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The 2-packing number ρ2(G) of a graph G is the cardinality of a largest 2-packing of G and 
the open packing number ρo(G) is the cardinality of a largest open packing of G , where 
an open packing (resp. 2-packing) is a set of vertices in G no two (closed) neighborhoods 
of which intersect. It is proved that if G is bipartite, then ρo(G�K2) = 2ρ2(G). For 
hypercubes, the lower bounds ρ2(Q n) ≥ 2n−�logn�−1 and ρo(Q n) ≥ 2n−�log(n−1)�−1 are 
established. These findings are applied to injective colorings of hypercubes. In particular, 
it is demonstrated that Q 9 is the smallest hypercube which is not perfect injectively 
colorable. It is also proved that γt(Q 2k × H) = 22k−kγt(H), where H is an arbitrary graph 
with no isolated vertices.

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

For many reasons, hypercubes are ubiquitous in theoretical computer science and in combinatorics. Understanding their 
structure is therefore a fundamental problem. Although hypercubes have a seemingly simple structure, we quickly encounter 
very complex problems. For instance, one of them was the middle levels problem, which was successfully dismissed [15]. On 
the other hand, the problem of determining the domination number of hypercubes is beyond the reach of existing methods. 
To date, exact values of γ (Q n) are only known for n ≤ 9, where the value γ (Q 9) = 62 was obtained in [16], and for the 
following two infinite families.

Theorem 1.1. ([7,19]) If k ≥ 1, then γ (Q 2k−1) = 22k−k−1 and γ (Q 2k ) = 22k−k.

The values γ (Q 2k−1) = 22k−k−1 can be obtained from the fact that hypercubes Q 2k−1 admit 1-perfect codes, in which 
case the domination number coincides with the cardinality of a 1-perfect code.

The most important variation of the domination number is the total domination number; see a recent monograph [8]
surveying domination theory with the two invariants in the central role. Roughly speaking, domination operates with closed 
neighborhoods while total domination with open neighborhoods, which often causes a different behavior of the invariants. 
However, as proved in [1] by using hypergraph transversals, γt(Q n+1) = 2γ (Q n) for all n, which makes the domination 
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number and the total domination number in hypercubes tightly connected. More generally, the authors of [1] proved that 
γt(G � K2) = 2γ (G) as soon as G is a bipartite graph.

The concepts of packing number and open packing number of a graph are often used in domination theory, since they 
present natural lower bounds on the domination number and the total domination number, respectively, of the graph. The 
concept of packing was used back in 1975 by Meir and Moon in their classical theorem stating that in a tree the domination 
number equals the packing number [11]. On the other hand, open packing was introduced by Henning and Slater [9], and 
was later used in [18] to prove a canonical formula for the total domination number of the direct product of two graphs, 
which holds if one of the factors has the total domination number equal to its open packing number. Similarly as total 
domination is related to domination, open packing can be regarded as a version of packing in which closed neighborhoods 
are replaced with open neighborhoods. See [12–14] for some recent studies of (open) packings as well as [5] for their 
application.

Open packings are also related to the so-called injective colorings of graphs, cf. [17]. More precisely, an injective coloring 
of a graph is exactly a partition of its vertex set into open packings. In a recent paper [3], graphs that admit injective 
colorings such that each of the color classes is a maximum open packing were considered. While proving this property for 
hypercubes of some small dimensions, it was also proved for those whose dimension is a power of 2. Yet, nothing else was 
known, including whether there exists a hypercube that does not satisfy this property. One of the reasons for the difficulty 
of this question is that the open packing number (i.e., the cardinality of a maximum open packing) has not been known.

