sγ is homeomorphic to a 
twodimensional cylinder. Therefore there is a notion of γ(t) being a point of this surface lying on one side or 
the other of the “real axis” formed by the points {x(t)}t∈[a,b], and hence a notion of winding number with 
respect to the origin becomes possible: the situation reduces, naively speaking, to a planar one. If instead 
γ : [a, b] → K \ {0} is twisted, then the path Iγ : [a, b] → S has antipodal endpoints, and the surface Sγ

turns out to be homeomorphic to a Moebius strip. In this last situation, the lack of orientability seems to 
exclude the possibility of defining coherently a winding number for the loop γ.

5. Obstructions to the existence of lifts of a path

In this section we present sufficient conditions for a path to have a lift, a companion and to be tame.
As already mentioned, if the path γ : [a, b] → K \{0} misses the real axis, then the lift to E +

K always exists. 
On the other hand, if γ([a, b]) ⊂ R, then, necessarily either γ([a, b]) ⊂ R− and we have the lifts of the form 
Γ(t) = log |γ(t)| +I(2k+1)π, or γ([a, b]) ⊂ R+ and then we have the lifts of the form Γ(t) = log |γ(t)| +I2kπ
for any I ∈ S. From now on assume that γ([a, b]) is not entirely contained in the real axis but it intersects 
it.

Definition 5.1. For a path γ : [a, b] → K \ {0} we define the set T := γ−1(R) to be the obstruction set (for 
the lift of γ) and its points as obstruction parameters.

It is clear that the necessary assumption for a lift of γ to E+
K to exist is the requirement that γ has a 

lift on a neighbourhood of every parameter t, in particular, for each t ∈ T . It turns out that the existence 
of local lifts does not necessarily imply the existence of a global lift; recall that complex curves avoiding 0
always have local and global lifts.

In what follows, we start establishing the conditions on the behaviour of γ locally near its obstruction 
parameters in order to guarantee the existence first of local lifts and local companions and then of a global 
lift and a global companion.

As these conditions depend on the structure of the obstruction set, we start by considering paths with a 
finite obstruction set.

Definition 5.2. Let the path γ(t) = x(t) + Y (t) : [a, b] → H \ {0}, with x(t) = Re(γ(t)), be such that 
T = γ−1(R) = {a ≤ t1 < . . . < tp ≤ b}. Consider the limits

lim
t→t±s

Y (t)
|Y (t)| . (5.4)

Let ts ∈ (a, b). Then

1) γ is tame at ts if both limits are either equal or opposite. In particular, if these limits are opposite, then 
the parameter ts is called a flip, whereas if they are the same it is called a bounce;

2) γ is semi-tame at ts if it is not tame at ts but both limits in (5.4) exist;
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3) γ is not tame at ts if at least one of the limits in (5.4) does not exist.

If ts = a (resp. ts = b) then the path is tame at ts from the right (left) if the right (left) limit in (5.4) exists 
and not tame in all other cases.

If, in addition, the path γ is closed, we adapt the definition of tameness at the endpoints in the natural 
way. In particular, γ is semi-tame at a � b if it is tame at a from the right and at b from the left. If the 
limits are the same, then a � b is called a bounce and if they are opposite it is called a flip. In all other 
cases γ is not tame at a � b.

Remark 5.3. The path γ in the Example 4.6 (b) does not have the limit (5.4) at t = 0.

Remark 5.4. The definition of tameness of γ at parameters {t1, . . . , tp} means precisely that the projectivized 
imaginary unit function [J (γ(t))] defined on [a, b] \ {t1, . . . , tp} has a continuous extension to {t1, . . . , tp}.

The proposition below gives a motivation for the previous definitions.

Proposition 5.5. Let γ(t) : [a, b] → K \ {0} be a path with finite obstruction set γ−1(R) = {a ≤ t1 < . . . <

tp ≤ b}. Then γ is tame if and only if it is tame at each ts, s = 1, . . . , p.
If γ is a loop, then it is a tame loop if and only if it is tame at each ts, s = 1, . . . , p.

Proof. By assumption, the projectivized imaginary unit function [J (γ(t))] defined on [a, b] \{t1, . . . , tp} has 
a continuous extension to [a, b]. �

If γ is a tame loop, the lift to E+
K exists by Proposition 4.12. However, we want to present also a 

constructive proof, because we will use the same techniques to obtain lifts of non tame paths and to explain 
the definition of winding number through local data on the obstruction set.

Without loss of generality we assume that a �= t1, b �= tp. Consider the intervals I0 = [a =: t0, t1], I1 =
[t1, t2], . . . , Ip = [tp, tp+1 =: b] and denote the restrictions of γ on Is by γs := γ|Is . The existence of limits 
(5.4) provides, for any s = 0, . . . , p, continuous extensions of all functions argk(γs)(t), Ik(γs)(t) to the 
endpoints of Is.

Choose an arbitrary k0 ∈ Z. Setting argk0
(γ0(t)) =: argγ(t) and Ik0(γ0(t)) =: Iγ(t) we define continuous 

functions argγ and Iγ on [a, t1]. We set Argγ(t) := argγ(t)Iγ(t) and define the lift Γ0 := (γ0, Argγ
0
). 

Consider the endpoint γ(t1). If it is a flip, then we define

k1 :=
{

k0 + 1, if argk0
(γ0(t1)) = (k0 + 1)π,

k0 − 1, if argk0
(γ0(t1)) = k0π.

If it is a bounce then we set k1 := k0. By setting argγ(t) := argk1
(γ1(t)) and Iγ(t) := Ik1(γ1(t)) we extend 

the functions argγ and Iγ continuously to [a, t2]. We extend the above functions to [a, b] by repeating this 
process.

Proposition 5.6. A tame loop γ with γ−1(R) = {a ≤ t1 < . . . < tp ≤ b} has an even number of flips if and 
only if γ is untwisted.

Proof. Assume that the loop does not have flips. Then Iγ equals Ik0 ◦γ for some k ∈ Z and so it is obviously 
a loop.

For the case of a loop with flips, we assume, without loss of generality, that k0 = 0, so we have started 
with the principal branch and moreover, we also assume that the parameterisation γ : [a, b] → H is such 
that γ(a) ∈ R.
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As in the previous proof, all the functions arg0(γs)(t), I0(γs)(t) have continuous extensions to the end-
points of Is.

If a is a bounce, then the imaginary unit at γ(b) is the same as the one at γ(a), i.e. I0(γ0)(a) = I0(γp)(b). 
The even number of flips ensures that the sign of the imaginary unit at the endpoint remains the same with 
respect to the one at the principal branch.

If the initial point is a flip, then the imaginary unit function at endpoint has the opposite sign with 
respect to the one at the initial point, I0(γ0)(a) = −I0(γp)(b), and to end up with the same sign there 
must be an odd number of additional flips following the first one to ensure that the sign of the unit at the 
endpoint remains the same with respect to the one at the principal branch. �

The proofs of Propositions 5.5 and 5.6 show that once the lift near the initial point is chosen, only the 
flips are relevant for the determination of the lift near the endpoint; bounces can be discarded. This enables 
us to calculate the change of argument and the winding number out of local data at the intersections of γ
with the real axis. To determine the change of the argument we introduce a notion of signature.

Definition 5.7. Let γ : [a, b] → K \ {0} be a given path with γ−1(R) = {a ≤ t1 < . . . < tp ≤ b}, with points 
of γ−1(R) ∩ (a, b) all tame. Let a < ξ1 < . . . < ξm < b be those parameters in γ−1(R) which are flips. The 
signature σ(γ) is defined by

σ(γ) :=
m∑
l=1

sign(γ(ξl))(−1)l.

If there are no flips, then we define σ(γ) := 0.