We proceed as follows. In the remainder of this introduction, we provide the definitions and concepts we need for the 
following. In Section 2 we prove that the open packing number of a prism over a bipartite graph G is twice the 2-packing 
number of G . This result nicely complements [1, Theorem 1] which states that the total domination number of a prism over 
a bipartite graph G is twice the domination number of G . We also demonstrate that in general, the open packing number 
of a prism over a graph G can be arbitrary larger that the 2-packing number of G . In Section 3 we prove lower bounds 
on the 2-packing number and the open packing number of hypercubes. The bounds are sharp for small dimensions and for 
two infinite families, but are not sharp in general. In the subsequent section we apply these findings to injective colorings 
of hypercubes. In particular we demonstrate that Q 9 is the smallest hypercube which is not perfect injectively colorable. In 
the concluding remarks, we give an overview of the known values for the hypercube invariants considered here and also 
derive the total domination number of the direct product of Q 2k and an arbitrary graph.

1.1. Preliminaries

Let G = (V (G), E(G)) be a graph and x ∈ V (G). The open neighborhood N(x) is the set of vertices adjacent to x and the 
closed neighborhood is N[x] = N(x) ∪ {x}. A set D ⊆ V (G) is a dominating set of G if each vertex of V (G) \ D has a neighbor 
in D . The cardinality of a smallest dominating set of G is the domination number γ (G) of G . Similarly, D ⊆ V (G) is a total 
dominating set of G if each vertex of V (G) has a neighbor in D . The cardinality of a smallest dominating set of G is the total 
domination number γt(G) of G .

Let G be a connected graph and let x and y be vertices in G . The distance, dG(x, y), between x and y is the length of 
a shortest path between x and y in G . Let X ⊆ V (G). Then X is a 2-packing of G if every two distinct vertices in X are at 
distance at least 3; alternatively, N[x] ∩ N[y] = ∅ for every pair of distinct vertices x, y ∈ X . Similarly, if N(x) ∩ N(y) = ∅ for 
every pair of distinct vertices x, y ∈ X , then X is an open packing of G . The cardinality of a largest 2-packing of G is the 
2-packing number ρ2(G) of G and the cardinality of a largest open packing of G is the open packing number ρo(G) of G . By 
a ρ2-set of G we mean a 2-packing of G of cardinality ρ2(G). A ρo-set of G is defined analogously.

If X is a 2-packing such that V (G) = ∪x∈X N[x], then we say that X is a 1-perfect code of G . In domination theory, 1-
perfect codes are known as efficient dominating sets, see [8, Chapter 9] and [10]. Since γ (G) ≥ ρ2(G) for every graph G , if X
is a 1-perfect code of G , then X is also a dominating set of G . This observation leads to the following well known fact.

Proposition 1.2. If G admits a 1-perfect code, then γ (G) = ρ2(G). If in addition G is r-regular, then γ (G) = ρ2(G) = n(G)
r+1 .

An injective coloring of a graph G is a partition of the vertex set of G into open packings. The injective chromatic number, 
χi(G), of G is the minimum cardinality of an injective coloring in G .

The Cartesian product G � H of graphs G and H is the graph whose vertex set is V (G) × V (H), and two vertices (g1, h1)

and (g2, h2) are adjacent in G � H if either g1 = g2 and h1h2 is an edge in H or h1 = h2 and g1 g2 is an edge in G . For a 
vertex g of G , the subgraph of G � H induced by the set {(g, h) : h ∈ V (H)} is an H-fiber and is denoted by gH . Similarly, 
for h ∈ H , the G-fiber, Gh , is the subgraph induced by {(g, h) : g ∈ V (G)}. Cartesian product is commutative and associative. 
The hypercube of dimension n, or the n-cube, is isomorphic to K2 � · · · � K2, where there are n factors K2, and is denoted 
by Q n . The equality Q n = Q n−1 � K2 will be used (at least implicitly) several times in the paper. Note that the vertices of 
the n-cube enjoy a natural representation as binary strings of length n, where two vertices are adjacent precisely when the 
corresponding strings differ in exactly one position. Finally, the direct product G × H of graphs G and H has the vertex set 
V (G) × V (H), and two vertices (g1, h1) and (g2, h2) are adjacent in G × H if g1 g2 is an edge in G and h1h2 is an edge in H .
2
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Fig. 1. An open packing in G2 � K2.