The connection between the signature and the change of argument is described in the following

Proposition 5.8. Let γ : [a, b] → K \ {0} be a tame path with γ−1(R) = {a1 ≤ t1 < . . . < tp ≤ b}
with all the parameters γ−1(R) ∩ (a, b) tame. Assume that a lift Γ of γ|[a,t1] in E+

K exists and equals 
Γ(t) = (γ(t), Argγk0

(t)) ∈ E+
K , t ∈ [a, t1] for some k0 ∈ Z. Then the lift of γ|[tp,b) is given by 

(γ(t), Argγ
k0+(−1)k0σ(γ)(t)), t ∈ [tp, b).

Remark 5.9. If γ(b) ∈ R, then a lift of γ on [a, b) can be extended continuously to b if and only if b is tame 
from the left.

According to Definition 3.5, if (−1)k0σ(γ) is even, then Argk0+(−1)k0σ(γ)(b) = Ib argγk0
(b) and Argk0

(a) =
Ia argγk0

(a). Therefore it follows that

Corollary 5.10. Let γ be as in Proposition 5.8 and let γ(a) = γ(b) �∈ R. Then γ is a tame loop. Moreover 
σ(γ) is even if and only if γ is a tame and untwisted loop. If this is the case, then

ω(γ) = |σ(γ)|/2.

Proof of Proposition 5.8. For the sake of simplicity, assume first that k0 = 0, and so arg0(γ(a)) ∈ (0, π)
and let the sequence of signs of flips be alternating and starting with −1, i.e. −1, 1, −1, . . .. Then argγ(γ(t))
increases when the path γ crosses the real axis, and, to be more precise, in a small neighbourhood of each 
flip (corresponding to the parameter ts), it turns out that if argγ(γ(t)) ∈ (kπ, (k + 1)π) for t < ts (and 
|t − ts| small enough), necessarily argγ(γ(t)) ∈ ((k + 1)π, (k + 2)π) for t > ts (and |t − ts| small enough). 
Altogether, this occurs σ(γ) =

∑m
l=1 sign(γ(ξl))(−1)l =

∑m
l=1(−1)l(−1)l times. Geometrically, this means 

that the corresponding shadow associated with γ winds around the origin in the positive direction.
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If the sequence of signs of flips is still alternating but starts with 1, then argγ(γ(t)) decreases when 
the path γ crosses the positive real axis and this results in the translation of the interval [0, π] by 
π
∑m

l=1(−1)l−1(−1)l = πσ(γ).
To prove the general assertion it suffices to investigate what happens if the sequence of signs of flips is 

not alternating at one position.
Assume that we insert in the alternating sequence −1, 1 − 1 . . . the integer 1 in the second position, so 

the sequence is no longer alternating: −1, 1, 1, −1, . . .. This means that we have started from the upper 
half-plane, crossed the negative real axis, then the positive real axis with the arguments in [2π, 3π]. Then 
we have crossed the positive real axis again, hence the choice of argument at this intersection must be 2π. 
Because the point is a flip, this means that the argument decreases and keeps decreasing till the end. This 
is faithfully reflected in the sequence sl = (−1)lsign(γ(ξl)), because it equals 1, 1, −1, −1, ... and so the sum ∑m

l=1 sign(γ(ξl))(−1)l = σ(γ) multiplied by π corresponds with the total translation of the initial interval 
for the Arg.

Similarly, if we insert −1 on the second position, this means that we have crossed the negative real axis 
and we have the argument in [π, 2π] but then we have returned to the negative real axis and in order to 
have the argument continuous, at the second crossing the argument π must be chosen and because we have 
a flip, the argument argγ(γ(t)) decreases and keeps decreasing till the end. The corresponding sequence 
s1, s2, . . . now equals 1, −1, −1, −1, . . . and 

∑m
l=1 sl = σ(γ).

The proof for k0 even is the same. If k0 is odd, this coincides with considering the conjugate shadow and 
hence reversed orientation compared, to k0 even, so the signature has to be multiplied by −π to get the 
total translation of the initial interval for the Arg. �

In practice this means that once the sequence of ±1-s is given, we start by cancelling the pairs of the 
same numbers until we end up with an alternating sequence. The number of elements multiplied by minus 
the first element is the signature.

If the path γ : [a, b] → K \ {0} is closed, i.e. γ(a) = γ(b), then we identify points a and b of [a, b] and 
write b � a; hence, we consider the parameterisation as γ : S1 → K \ {0}, so there is no distinguished initial 
point. Therefore, in this case, we require that for each s ∈ S1 there exists a neighbourhood of Us of s in S1

such that the lift of γ exists on Us.

Definition 5.11. Let γ : S1 → K \ {0} be a continuous loop. Then a continuous function Γ : iR → E+ is a 
lift of γ if the following diagram commutes:

iR

exp

Γ Γ(iR) ⊂ E+
K

pr1

S1 γ
γ(S1) ⊂ K \ {0}

Remark 5.12. A loop with companion always has a (not necessarily closed) lift in the sense of Definition 5.11. 
The loop presented in Fig. 4 does not have a lift in the sense of Definition 5.11. The curve is defined by 
γ(t) = cos(t) + i(sin(t) − t/10) for t ∈ [0, π] and γ(t) = cos(2π− t) − i(2π− t)/10 +j sin(2π− t) for t ∈ [π, 2π]. 
However, starting from any point with γ(t) ∈ R × iR+ and using the principal branch one can obtain the 
local lift of γ and prolong it to the interval [0, 2π].

Corollary 5.13. Let γ : [a, b] → K \ {0} be a continuous loop with γ−1(R) nonempty and assume it is not 
tame at least at one of the obstruction parameters. Let a = ξ1 < . . . < ξm = b � a be all the obstruction 
parameters where γ is not tame and assume, moreover, that γ(ξk) > 0. Then a lift of γ in E+

K exists if and 
only if σ(γ|[ξl,ξl+1]) ∈ {0, −1} for each l = 1, . . . , m − 1. If it exists, the lift is a loop.
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Fig. 4. A loop without a lift in the sense of Definition 5.11.

Proof. Because γ is not tame at ξl we can only choose either k0 = 0 or k0 = −1 and lift the curve in 
a neighbourhood of the point γ(ξl) to E+

K using the principal branch of the logarithm. Assume that we 
have chosen k0 = 0. Then on [ξl+1 − δ, ξl+1) for some small δ > 0 we may only have k = 0, −1, hence 
the signature can be either 0 or −1 in order to be able to extend the lift to ξl+1. If we have k0 = −1, 
then, since we have to end up with k = 0, −1 near ξi+1, the condition is (−1)k0σ(γ|[ξl,ξl+1]) ∈ {0, 1} hence 
σ(γ|[ξl,ξl+1]) ∈ {0, −1}. �

When we do not have additional information about the set γ−1(R), we must assume that the continuous 
lift of γ exists on a neighbourhood U of γ−1(R) ∩ (−∞, 0). This means that the path γ|U has a companion, 
since the restriction of the function argγ to U is not vanishing. Recall that, on a neighbourhood of γ−1(R) ∩
(0, ∞), the principal branch of the logarithm is well-defined and hence a lift of γ always exists. This does 
not imply that a global lift exists.

We now proceed with the detailed description of the possible situations when γ has a companion on a 
neighbourhood of real points and omit the (trivial) case γ([a, b]) ⊂ R.

Since on the complement of the obstruction set the companion of a path γ exists and is unique, one 
immediately obtains the following

Proposition 5.14. Let γ : [a, b] → K \{0} be a path. Then γ has a companion if and only if it has a companion 
on a neighbourhood of the obstruction set. The same holds for a loop γ with γ(a) �∈ R.

In the sequel we explain how to extend the notion of signature to paths with infinite obstruction set. 
Since γ([a, b]) is compact, there are only finitely many connected components of γ([a, b]) \R with endpoints 
of opposite sign.

Definition 5.15. Let L1, . . . , Lm be all the connected components of γ([a, b]) \R, Ll(t) = γ(t), t ∈ (sl, el) ⊂
[a, b] satisfying γ(sl)γ(el) < 0 and a ≤ sl < el ≤ sl+1 < em ≤ b, l = 1, . . . , m. We call the components the 
big arcs and the subdivision a ≤ sl < el ≤ sl+1 < em ≤ b, l = 1, . . . , m the induced subdivision. The intervals 
[el, sl+1] are called obstruction intervals. If γ is closed, then we identify a and b, e0 := em, sm+1 := s1 and 
define also [e0, s1] as the obstruction interval.