2. Packing vs. open packing in bipartite prisms

In [1] it was proved that if G is a bipartite graph, then γt(G � K2) = 2γ (G). In this section we prove an analogous result 
that connects the open packing number and the packing number.

We begin with the following simple lemma, which holds in all graphs (see also [13, Theorem 3.3] for a more general 
bound).

Lemma 2.1. If G is a graph, then ρo(G � K2) ≥ 2ρ2(G).

Proof. Let G be a graph, and let P be a ρ2-set of G . Then P × V (K2) is an open packing of G � K2, hence the result. �
In general, ρo(G � K2) can be arbitrary larger than 2ρ2(G). For an example consider the family of graphs Gk , k ≥ 1, 

defined as follows. Gk contains 2k disjoint cycles C5 connected in a row by an edge between two consecutive 5-cycles. This 
informal definition of Gk should be clear from Fig. 1 where G2 � K2 is drawn. As an arbitrary packing of Gk contains at 
most one vertex of each C5 we infer that ρ2(Gk) = 2k. On the other hand, repeating the pattern as shown in Fig. 1 for k = 2, 
we get ρo(Gk � K2) ≥ 5k.

For bipartite graphs, however, the above phenomena cannot occur as the main result of this section asserts.

Theorem 2.2. If G is a bipartite graph, then ρo(G � K2) = 2ρ2(G).

Proof. Let G be a bipartite graph with parts A and B forming a natural partition of V (G). By Lemma 2.1, we have 
ρo(G � K2) ≥ 2ρ2(G). To prove the reversed inequality, consider an open packing O in G � K2 such that |O | = ρo(G � K2). 
We will show that O can be transformed into an open packing O ′ of the form P ′ × V (K2), where P ′ is a subset of V (G). 
(Clearly, the latter also implies that P ′ is a 2-packing.) Note that O can be presented as the disjoint union I ∪ R , where I is 
the set of vertices that are isolated in the subgraph of G � K2 induced by O , while R is the set of vertices that have exactly 
one neighbor in O . Clearly, at least one of the sets I or R is non-empty. Set V (K2) = {1, 2}, and let Ii = I ∩ V (Gi) and 
Ri = R ∩ V (Gi) for all i ∈ {1, 2}. In addition, let I A

i = {(u, i) ∈ Ii : u ∈ A}, I B
i = {(u, i) ∈ Ii : u ∈ B} for i ∈ {1, 2}, and similarly 

let R A
i = {(u, i) ∈ Ri : u ∈ A}, R B

i = {(u, i) ∈ Ri : u ∈ B} for i ∈ {1, 2}. Next, we compare the two quantities |I A
1 | + |I B

2 | and 
|I A

2 | + |I B
1 |. We may assume with no loss of generality that |I A

1 | + |I B
2 | ≥ |I A

2 | + |I B
1 |. Now, the announced transformation of 

O to O ′ is defined as follows:

• if (u, t) ∈ I A
1 ∪ I B

2 , then let {u} × V (K2) ⊆ O ′;
• if (u, t) ∈ I A

2 ∪ I B
1 , then let ({u} × V (K2)) ∩ O ′ = ∅;

• if (u, 1) ∈ R1 and (u, 2) ∈ R2, then let {u} × V (K2) ⊆ O ′;
• if (u, 1) ∈ R A

1 and (v, 1) ∈ R B
1 , where uv ∈ E(G), then let {u} × V (K2) ⊆ O ′ and ({v} × V (K2)) ∩ O ′ = ∅;

• if (u, 2) ∈ R A
2 and (v, 2) ∈ R B

2 , where uv ∈ E(G), then let {v} × V (K2) ⊆ O ′ and ({u} × V (K2)) ∩ O ′ = ∅.