Because γ([el, sl+1]) misses either the positive or the negative real axis, we define the sign of the obstruc-
tion interval as follows.

Definition 5.16. If γ([el, sl+1]) ∩(−∞, 0) = ∅, then sign([el, sl+1]) = 1; otherwise, if γ([el, sl+1]) ∩(0, ∞) = ∅, 
then sign([el, sl+1]) = −1.
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Extend the domains of definition of each Ll to its endpoints and let

Il(t) := J (γ(t)), t ∈ (sl, el) and Isl := lim
t→s−l

J l(t), Iel := lim
t→e+l

J l(t)

be the imaginary units of Ll at its endpoints, if the limits exist.

Definition 5.17. Let γ : [a, b] → K \ {0} be a path with companion I with lifts ±I. Let a ≤ s1 < e1 ≤ s2 <

e2 < . . . ≤ sm < em ≤ b be the induced subdivision and Ll the big arcs with limits Iel and Isl , l = 1, . . . , m.
The interval [el, sl+1], 1 ≤ l ≤ m − 1, is a bounce with respect to I if I (or −I) satisfies I(el) =

±Iel , I(sl+1) = ±Isl+1 and a flip with respect to I if I (or −I) satisfies I(el) = ±Iel , I(sl+1) = ∓Isl+1.

Remark 5.18. If γ has a companion and γ([el, sl+1]) ∩R contains an open set then γ always has a companion 
that makes it a bounce and a companion that makes it a flip. If the interval [el, sl+1] reduces to a point, 
then the definition of tameness for intervals coincides with the definition of tameness for points.

We can now extend the definition of signature also to this general case.

Definition 5.19. Let γ : [a, b] → K \ {0} be a path with the induced subdivision a ≤ s1 < e1 ≤ s2 < e2 <

. . . ≤ sm < em ≤ b and a companion I. Let 1 ≤ j1 < . . . < jk ≤ m be the indices for which the intervals 
[eji , sji+1] are flips. The signature σ(γ, I) with respect to the companion I is defined as

σ(γ, I) :=
k∑

l=1,jk �=m

sign([ejl , sjl+1])(−1)l.

If γ is a loop, then we define the circular signature with respect to I to be

σc(γ, I) :=
k∑

l=1

sign([el, sl+1]))(−1)l.

If there are no flips, then we define σ(γ, I) := 0, σc(γ, I) := 0.

The following are straightforward generalisations of Proposition 5.8 and Corollary 5.13

Proposition 5.20. Let γ : [a, b] → K \ {0} be a path with the companion I and the induced subdivision 
a = e0 ≤ s1 < e1 ≤ s2 < e2 < . . . ≤ sm < em ≤ b = sm+1. Assume that a lift Γ of γ in E+

K is given by logk0
, 

k0 ∈ Z on [s1 − δ, s1] for some δ > 0. The lift on [sm, em] is given by k := k0 + (−1)k0σ(γ).

To define the winding number for a closed curve we have to take into account also the last interval Im
and hence consider the closed signature.

Corollary 5.21. Let γ be a loop and σc(γ) even. Then ω(γ, I) = |σc(γ, I)|/2.

Corollary 5.22. Let γ : [a, b] → K \ {0} be a loop with the induced subdivision a ≤ s1 < e1 ≤ s2 < e2 < . . . <

sm < em ≤ b.
Let 1 ≤ j1 < . . . < jk ≤ m be the indices for which γ, restricted to the neighbourhoods of the intervals 

Jjl := [ejl , sjl+1 ] ⊂ (0, ∞), does not have a companion and assume γ has a companion on a neighbourhood 
of the closure of [a, b] \ ∪k

l=1Jjl . Then a lift of γ in E+
K exists if and only if σ(γ|[sjl+1,ejl+1 ]) ∈ {0, −1} for 

each l = 1, . . . , m − 1. If it exists, the lift is a loop.
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