We claim that |O ′| ≥ |O |. Indeed, the first two rows in the above transformation show that for every vertex (u, t) ∈ I A
1 ∪ I B

2
we get two vertices in O ′ , while for every vertex (u, t) ∈ I A

2 ∪ I B
1 we get no vertices in O ′ , yet |I A

1 ∪ I B
2 | > |I A

2 ∪ I B
1 | by the 

earlier assumption. By the last three rows of the above transformation, every pair of vertices in R is replaced by two vertices 
in O ′ . This altogether implies that |O ′| ≥ |O |, so it remains to prove that O ′ is an open packing in G � K2.

If (u, 1) ∈ I A
1 and (v, 1) ∈ I A

1 , then dG (u, v) ≥ 4, because the vertices belong to O , which is an open packing, and u and 
v are both in A. Thus vertices in {u} × V (K2) will be at distance at least 4 from the vertices in {v} × V (K2). By symmetry, 
we get the same conclusion for vertices (u, 2) ∈ I B

2 and (v, 2) ∈ I B
2 . If (u, 1) ∈ I A

1 and (v, 2) ∈ I B
2 , then dG(u, v) ≥ 3, because 

u and v belong to different parts, A and B , respectively, of the bipartition of V (G) and they belong to O , which is an open 
packing. Thus, vertices in {u} × V (K2) will be at distance at least 3 from the vertices in {v} × V (K2), as desired. Clearly, 
if (u, t) ∈ I A

1 ∪ I B
2 , then dG(u, v) ≥ 3 for any v ∈ V (G) such that {(v, 1), (v, 2)} ⊂ R . This yields that vertices in {u} × V (K2)

will be at distance at least 3 from the vertices in {v} × V (K2). If (u, 1) ∈ I A
1 and (v, 1) ∈ R A

1 , we have dG(u, v) ≥ 4. On the 
other hand, if (u, 1) ∈ I A

1 and (v, 2) ∈ R B
2 we have dG (u, v) ≥ 3. In either case, the corresponding vertices in O ′ are at least 

three apart. By symmetry, we can find that for vertices in I B and vertices in R A ∪ R B their distances are sufficiently large 
2 1 2

3
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so that the corresponding K2-fibers that are in O ′ will be at distance at least 3. This completes the proof that the distance 
between the vertices in O ′ that appear in the first row of the above transformation to all other vertices in O ′ will be at 
least 3, except of course for two vertices in O ′ that belong to the same K2-fiber and are adjacent.

Vertices of O ′ that appear in the third row of the transformation remain at distance at least 3 from all other vertices in 
O ′ (with the clear exception of two adjacent such vertices). Therefore, it remains to consider the vertices in O ′ that appear 
in the last two rows of the above transformation. Suppose there are two vertices in R A

1 (and a similar argument can be 
applied if they are in R B

2 ), say, (u, 1) and (v, 1), which are not adjacent. Then dG (u, v) ≥ 4, and so {u} × V (K2) will be 
at distance at least 4 from the vertices in {v} × V (K2) (by symmetry, the same conclusion applies if (u, 2) and (v, 2) are 
in R B

2 ). Finally, let (u, 1) ∈ R A
1 and (v, 2) ∈ R B

2 . Since O is an open packing, we have dG (u, v) > 1, and since they are in 
different parts of the bipartition, we get dG (u, v) ≥ 3. We derive that {u} × V (K2) will be at distance at least 3 from the 
vertices in {v} × V (K2), which concludes the proof that O ′ is an open packing. Since |O | = ρo(G � K2) and |O ′| ≥ |O |, we 
derive |O ′| = |O | = ρo(G � K2). In addition, there exists a set P ′ ⊂ V (G) such that O ′ = P ′ × {1, 2}, where P ′ is a 2-packing 
of G . Hence, |P ′| ≤ ρ2(G), and so |O ′| = 2|P ′| ≤ 2ρ2(G), implying ρo(G � K2) ≤ 2ρ2(G). �
3. (Open) packings in hypercubes

The following lemma follows by observing that the restriction of a 2-packing in G � K2 to a G-layer is a 2-packing of 
that layer (see also [13, Proposition 3.2] for a more general bound).

Lemma 3.1. If G is a graph, then ρ2(G � K2) ≤ 2ρ2(G).

We can now bound ρ2 and ρo of hypercubes as follows.

Theorem 3.2. If n ≥ 2, then

(i) ρ2(Q n) ≥ 2n−�logn�−1 and
(ii) ρo(Q n) ≥ 2n−�log(n−1)�−1 .

Proof. (i) Suppose first that n = 2k − 1, where k ≥ 2. As already mentioned, in these cases Q n admits a 1-perfect code, say 
S . Then |S| = 22k−1/2k = 22k−k−1 and consequently

ρ2(Q n) = |S| = 22k−k−1 = 22k−1−(k−1)−1 = 2n−�logn�−1 .

Consider now the hypercubes Q n , where k ≥ 3 and 2k−1 − 1 < n < 2k − 1. In particular, if n = 2k − 2, then since Q 2k−1 =
Q 2k−2 � K2, Lemma 3.1 implies that

ρ2(Q n) = ρ2(Q 2k−2) ≥ 1

2
ρ2(Q 2k−1) = 22k−k−2 = 22k−2−(k−1)−1 = 2n−�logn�−1 .

Inductively applying the lemma, the result holds for all n such that 2k−1 − 1 < n < 2k − 1. Therefore, (i) holds for all n ≥ 2.
(ii) Applying Theorem 2.2 and (i), we have

ρo(Q n) = 2ρ2(Q n−1) ≥ 2 · 2(n−1)−�log(n−1)�−1 = 2n−�log(n−1)�−1

for all n ≥ 2 and we are done. �
If n ≤ 7, then equality holds in Theorem 3.2(i). The cases when n ∈ {2, 3, 4} can be easily argued by case analysis. The 

equality in cases when n ∈ {5, 6} then follows by combining Lemma 3.1 and Theorem 3.2(i). For n = 7, the equality holds 
because Q 7 has a 1-perfect code. One is thus tempted to conjecture that the lower bound in Theorem 3.2(i) holds as 
equality for all n. However, with the help of a computer, we found the set

T = {00000000,00001110,00110010,00111100,01010110,01011000,

01100100,01101001,01111111,10010100,10100101,10101011,

11000111,11001100,11011011,11100010,11110001}
which is a 2-packing in Q 8 with |T | = 17, hence ρ2(Q 8) ≥ 17. By Theorem 2.2, this in turn implies that ρo(Q 9) ≥ 34. Hence 
also the lower bound in Theorem 3.2(ii) is not sharp in general. It is sharp however for all n ≤ 8 because the lower bound 
in Theorem 3.2(i) is sharp for n ≤ 7 and because of Theorem 2.2. Furthermore, by using Theorem 2.2 and the fact that the 
lower bound in Theorem 3.2(i) is sharp when n = 2k − 1, it follows that the lower bound in Theorem 3.2(ii) is sharp for 
each value of n that is a power of 2.
4
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Fig. 2. Partition of V (Q 6) into (maximum) 2-packings of Q 6.

4. Application to injective colorings

The concept of injective coloring was introduced by Hahn, Kratochvíl, Širáň and Sotteau [6] back in 2002, and has been 
considered by a number of authors, cf. [2,4]. In the recent paper [3], graphs that admit special types of injective colorings 
were considered: a graph G is a perfect injectively colorable graph if it has an injective coloring in which every color class 
forms a ρo-set of G . The authors of [3] considered hypercubes that are perfect injectively colorable. They noticed that such 
are the hypercubes Q n , where n ∈ [5], and proved that for all k ∈ N , the hypercube Q 2k is a perfect injectively colorable 
graph. Apart from the mentioned cases, it was asked in [3, Problem 1] in which other dimensions the hypercube is perfect 
injectively colorable. Since an answer to the question is closely related to computing the value of the open packing number 
of hypercubes, it was also asked in [3, Problem 2] what is the value of ρo(Q n) for n ≥ 6.

In this note, we give some partial answers to the above two questions. One can easily find that ρ2(Q 5) = 4, which by 
Theorem 2.2 implies that ρo(Q 6) = 8. In addition, Fig. 2 shows a maximum 2-packing of Q 6 of cardinality 8, where vertices 
of an arbitrary color in [8] form a maximum 2-packing. This gives, again by Theorem 2.2, that ρo(Q 7) = 16. In addition, 
recall that ρo(Q 8) = 32, which follows from the fact that Q 7 has a perfect code. Now, by the observation from Section 3, we 
have ρ2(Q 8) ≥ 17. On the other hand, we claim that ρ2(Q 8) ≤ 30. Suppose to the contrary that ρ2(Q 8) > 30, and let P be 
a ρ2-set of Q 8. Then, partitioning V (Q 8) into Q and Q ′ , each of which induces Q 7, we infer that either |Q ∩ P | or |Q ′ ∩ P |
is equal to 16. We may assume that |Q ∩ P | = 16, and noting that Q ∩ P is a 2-packing of Q 7, this implies that Q ∩ P
corresponds to a perfect code of Q 7, thus Q ∩ P is a dominating set of Q . This in turn implies that every vertex in Q ′ is 
at distance at most 2 from a vertex in Q ∩ P , which yields that P = Q ∩ P , and so |P | = 16, a contradiction proving that 
ρ2(Q 8) ≤ 30. Now, using Theorem 2.2, we get 34 ≤ ρo(Q 9) ≤ 60. In particular, ρo(Q 9) is not a power of 2, which readily 
implies that Q 9 does not admit a partition into ρo-sets, and is consequently not a perfect injectively colorable graph. On 
the other hand, refer to Fig. 2 again, which shows a coloring of Q 6 in which each color class is a 2-packing of cardinality 
ρ2(Q 6). By applying Theorem 2.2 and the first part of its proof, one can construct an injective coloring of Q 7 in which each 
color class is an open packing of cardinality ρo(Q 7). Therefore, Q 7 is perfect injectively colorable graph.

Summarizing the above, hypercubes Q n , where n ≤ 8, are perfect injectively colorable graphs, and so Q 9 is the first 
instance of a hypercube, which is not in this class of graphs.

5. Concluding remarks

Table 1 presents values or bounds on the main domination and packing invariants in hypercubes Q n , for all n, n ≤ 9. The 
values for γ and γt have been known earlier, while some of the values and bounds for ρ2 and ρo have been obtained in 
this paper.
5
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Table 1
Packing and domination invariants in hypercubes Q n , where n < 10.

n 1 2 3 4 5 6 7 8 9

γ 1 2 2 4 7 12 16 32 62
γt 2 2 4 4 8 14 24 32 64
ρ2 1 1 2 2 4 8 16 17-30 ?
ρo 2 2 2 4 4 8 16 32 34-60

In addition, consider the value γt(Q 2k ) = 22k−k , which follows from Theorem 1.1 combined with the formula 
γt(G � K2) = 2γ (G) from [1]. Now, compare this with the bound ρo(Q 2k ) ≥ 22k−k , which follows from Theorem 3.2(ii) 
when plugging n = 2k . Since γt(G) ≥ ρo(G) for every graph G with no isolated vertices, we infer that

γt(Q 2k ) = 22k−k = ρo(Q 2k ), for all k ∈N. (1)

Recall the result from [18] stating that γt(G × H) = γt(G)γt(H) whenever G is a graph with ρo(G) = γt(G) and graphs 
G and H have no isolated vertices. Therefore, from the discussion above we get that

γt(Q 2k × H) = 22k−kγt(H) ,

where k ∈N and H is an arbitrary graph with no isolated vertices. An additional family of graphs with this property (that 
γt = ρo) can be found in [12]. It would be interesting to establish if there are any hypercubes Q n of other dimensions than 
those in (1) that satisfy the equality γt(Q n) = ρo(Q n).
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